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Abstract— Based on the analysis of the interaction between a manipulator’s hand and a working object,
a model representing the constrained dynamics of the robot is first discussed. The constrained forces are
expressed by an algebraic function of states, input generalized forces, and constraint condition, and then
direct position / force controller without force sensor is proposed based on the algebraic relation. To give the
grinding system the ability to adapt to any object shape being changed by the grinding, we added estimating
function of the shape in real time for the adaptive position / force control. Evaluations through simulations
by fitting the changing constraint surface with such functions as linear, quadratic, and spline functions,
indicate that reliable position / force control can be achieved by the proposed controller with spline curve
fitting. And then we also did the shape grinding.
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1. Introduction

Many researches have discussed on the force con-
trol of robots for contacting tasks. Most force con-
trol strategies are to use force sensors [1]-[4] to obtain
force information, where the reliability and accuracy
are limited since the work-sites of the robot are filled
with noise and thermal disturbances. Force sensors
could lead to the falling of the structure stiffness of
manipulators, which is one of the most essential de-
fects for manipulators executing grinding tasks. To
solve these problems, some approaches without any
force sensor have been presented [5]-[7]. To ensure the
stabilities of the constrained motion, force and posi-
tion control have utilized Lyapunov’s stability analy-
sis under the inverse dynamic compensation [8]-[13].
Their force control strategies have been explained in-
telligibly in books [14], [15] and recently interaction
control for six-degree-of-freedom tasks has been com-
piled in a book [16].

However, insofar as we survey the controllers intro-
duced in the books or published papers don’t base
on the algebraic function of states and input gener-
alized forces derived from the relation between the
constraint condition and the equation of dynamics.
So we discuss first a strategy for simultaneous con-
trol of the position and force without any force sen-
sors, where the equation of dynamics in reference to
the constrained force has been reformulated [18]. The
constrained force is derived from the equation of dy-
namics and the constrained equation as an explicit al-
gebraic function of states and input generalized forces
[21], which means force information can be obtained
by calculation rather than by force sensing. Equation
(1), which has been pointed out by Hemami [17] in
the analysis of biped walking robot, denotes also the
kinematical algebraic relation of the controller, when

robot’s end-effecter being in touch with a surface in
3-D space:

Fn = a(x1,x2) − A(x1)τ , (1)

where, Fn is exerting force on the constrained sur-
face. x1 and x2 are state variables. a(x1, x2) and
A(x1) are scalar function and vector one defined in
following section. τ is input torque. This algebraic
equation has been known, but it was the first time in
robotics to be applied to the sensing function of ex-
erting force by Peng [10]. As a new control law, the
controller doesn’t include any force feedback sensors
but realizes simultaneous control of position and force
in the constrained motions and is different from the
traditional ones [1], [4], [6], [9].

A strategy to control force and position proposed in
this paper is also based on (1). Contrarily to Peng’s
Method to use (1) as a force sensor, we used the equa-
tion for calculating τ to achieve a desired exerting
force Fnd. Actually, the strategy is based on two
facts of (1) that have been ignored for a long time.
The first fact is that the force transmission process
is an immediately process being stated clearly by (1)
providing that the manipulator’s structure is rigid.
Contrarily, the occurrence of velocity and position is
a time-consuming process. By using this algebraic re-
lation, it’s possible to control the exerting force to
the desired one without time lag. Another impor-
tant fact is the input generalized forces have some re-
dundancy against the constrained generalized forces
in the constrained motion. Shall we consider an ar-
ticulated planar two-link manipulator with two input
torques, whose end-effecter be in contact with the con-
strained surface without friction in the tangential di-
rection of the constrained surface. And provide that
only a force exerted on the normal direction of the



constrained surface is required to be controlled, the
two input torques have a redundancy to realize the
force and the remaining freedom of the torque could
be used for position control along to the tangential
direction. Based on the above analysis, we had con-
firmed our force / position control method can realize
the grinding task through real grinding robot [18].

The problem to be solved in our approach is that
the mathematical expression of algebraic constraint
condition should be defined in the controller instead
of the merit of not using force sensor. Grinding task
requires on-line estimation of changing constraint con-
dition since the grinding changes the constraint con-
dition. In this presentation, we estimate the object’s
surface using the grinder as a touch sensor. In order
to give the system the ability to grind any working
object into any shape, we focus on how to update
the surface shape in real time. We try three estima-
tion methods (Fitting by linear, quadratic and spline
function). The grinding simulations with three kinds
of on-line estimations of constraint conditions show
that the spline curve fitting is best and the position /
force control accuracy can be acceptable when we use
spline fitting.

2. Analysis of Grinding Task

There are four kinds of grinding processes in com-
mon use, called respectively vertical surface grind-
ing, horizontal surface grinding, internal grinding and
cylindrical grinding. A grinding machine usually can
only perform one or two of these processes because of
kinematical limitation. However, all of the four kinds
of tasks can be finished by a single robot manipulator
for its dexterity in movement. To do so, the grind-
ing wheel has to contact with the workpiece. A set
of contacting surfaces, especially the surfaces being
machined, will form constraints to the motions of the
grinding wheel.

In general, the desired grinding position trajectory
is given by processing drawings for each grinding pro-
cedure, which the grinding allowance is considerated.
As for grinding forces Fn, Ft and Fs, the desired
values should be determined carefully for different
grinding conditions. Generally speaking, the grind-
ing power is related to the metal removal rate(weight
of metal being removed within unit time) which is de-
termined by the depth of cut, the width of cut, the
linear velocity of the grinding wheel, the feed rate and
so on. There are many empirical formulae available
for the determination of grinding power, and the de-
sired force trajectory can then be planned according
to the power. The normal grinding force Fn is ex-
erted in the perpendicular direction of the surface.
It is a significant factor that affects ground accuracy
and surface roughness of workpiece. The value of it is
also related to the grinding power or directly to the
tangential grinding force as
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Fig.1 A Grinding Robot

Ft = KtFn, (2)

where, Kt is an empirical coefficient, Ft is the tangen-
tial grinding force[19].

The axial grinding force Fs is proportional with the
feed rate, and is much smaller than the former force.

Equation (2) is based on the situation that position
of the grinding cutter is controlled like currently used
machining center. But when a robot is used for the
grinding task, the exerting force to the object and the
position of the grinding cutter should be controlled
simultaneously. And the Fn is generally determined
by the constrained situation, and it is not suitable to
apply (2) to grinding motion by the robots.

For grinding task, the normal force and tangential
velocity are the most important two factors. To im-
prove grinding quality, it is usually desired that the
normal force is constant while the velocity is also con-
stant in the middle term of a grinding stroke.

Grinding is a kind of precision machining method
and the working condition is hard for a robot to do
it precisely to a certain extent because of the rather
large contacting forces. Hence, force control is neces-
sary except position control. Usually, force sensor is
an essential element to control the force. However, the
sensors pose many problems as the above-mentioned.
If possible, sensing without sensors is much better for
the merit of that there is no difficulty on the design
and no cost. The following will present how to obtain
force information by calculating rather than by using
force sensors.

3. Modeling

3·1 Constrained Dynamic Systems

Hemami and Wyman[17] have addressed the issue
of control of a moving robot according to constraint
condition and examined the problem of the control of
the biped locomotion constrained in the frontal plane.
Their purpose was to control the position coordinates
of the biped locomotion rather than generalized forces
of constrained dynamic equation involved the item of
generalized forces of constraints. And the constrained
force is used as a determining condition to change
the dynamic model from constrained motion to free
motion of the legs[17],[20]. In this paper, the grinding



manipulator shown in Fig. 1, whose end-point is in
contact with the constrained surface, is modelled as
following (3) with Lagrangian equations of motion in
term of the constraint forces, refering to what Hemami
and Arimoto[6] have done:

d

dt
(
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) − (
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) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (3)

where, Jc and Jr satisfy,
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r is the l position vector of the hand and can be ex-
pressed as a kinematic equation ,

r = r(q).

L is the Lagrangian function, q is l(≥ 2) general-
ized coordinates, τ is l inputs. The discussing robot
system does not have kinematical redundancy. C is
a scalar function of constraint, and expressed as an
equation of constraints

C(r(q)) = 0, (4)

Fn is the constrained force associated with C and Ft

is the tangential disturbance force.
Equation (3) can be derived to be

M(q)q̈+H(q, q̇)+G(q)

=τ +JT
c (q)Fn−JT

r (q)Ft, (5)

where M is an l × l matrix, H and G are l vectors.
The state variable x is constructed by adjoining q

and q̇: x = (xT
1 ,xT

2 )T =(qT , q̇T )T . The state-space
equation of the system are

ẋ1 = x2,

ẋ2 = −M−1(H(x1, x2) + G(x1))

+M−1(τ + JT
c (x1)Fn − JT

r x1)Ft), (6)

or in the compact form

ẋ = F (x, τ , Fn, Ft), (7)

where the dimension of x is n = 2l. In order to control
the system (7) with constraints (4) , it can be done
firstly by differentiating the constraint equation (4)
twice with respect to time and rewriting the result in
terms of x:

D(x)ẋ = 0, (8)

where, D(x) is an n vector that the constrained mo-
tion of the system is orthogonal. Premultiplying (7)
by D(x) derived from (8),

D(x)F (x, τ , Fn, Ft) = 0. (9)

Constrained Force Equation
Eq.(12)

Dynamic Equation Eq.(5)

Constrained Dynamic Equation Eq.(13)

ú

Fn

Ft

x

Fig.2 Model of Constrained Dynamic System
This is a linear equation about the unknown con-
strained force Fn , combining the constrained equa-
tion and the equation of motion.(9) can be uniquely
solved for Fn as a function of the state x and input
τ ,
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because the value of (∂C
∂q )M−1(∂C

∂q )T is always pos-
itive, hence it is also invertible. In this case, Fn can
be worked out from (10) as

Fn = Fn(x, τ , Ft), (11)

or a more detailed form
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△
= a(x1,x2) + A(x1)JT

r Ft − A(x1)τ , (12)

where, a(x1,x2) is a scalar representing the first term
in the expression of Fn, and A(x1) is an l vector to
represent the coefficient vector of τ in the same ex-
pression. Eqs.(7) and (11) compose a constrained sys-
tem that can be controlled, if Fn = 0, describing the
unconstrained motion of the system.

Substituting the (12) into (6), the state equation of
the system including the constrained force (as Fn > 0
) can be rewritten as

ẋ1 = x2,

ẋ2 = −M−1[H(x1,x2) + G(x1) − JT
c (x1)a(x1, x2)]

+M−1[(I − JT
c A)τ + (JT

c A − I)JT
r Ft]. (13)

As the model of the constrained dynamic system de-
noted in Fig. 2, the solution of these dynamic equa-
tions will always satisfy the constrained equation (4),
as a result of the normal position error will always be
zero,too.
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Fig.3 Control system

4. Force and position controller

4·1 Controller using predicted constraint

condition

Reviewing the dynamic equation (3) and constraint
condition (4), it can be found that as l > 1, the num-
ber of input generalized forces is more than that of the
constrained forces. From this point and (12) we can
claim that there is some redundancy of constrained
force between the input torque τ , and the constrained
force Fn. This condition is much similar to the kine-
matical redundancy of redundant manipulator. Based
on the above argument and assuming that, the pa-
rameters of the (12) are known and its state variables
could be measured, and a(x1, x2) and A(x1) could be
calculated correctly, which means that the constraint
condition C = 0 be known. As a result, a control law
is derived and can be expressed as

τ = −A+(x1)
{

Fnd−a(x1, x2) − A(x1)JT
RFt

}

+(I − A+(x1)A(x1))k, (14)

where I is an identity matrix of l × l, Fnd is the de-
sired constrained forces, A(x1) is defined in (12) and
A+(x1) is the pseudoinverse matrix of it, a(x1, x2) is
also defined in (12) and k is an arbitrary vector which
is defined as

k =
∼
Jr

T

(q)
{

Kp(rd − r) + Kd(ṙd − ṙ)
}

, (15)

where Kp and Kd are coefficient matrices applied to
the position and the velocity control by the redundant
degree of freedom of A(x1), rd(q) is the desired po-
sition vector of the end-effector along the constrained
surface and r(q) is the real position vector of it. The
controller presented by (14) and (15) assumes that the
constraint condition C = 0 be known precisely even
though the grinding operation is a task to change the
constraint condition. This looks like to be a contra-
diction, so we need to predict time-varying constraint
conditions by using grinding tip as a touch sensor.

The time-varying condition is estimated as an ap-
proximate constrained function by position of the ma-
nipulator hand, which based on the estimated con-
strained surface. The estimated condition is denoted
by Ĉ = 0. Hence, a(x1, x2) and A(x1) including
∂Ĉ/∂q and ∂/∂q(∂Ĉ/∂q) are changed to â(x1,x2)
and Â(x1) as shown in (17), (18). They were used
in the later simulations of the unknown constrained
condition. As a result, a controller based on the esti-
mated constrained condition is given as

τ̂ = −Â
+
(x1)

{
Fnd−â(x1, x2) − Â(x1)JT

RFt

}
+(I − Â

+
(x1)Â(x1))k, (16)
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Fig. 3 illustrates a control system constructed accord-
ing to the above control law that consists of a posi-
tion control loop and a force control loop. It can be
found from (12) and (16) that the constrained force
always equals to the desired one explicitly if the es-
timated constraint condition equals to the real one,
i.e., C = Ĉ and Ft = 0. This is based on the fact that
force transmission is an instant process.

The experiment when the constraint is known have
been done successfully in Fig. 4. The maxima of
position error is about 8[mm], and the maxima of force
error is about 3[N] which is presented [21]. Besed
on the experiment when the constraint is known, we
propose the methods when the constraint is unknown.

4·2 Shape grinding
In the past, we did the experiment when working

surface was always flat, so we can just do flat grinding.
Now we want to grind the work-piece into the one
with different kinds of shapes, for example, grinding
the flat surface into a curved one, just like Fig. 5. In



 

Fig.4 The experiment when the constraint is known

Fig. 5, we can find that the desired working surface
is known (it can be decided by us.), which means the
desired constrained condition Cd is known, so

C(d) = y − f(d)(x) = 0 (19)

But the constrained condition C(j) (j = 1, 2, · · ·, d−1)
is hard to known. So we assume

C(j) = y − f (j)(x) = 0 (20)

Here, y is the coordinate y of manipulator’s end-
effector. f (j)(x) is the working surface.

If the current constrained condition can be got suc-
cessfully, which means the current working surface
f (j)(x) can be known, so the distance from the cur-
rent working surface to the desired working surface
which is expressed as ∆h(j) shown in Fig. 5 can be
obtained easily.

∆h(j)(xi) = f (j)(x)
∣∣
x=xi

− fd(x)
∣∣
x=xi

(21)

In this case, we can obviously find that the desired
constrained force should not be a constant. It should
be changed while ∆h(j) changes. So we redefine the
desired constrained force F

(j)
nd as a function of ∆h(j),

shown as follows:

F
(j)
nd (xi)nd = k∆h(j)(xi) (22)

Here, k is a constant.
From the above, we can know that how to get C(j)

is a key-point. So we assume C(1) is known, that is

Cd

C(j)
C(2)
C(1)

…

work-piece desired working surface

Åh

current working surface

link1

link2

grinder

Fig.5 The model of shape grinding

to say, f (1)(x) is known. And we also know if F
(j)
nd

increases, the grinding part will increase. So we get

f (j+1)(xi) − f (j)(xi) = k′F
(j)
nd (xi) (23)

Here, k′ is a constant. a condition that the new object
shape f (j+1)(x) have to satisfy, i.e.,

y = f (j+1)(x) (24)

is a function passing through all points, (x1,
f (j+1)(x1)), (x2, f (j+1)(x2)), · · ·, (xp, f (j+1)(xp)).
Here we chose the p as 10, and assumed f (j+1)(x)
could be represented by a polynomial of 9-th order of
x. Given the above ten points, we can easily decide
the parameters of polynomial function y = f (j+1)(x).
From above, we can get f (j+1)(x), and then C(j+1)

can also be known:

C(j+1) = y − f (j+1)(x) = 0 (25)

So, if C(1) is assumed, all of C(j) can be decided.
In the next part, we will introduce several prediction
methods which are used to get Ĉi in current time.

4·3 Prediction methods
When the constraint surface of the manipulator is

unknown, we fit respectively the constraint surface
with linear function, quadratic function, and spline
curve. Three simulations have been done to base
on different constraint conditions. Here, an unknown
constrained condition is estimated as following,
(Assumptions)
1. The end point position of the manipulator during
performing the grinding task can be surely measured
and updated.
2. The grinding task is defined in x − y plane.
3. When beginning to work, the initial condition of
the end-effector is known and it has touched the work
object.
4. The chipped and changed constraint condition can
be approximated by connections of minute sections.

Three methods which are fitting by linear func-
tion, quadratic function and spline function had been
used to get the online estimation of the unknown con-
strained condition. Here we just introduce the spline
curve fitting.

4·3.1 Fitting by quadratic spline curve
The unknown constrained surface is estimated and

expressed as,

Ĉi+1 = y − [Ai(x − xi−1)2 + Bi(x − xi−1) + Ci](26)

The end-effector position at time (i − 1)∆t, i∆t are
denoted respectively as (xi−1, yi−1), (xi, yi).

The coefficients of quadratic spline curve denoted
as

Si(x) = Ai(x − xi−1)2 + Bi(x − xi−1) + Ci,

x ∈ [xi−1, xi](i = 1, 2, 3 · · · n) (27)



can be calculated as follows. The constrained condi-
tion Ĉi+1 = y − (Ai(x − xi−1)2 + Bi(x − xi−1) + Ci)
can be determined.And we can get the coefficients of
the spline curve uniquely as follows.

(xiÄ1; yiÄ1)
(xi; yi)

Si(xi) = yi
Si(xiÄ1) = yiÄ1

S
0

i(xi) = S
0

i+1(xi)

Ii = [xiÄ1; xi]

Ii+1 = [xi; xi+1]

Fig.6 Fitting by quadratic spline curve

Firstly, let Si(x) satisfy the following conditions
shown in Fig. 6.

(A)Go throough two ends of the interval

yi−1 = Si(xi−1) (28)

yi = Si(xi) (29)

(B)First-order differential of the spline polynomials
are equal at the end-point of adjoined function.

dSi+1(x)
dx

∣∣∣
x=xi

=
dSi(x)

dx

∣∣∣
x=xi

S
′

i+1(xi) = S
′

i(xi)(30)

Inputting (27) into (28), (29) and (30), we can obtain:

Ci = yi−1, (i = 1, 2, · · ·, n) (31)

Bi+1 = 2ui − Bi, (i = 1, 2, · · ·, n − 1) (32)

Ai =
Bi+1 − Bi

2hi
, (i = 1, 2, · · ·, n − 1) (33)

Here, hi = xi−xi−1, ui = yi−yi−1
hi

. From the above-
mentioned result, the constrained conditional expres-
sion Ĉi+1 can be updated step by step.

In this one, we can see that the spline curve is de-
fined by two points and a derivative at some point.
Compare to the quadratic function fitting and liner
function fitting, Fitting by quadratic spline curve is
more precise because a derivative is used instead of a
point. So we can say fitting by quadratic spline curve
is the best method among the three methods.

5. simulation

A planar two-link manipulator is applied for simu-
lation so as to examine the behaviour of the proposed
controller. The goals were to examine the feasibility
of the proposed method with regard to the accuracy
and stability. Three simulations have been done based
on different constraint conditions.

The model of grinding robot manipulator used in
the simulation is shown in Fig.5, whose parameters
are: length of link 1 is 0.3[m], length of link 2 is 0.5[m],
and the mass of link 1 is 12.28[kg], the mass of link
2 is 7.64[kg]. The end-effector velocity, 0.01[m/s], the

|xe|=0.04 [m]

(a) Position error xe

|fe|=0.24[N]

(b) Force error fe

Fig.7 Quadratic spline curve fitting for the unknown
constraint surface, here kd=5

|xe|=0.03 [m]

(a) Position error xe

|fe|=0.22 [N]

(b) Force error fe

Fig.8 Quadratic spline curve fitting for the unknown
constraint surface, here kp=700

desired constrained force, Fnd = 5[N], grinding resis-
tance, Ft = 0[N].

The desired constrained surface is denoted as

f(x) = p − kcos(ωx) (34)

Here, p=0.51, k=0.1, ω=10.



5·1 Grinding with quadratic spline curve fit-

ting
The simulation results are shown in Fig. 7 and

Fig. 8. From these figures, we can find when kp

∈[300,700], kd=5, |xe(max)| is 0.04[m] in Fig. 7(a),
and |fe(max)| is 0.24[N] in Fig. 7(b). When kp=700,kd

∈ [5,25], |xe(max)| is 0.03[m] in Fig. 8(a), and |fe(max)|
is 0.22[N] in Fig. 8(b).

In the above simulations, regardless of any con-
trollers above are used to the situation when the con-
strained condition is not known, xe and fe always ap-
peared. The trajectories of the end-effector is always
in contact with the constrained condition defined by
(34). However the difference of the control results of
postition and force depends on the constrained condi-
tions C(known constraint) or Ĉ(unknown constraint).

As shown in Table 1 and Table 2, the errors of po-
sition and force controlled by quadratic spline fitting
is minimum, no matter how kp and kd change. And
the quadratic spline fitting for unknown constrained
surface is the most closed to the known constrained
surface, regarding with both xe and fe. So we can see
the performance of controller with quadratic spline
fitting is best.

Compare to the experiment result of known
constraint(xe is about 8[mm], fe is about 3[N]), we
can say the experiment with these methods can be
done. We can also say some work whose working sur-
face is not known can be done using the quadratic
spline curve fitting by robot.

Table 1 Comparision of the four results when kp ∈
[300,700], kd=5

|xe(max)| [m] |fe(max)| [N]
Known constrained surface 0.051 0

Linear function fitting 0.108 29.3
Quadratic function fitting 0.090 1.43

Quadratic spline curve fitting 0.04 0.24

Table 2 Comparision of the four results when
kp=700, kd ∈ [5,25]

|xe(max)| [m] |fe(max)| [N]
Known constrained surface 0.039 0

Linear function fitting 0.1 26
Quadratic function fitting 0.067 0.60

Quadratic spline curve fitting 0.03 0.22

5·2 Shape Grinding
Since we know that the spline curve fitting is the

best, we can use it to do the shape grinding just like
Fig. 5. In this simulation, the constant k shown in
(22) is 50, and k

′
shown in (23) is 0.002. The trajec-

tory of simulation is showing Fig. 9. The trajectory
named O−A is first grinding, and then go back to the
starting point through a line which is named A − B.
The trajectory of second grinding is B−A. From the
result, we can easily find that the part between O−A

and B − A are cut. The error of x position and force
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Fig.9 the trajectory of simulation
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Fig.10 the error of x position

are showing Fig. 10, and Fig. 11. From the errors,
we can say it is so small. Hence, we can say that we
can do the shape grinding with this method.
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Fig.11 the error of force

6. Conclusions
The constrained dynamic equations of a manipu-

lator are derived and the constrained forces are ex-
pressed as an explicit function of the state and in-
puts. The presented methodology allows computa-
tion of the forces, as an alternative to sensing. Hence,
the system is controlled with no force sensor. The
control law presented is constructed by using the dy-
namical redundancy of constrained systems. The con-
troller designed with this control law can be used for
simultaneous control of force and position. In the
paper, we present three methods for estimating the
constrained condition to attain time-varying unknown
constrained information. The simulations indicate the
perfermance of controller with quadratic spline fitting
is the best. And the quadratic spline fitting for un-
known constrained surface is the most closed to the
known constrained surface.

The quadratic spline fitting for unknown con-
strained surface is used in the shape grinding, the
errors are so small, so we can say it can be done in
the shape grinding.
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