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Abstract: This paper presents a method to predict a fish motion by Neural Network (N.N.) with on-line learning when a
robot is pursuing fish-catching by a net at hand through hand-eye robot visual servoing. We assume the motion trajectory
of a fish swimming in a pool be approximated by a circle with time varying radius and center position. We try to improve
prediction accuracy of a fish motion by using N.N. whose inputs are radii and angular velocities in past three control-
times and outputs are radius and angular velocity in the following control period. Using radius and angular velocity
obtained by circular approximation, we confirmed that the proposed N.N. prediction system can maintain good prediction
performances under the proposed on-line learning process.
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1. INTRODUCTION
Researches on catching a fish based on object fea-

ture recognition and visual servoing has been performed
[1][2]. But as the catching operation by a net attached at
the hand continues, the fish in the pool gradually learned
the action pattern of the robot hand and began to generate
intelligent avoiding behaviors against the net that keeps
chasing it. We can treat this kind of fish strategy as innate
intelligence to avoid its predator. As a result, the system
controlled under the traditional robot system such as vi-
sual servoing based on velocity feedback failed to catch
the smart fish occasionally. That is the fish has found new
strategies to escape from the net pursuing it consistently.
To overcome this intelligence of the fish to survive, we
challenged to construct a more intelligent robot on the
purpose of exceeding the fish intelligence for successful
tracking and catching operation.

Under the circumstance of fishes’ avoiding behaviors
from the net, we consider that the robot can track the fish
and catch it easier if the control system can predict its fu-
ture motion. Thus, N.N. is adopted to the current robot
system to learn the fish motion pattern and predict the
future position[3][4]. We have tried to predict the fish
position (x,y) in the future based on the position profile
of the fish in the past. But it did not give us good predic-
tion performance. In this paper, we will propose a new
approach that can decrease the prediction error by intro-
ducing a circular approximation of the fish trajectory.

2. REAL-TIME RECOGNITION
Consider the 2-D raw-image of a target fish shown in

Fig.1(a), its corresponding 3-D plot is shown in Fig.1(b).
In this figure(b), the vertical axis represents the image
brightness values, and the horizontal axis, the image
plane. To search for such a target fish in the raw-image, a
geometrical triangular shape of the surface-strips model
as shown in Fig.2(a) is used. Let us denote the inside
surface of the model as Sss1 and the contour-strips as
Sss2. Also, the combination is designated as Sss. When
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(a)2-D raw-image (b)3-D raw-image
Fig. 1 Raw-image of swimming fish
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(a)Surface-strips model (b)Fss(φ)
Fig. 2 Surface-strips Model to search a fish

the position and orientation of surface-strips model Sss

is defined as φ(t) = [x(t), y(t), θ(t) ]T , which desig-
nates the position and orientation of the origin of the
model, then Sss moves in the camera frame and a set
of x-y coordinates of the moving model is expressed as
Sss(φ). Then the brightness distribution of raw-image
corresponding to the area of the moving model is ex-
pressed as p(r̃i,j), r̃i,j ∈ Sss(φ), then the evaluation
function Fss(φ) of the moving surface-strips model is
given by Eq.(1).

Fss(φ(t)) =
∑

r̃i,j∈Sss1(φ(t))

p(r̃i,j) −
∑

r̃i,j∈Sss2(φ(t))

p(r̃i,j) (1)

This expression means the integrated brightness differ-
ence between the one of the internal surface and the one
of the contour-strips of the surface-strips model. The fil-
tering result of the surface-strips model-based function
of Eq.(1) with respect to Fig.1(a) is shown in Fig.2(b).



We can see the filtering result has a peak correspond-
ing to the position of the target fish in the raw-image.
An evaluation using the surface-strips model means that
Fss(φ(t)) takes into account the integration and differ-
entiation of the object signal and the background noise
simultaneously, and we can see this character is effective
for such noisy image as shown in Fig.1(a). Actually we
cannot get always the highest peek in the filtered image
at the position of the target object, but we can set such
an environment that the highest value of Fss(φ(t)) is ob-
tained only if Sss1 fits to the target object being imaged.

Then the problem of recognition of a fish and detec-
tion of its position/orientation is converted to a search-
ing problem of φ(t) such that maximize Fss(φ(t)).
Fss(φ(t)) is used as a fitness function of GA. To rec-
ognize a target in a dynamic image input by video rate,
33 [fps], the recognition system must have real-time na-
ture, that is, the searching model must converge to the
fish in the successively input raw images. An evolution-
ary recognition process for dynamic images is realized
by such method whose model-based matching by evolv-
ing process in GA be applied at least only one time to one
raw image input successively by video rate. We named it
as “1-step GA”. When the converging speed of the model
to the target in the dynamic images should be faster than
the swimming speed of the fish, then the position indi-
cated by the highest gene represents the fish’s position
in real-time. We have confirmed that the above time-
variant optimization problem to solve φ(t) maximizing
Fss(φ(t)) could be solved by “1-step GA”.

3. GLOBAL/LOCAL GA SEARCH
3.1 Global Search

A genetic algorithm (GA) comprises search and op-
timization algorithms, which mimic the natural selec-
tion and evolution. A GA operates with a population
of searching variables designated as individuals, consid-
ered to be the potential solutions to a given problem. The
search by a GA is performed through an evolution pro-
cess from generation to generation.

We employ an elitist preservation strategy of GA. The
genes in GA possess the information φi(i = 1, 2, · · · , n)
of the position and orientation of i-th searching model.
Every generational stage of simple GA’s evolution, se-
lection, crossover and mutation operators are performed
to evolve the genes toward the true position and orien-
tation φp = [xp, yp, θp ] of the target fish in the raw-
image. The global GA search process in the loop, always
make efforts to find the highest peak indicating the fish
in the whole image. When the best searching model indi-
cated by the best gene has the highest fitness value, which
means that it matches to the fish in the raw-image, the
x, y, θ and xp, yp, θp get the same corresponding values.

3.2 Local Search
Like you and me, if we were to track a moving target

with our eyes, at a certain degree we do not look at the
surrounding and just focus our attention on the target, that
is gazing it. Here, we think of how to propose a similar
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action as the human being to real-time visual servoing. In
the reproduction of simple GA, the genes of a subsequent
generation are obtained via a selection and mutation in
a probability-based procedure to maintain exploration of
the search domain. In our proposed local search method,
the genes of the best individual is selected to be copied to
all of the other individuals, thus making an intermediate
population of identical individuals for possible solution
of the subsequent population. Next in the reproduction
process, except for that first ranking individual, in order
to increase the fitness value of the others and at the same
time to obtain better positional and orientational results,
a mutation operation is gradually performed on the lower
level bits of the genes. When the mutation is limited to
four bits of the lower level, sixteen reproduction patterns
can be obtained for one positional direction. When the
mutation is limited to three bits, eight patterns can be ob-
tained and when it is limited to two bits, four reproduction
patterns can be obtained.

Figure 3 depicts the three level of gazing area and the
level is determined by the highest fitness value, represent-
ing how much degree the possible solution matches to
the position and orientation of the target fish in the raw-
image. The transition of the gazing level is depending on
the highest gene’s fitness value as illustrated in Fig.4. As
you see in the figure, we use the highest fitness value in all
genes for the index of matching degree of the model and
the target in the image. As it can be seen, the local search
technique focuses on the highest point. Thus, when com-
pared with the global search method of the simple GA,
faster and correct detection of the target will be possible.

In practice, once the global GA has achieved the stage
of the detection of a target, after reaching a certain fit-
ness value as a threshold value, it switches to the local
GA that performs the fine and fast recognition of the tar-
get, in the next generation to keep real time processing of
GA. Actually, the determination of this threshold value,
is environment dependent. Using the combined GA, the
task executed by machine to search for a target and track
the fish can be thought to be similar to the same task done
by human.

4. FISH TRACKING AND CATCHING

The experimental system is explained as follows. The
camera-to-fish distance is 450 [mm]. The size of the wa-
ter pool is 390×460×100 (depth) [mm], and the net is
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Fig. 5 Block diaguram of the controller

Table 1 Gain parameters

KP [ 0.95 0.95]

KV [ 0.60 0.60]

Link Number [ L1 L2 L3 L4 L5 L6 L7 ]

KSP [ 3200 3200 1400 1400 1000 1000 1000 ]

KSI [ 1362 1362 596 596 596 426 426 ]

100×125 [mm]. Catching the fish is executed by pulling
up the net when the fish is within an area of 60×80 [mm]
at the center of the net. In the 2-D servoing experiment,
which fixes the camera-to-fish distance, the camera cali-
bration using a parameter such as camera focal length is
not performed.

The aforementioned real-time recognition system in
section 2 using the shape of the fish as the knowledge
base is depicted in the upper side of the block diagram in
Fig.5. In the figure, ∆r = [∆W Xi

GA,W Y i
GA] is the X-Y

deviation from the camera center to the fish expressed in
the world coordinates. The desired hand velocity at the
i-th control period ṙi

d is calculated as

ṙi
d = KP ∆ri + KV (∆ri − ∆ri−1) , (2)

where ∆ri − ∆ri−1 is the distance change of the fish
movement in a period of 1 control cycle, and KP and
KV given in Table1 are positive definite matrix to deter-
mine PD gain. The desired joint variable q̇d is determined
by inverse kinematics from ṙd by using the Jacobian ma-
trix J(q), and is expressed by

q̇d = J+(q)ṙd , (3)

where J+(q) is the pseudoinverse matrix of J(q). The
robot used in this experimental system is a 7-Link ma-
nipulator, Mitsubishi Heavy Industries PA-10 robot. The
control system, based on a PI control of PA-10 is ex-
pressed as

τ = KSP (q̇d − q̇) + KSI

∫ t

0

(q̇d − q̇)dt , (4)
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Fig. 6 Experimental set up

where q̇d− q̇ is the velocity error of the joint angle, KSP

and KSI are symmetric positive definite matricies to de-
termine PI gain (Table1). The orientation of the fish is
measured in real time, but in the tracking and catching
experiment, the measured orientation information is not
considered as shown in the above equation. The manipu-
lator servo update rate is 100[Hz]. A diagram describing
the experimental set up is shown in Fig.6.

5. CIRCULAR APPROXIMATION
Therefore, from the series of successive-three-position

coordinates the resulted radius is used to serve as teacher
signal for the prediction N.N.. We can say that any
three coordinates can be connected by one circle. Here,
sn−2 = (xn−2, yn−2) and sn−1 = (xn−1, yn−1) de-
note the fish past position coordinates, sn = (xn, yn)
does the current fish position coordinates, and ŝn+k =
(x̂n+k, ŷn+k) denotes the predicted fish position coordi-
nates in the future k-control period, and pn = (pn, qn)
does the center coordinates of approximated circle at cur-
rent time t, where n represents the fish position at the time
∆t · n and n − 1 does ∆t · (n − 1). From points n − 4
to n − 2 the center position of the trajectory is approxi-
mated as (pn−2, qn−2) and the radius is rn−2 as shown
in Fig.7(a). Helping to understand how to predict with
circular approximation, the circle at time ∆t · (n − 2) is
depicted in Fig.7 (a), at ∆t · (n − 1) in (b), and at ∆t · n
in (c). The prediction ŝn+k at ∆t · (n + k) is deduced
based on the circle at ∆t · n as shown in Fig.7 (d). rn

instantaneous radius of the circular trajectory of the fish
is calculated in Eq.(5).

rnkn = ρn = |sn − pn| (5)

,where kn is a unit vector parallel to ρn. According to
the relationship at n−2, n−1, and n shown in Fig.8, the
following equation hold:

|sn − pn| = |sn−1 − pn| = |sn−2 − pn| (6)

The variables pn = (pn, qn) can be obtained by above
relations as,

pn =
Y10

2(X10)(Y21) − 2(X21)(Y10)

{(
Y21

Y10

)
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(x2
n−1−x2

n+y2
n−1−y2

n)−(x2
n−2−x2

n−1+y2
n−2−y2

n−1)

}
, (7)

qn=
1

2(Y21)
(x2

n−2−x2
n−1+y2

n−2−y2
n−1−2(X21)pn), (8)

where

X21 = xn−2 − xn−1, X10 = xn−1 − xn,

Y21 = yn−2 − yn−1, Y10 = yn−1 − yn.

Since of the approximated circle center having been ob-
tained based on the former calculation, the subsequent
calculation procedure of radius, angular velocity can be
available on the basis of calculation procedure stated be-
fore, and they are both used as teacher signal for N.N.
training.

In the next step, we will concentrate on deducing the
angular velocity ωn. Here we denote ∆ρn = ρn − ρn−1

, and consider the equation shown below:

t = ρn × ∆ρn (9)

By use of the vector t = [tx, ty, tz]T , the value of angular
velocity can be approximated by the covering distance by
adopting radius and point n − 1 to point n as shown in
Fig.8,

ωn ; sign(tz)
|ρn − ρn−1|

∆t · rnk
. (10)

We use the trigonometrical function to describe the co-
ordinates in order to deduce the coordinate from radius
and angular velocity. The current fish coordinate (xn, yn)
is expressed by using known position (pn, qn), rn and
fish’s heading α, which is the angle between x axis and
(xn, yn),

xn = pn + rn cos α (11)
yn = qn + rn sinα (12)

The prediction position (x̂n+k, ŷn+k) after k∆t[s] by
r̂n+k and ω̂n+k can be described as follow:

x̂n+k = p̂n+k + r̂n+k cos(α + kω̂n+k∆t) (13)
ŷn+k = q̂n+k + r̂n+k sin(α + kω̂n+k∆t) (14)
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Fig. 8 Circular Approximation by using vector

6. PREDICTION
6.1 Back Propagation

In this research, the purpose is to predict and to recog-
nize an action pattern of a fish. The movement of a fish is
considered to be nonlinear, then it cannot be predicted by
general methods using linear functions, which is some-
times effective in the case that linear approximation as-
sumption is valid. Thus, we use Neural Network (N.N.)
to predict the fish position in the future by adapting itself
by Back Propagation (B.P.), regarded as effective learn-
ing method to approximate generally nonlinear functions.
The feed forward type N.N. learns the input/output rela-
tionship by changing the value of the connection weight
wij and the threshold θi. The output of each neuron is
determined by sigmoid function S(sj) such as

S(sj) =
1

1 + e−αsj
(15)

where the sj represents the internal state of neuron, α
represents gain of sigmoid function. Let the output of
i-th unit in (N − 1)-th layer be represented by uN−1

i ,
and connecting coefficient from i-th unit in (N − 1)-th
layer to j-th unit in N -th layer be represented by wN

ij ,
threshold value of j-th unit in N -th layer be represented
by hN

j , then the internal state of N -th neuron unit sN
j can

be expressed as,

sN
j =

∑

i

(wN
ij uN−1

i ) − hN
j . (16)

By inputting sN
j calculated by eq.(16) into eq.(15), the

output value of j-th unit in N -th layer, uN
j = S(sN

j ),
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is obtained. In this paper, N=2,3, and the inputs to
the first layer are current and past positions demoted as
rn, rn−1, rn−2 and ωn, ωn−1, ωn−2. And the output from
output layer is denoted by r̂n+1 and ω̂n+1 as shown in
Fig.9.

The renewing of the connecting coefficient value, wij ,
is executed by the next equation, i.e., back propagation,

wij(p + 1) = αwij(p) − ε
∂Q

∂wij
, (17)

where p denotes learning iteration number and Q is an
evaluation function defined as squared error using the
teaching signals, rn+1 and ωn+1, which are the actual
position of the fish at time t. The α and ε are the coef-
ficient to determine the learning convergence speed. The
connecting coefficients are changed by eq.(17) at every
control period.

Q = (r̂n+1 − rn+1)2 + (ω̂n+1 − ωn+1)2 (18)

The actual position of the fish at the time t, rn+1 and
ωn+1, is observed by real-time recognition system ad-
dressed in section 2. The above Q in eq.(18) calculates
the estimation error of future fish position.

The N.N. used here, which is not recurrent type, can-
not represent dynamical system, therefore it may not be
thought that this N.N. can represent the dynamics of the
fish driven especially by its emotion such as fear in this
case. However, in this paper, the teaching signal is given
as the error function based on the actual dynamical mo-
tion, and further the inputs to N.N. are results of the actual
dynamics of the fish. Therefore the N.N. could be mod-
ified dynamically by using variables reflecting the real
motions, as the result, the N.N. can be changed to de-
crease the estimation errors of this dynamical systems.

6.2 Translation of Input-output range
N.N. inputed minus value could output nearly zero

value because sigmoid function outputs from 0 to 1.
Therefore, we regard the range from 0 to 1 as: the first
half part (0 to 0.5) is minus area, the second half part
(0.5 to 1) is plus area. Range of data was W for inputed

data idata and after plus and minus translation of data was
Idata as,

Idata =
idata + W

2

W
. (19)

Above processing makes inputed data translate 0 to 1.
Neural Network outputs value 0 to 1 if that inputs value
0 to 1. We need to translate outputed data into original
range:W . We use Eq.(20) for this translation.

idata = IdataW − W

2
(20)

We use Eq.(19) and Eq.(20) for plus and minus transla-
tion of N.N..

6.3 Prediction Performance
We tried test of simply trajectory used above predic-

tion system. The experiment this time is to predict the
future position in 0.48[s], with whose result shown in
Fig.10, 11 and 12. Equation of Fig.10 is x2 + y2 =
r2(r = 100[mm]) and the circle is described with the
addition of angle 1[deg] in every 0.016[s]. Equation of
Fig.11 and 12 are y = x, y = 100sin(x), both the line
(Fig.11) and the sine graph(Fig.12) are described with
the addition 1[mm] in every 0.016[s]. Both circular or-
bit and straight trajectory were good prediction perfor-
mance. But, straight trajectory had minimum error. This
error was necessary because of the using of circular ap-
proximation in prediction. Necessary error was shown in
Fig.13. Therefore, we must consider a minimum error
when used straight trajectory.

7. EXPERIMENT
In order to make sure whether the method supposed

before is effective, we perform the fish motion predic-
tion experiment. An experiment performed catching of a
fish with the system which explained with section4 for
3 minutes and examined the prediction precision. We
set the number of input-layer nodes of the N.N. as 6,
hidden-layer nodes as 5, output-layer nodes as 2, which
is changed by Back-Propagation as shown in Fig.14. The
inputs are radii of rn, rn−1, rn−2 and angular veloci-
ties of ωn, ωn−1, ωn−2 and output are predicted radius
r̂n+1 and angular velocity ω̂n+1 means the future ra-
dius at time 0.48[s] and angular velocity ω̂n+1. The pre-
dicted r̂n+1 and ω̂n+1 are used to calculate future posi-
tion (x̂n+1, ŷn+1).

We perform the prediction used fish trajectory shown
in Fig.15 and can output the prediction radius and angu-
lar velocity through back propagation method. Then, GA
detects a position that fitness value is high when catch-
ing system does’nt recognize a fish, therefore a point and
the straight line that broke off that there is to a graph
lose sight of a fish. After time 0.48[s] passing, the ac-
tual values of (rn+1, ωn+1) can be observed by real-time
recognition system and they are used for teacher signals
to adjust by back propagation, then the estimation errors
∆rn+1 = r̂n+1 − rn+1, ∆ωn+1 = ω̂n+1 − ωn+1 could
be calculated as shown in the lower positioned block in



-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

x coordinate[mm]

y
 c
o
o
rd
in
a
te
[m
m
]

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Time[s]

E
rr
o
r[
m
m
]

(a)Predicted circle (b)Error of position
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Fig.14. Here (rn+1, ωn+1) can be available from Gazing-
GA recognition method stated in section 3. The fish po-
sition after 0.48[s] compared with the former position
(xn, yn) can be recognized by Gazing-GA directly and it
is denoted by (xn+1, yn+1). By using ∆rn+1 and ∆ωn+1

the coefficients of the N.N. is adjusted to minimize the
error at each control time in real time. Experiment result
is shown in Fig.16. In this case, the average error be-
tween predicted position and real position is 269.54[mm],
the manipulator which made a move based on a predic-
tion showed unstable movement. The error over 100[mm]
has arisen dozens of times by a graph of error shown in
Fig.17, but was able to confirm that catching system pre-
dicted in front of the fish swam. Error over 100[mm] was
considered to come out when N.N. couldn’t learn at that
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Fig. 14 Prediction Block Diagram

Fig. 15 Fish trajectory

time. In addition, the prediction experiment using cur-
rent radius and angular velocity has also been done with-
out the N.N.. Then observed the fish trajectory shown
in Fig.18,there didn’t use the N.N.. Result is shown in
Fig.19. In this case, the average error between predicted
position and real position is 15.61[mm], the predicted po-
sition is just in front of the fish. This average error is
shown in Fig.20. Fig.17,20 have shown that high predic-
tion precision can be obtained by using the current an-
gular velocity. But, it is possible to predict the future
position of a fish by using N.N..

8. CONCLUSION
The fish prediction can be enough and there also exists

the situation that the predicted position can nearly match
with the real fish position. And in this experiment, we
have confirmed the effectiveness of the prediction preci-
sion. But, the distance error in experimental data is still
not so perfect. Because sometimes radius and angular
velocity outputed from N.N. are difference with the real
value. But, if we change the N.N. coefficient properly, we
can get better experiment result. Furthermore, we have
comfirmed that better prediction could be obtainedby us-
ing the current radius and angular velocity than that by
using the future radius and angular velocity. The reason
is considered as a N.N. input problem. In future work, we
willresearch under different N.N. input setting, for ex-
ample, changing the prediction time. So, the problems
mentioned above being settled successfully, the optimal
prediction result will come out spontaneously.



Fig. 16 Predicted fish trajectory by using N.N.
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Fig. 17 Error of prediction by using N.N.

Fig. 18 Fish trajectory by using current radius and an-
gular velocity

Fig. 19 Predicted fish trajectory by using current radius
and angular velocity

Fig. 20 Error of prediction by using current radius and
angular velocity
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