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Abstract: Based on the analysis of the interaction between a manipulator’s hand and a working object, a model rep-
resenting the constrained dynamics of the robot is first discussed. The constrained forces are expressed by an algebraic
function of states, input generalized forces, and constraint condition, and then direct position / force controller without
force sensor is proposed based on the algebraic relation. To give the grinding system the ability to adapt to any object
shape being changed by itself, we added new estimating function of time-varying constraint condition in real time for the
adaptive position / force control. Evaluations through simulations by fitting the changing constraint surface with spline
functions, indicate that reliable position / force control and shape-grinding can be achieved by the proposed controller.
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1. INTRODUCTION
Many researches have discussed on the force control

of robots for contacting tasks. Most force control strate-
gies are to use force sensors [1] to obtain force infor-
mation, where their reliability and accuracy are limited
since the work-sites of the robot are filled with noise and
thermal disturbances. Force sensors could lead to the
falling of the structure stiffness of manipulators, which
is one of the most essential defects for manipulators ex-
ecuting grinding tasks. To solve these problems, some
approaches without any force sensor have been presented
[2]. To ensure the stabilities of the constrained motion,
force and position control have utilized Lyapunov’s sta-
bility analysis under the inverse dynamic compensation.
Their force control strategies have been explained intelli-
gibly in books [3]-[5].
However, insofar as we survey the controllers intro-

duced in the books or published papers don’t base on the
algebraic function of states and input generalized forces
derived from the relation between the constraint condi-
tion and the equation of dynamics. So we discuss first a
strategy for simultaneous control of the position and force
without any force sensors, where the equation of dynam-
ics in reference to the constrained force has been refor-
mulated [6]. The constrained force is derived from the
equation of dynamics and the constrained equation as an
explicit algebraic function of states and input generalized
forces, which means force information can be obtained
by calculation rather than by force sensing. Equation (1),
which has been pointed out by Hemami in the analysis of
biped walking robot, denotes also the kinematical alge-
braic relation of the controller, when robot’s end-effecter
being in touch with a surface in 3-D space:

Fn = a(x1,x2) −A(x1)τ , (1)

where, Fn is exerting force on the constrained surface.
x1 and x2 are state variables. a(x1,x2) and A(x1) are
scalar function and vector one defined in following sec-
tion. τ is input torque. This algebraic equation has been
known, but it was the first time in robotics to be applied to

the sensing function of exerting force by Peng. As a new
control law, the controller doesn’t include any force feed-
back sensors but realizes simultaneous control of position
and force in the constrained motions and is different from
the traditional ones[1].

A strategy to control force and position proposed in
this paper is also based on (1). Contrarily to Peng’s
Method to use (1) as a force sensor, we used the equa-
tion for calculating τ to achieve a desired exerting force
Fnd. Actually, the strategy is based on two facts of (1)
that have been ignored for a long time. The first fact is
that the force transmission process is an immediately pro-
cess being stated clearly by (1) providing that the manip-
ulator’s structure is rigid. Contrarily, the occurrence of
velocity and position is a time-consuming process. By us-
ing this algebraic relation, it’s possible to control the ex-
erting force to the desired one without time lag. Another
important fact is the input generalized forces have some
redundancy against the constrained generalized forces in
the constrained motion. Based on the above analysis, we
had confirmed our force / position control method can re-
alize the grinding task through real grinding robot [6].

The problem to be solved in our approach is that the
mathematical expression of algebraic constraint condi-
tion should be defined in the controller instead of the
merit of not using force sensor. Grinding task requires
on-line estimation of changing constraint condition since
the grinding is the action to change the constraint condi-
tion. In this presentation, we estimate the object’s surface
using the grinder as a touch sensor. In order to give the
system the ability to grind any working object into any
shape, we focus on how to update the constraint condi-
tion in real time, obtaining the result that spline func-
tion is best for on-line shape estimation. Based on the
above preparation we constructed a simulator to evaluate
the proposed shape-grinding system, which indicates the
validity of our system to have the performance to adapt
for grinding desired-shape without force sensor.
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Fig. 1 A Grinding Robot

2. ANALYSIS OF GRINDING TASK
Generally speaking, the grinding power is related to

the metal removal rate(weight of metal being removed
within unit time), which is determined by the depth of cut,
the width of cut, the linear velocity of the grinding wheel,
the feed rate and so on. There are many empirical formu-
lae available for the determination of grinding power, and
the desired force trajectory can then be planned accord-
ing to the power. The normal grinding force Fn is exerted
in the perpendicular direction of the surface. It is a sig-
nificant factor that affects ground accuracy and surface
roughness of workpiece. The value of it is also related to
the grinding power or directly to the tangential grinding
force as

Ft = KtFn, (2)

where, Kt is an empirical coefficient, Ft is the tangential
grinding force.
The axial grinding force Fs is proportional with the

feed rate, and is much smaller than the former force.
Equation (2) is based on the situation that position of

the grinding cutter is controlled like currently used ma-
chining center. But when a robot is used for the grinding
task, the exerting force to the object and the position of
the grinding cutter should be controlled simultaneously.
And the Fn is generally determined by the constrained
situation, and it is not suitable to apply (2) to grinding
motion by the robots.

3. MODELING
3.1 Constrained Dynamic Systems
Hemami and Wyman have addressed the issue of con-

trol of a moving robot according to constraint condition
and examined the problem of the control of the biped lo-
comotion constrained in the frontal plane. Their purpose
was to control the position coordinates of the biped loco-
motion rather than generalized forces of constrained dy-
namic equation involved the item of generalized forces
of constraints. And the constrained force is used as a de-
termining condition to change the dynamic model from
constrained motion to free motion of the legs. In this
paper, the grinding manipulator shown in Fig.1, whose
end-point is in contact with the constrained surface, is
modelled as following (3) with Lagrangian equations of

motion in term of the constraint forces, refering to what
Hemami and Arimoto have done:
d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (3)

where, Jc and Jr satisfy,

Jc =
∂C

∂q
/ � ∂C

∂r
�= ∂C

∂r

∼
Jr / � ∂C

∂r
�,

∼
Jr=

∂r

∂q
, JT

r =
∼
Jr

T

ṙ/ � ṙ �,

r is the l position vector of the hand and can be expressed
as a kinematic equation ,

r = r(q). (4)

L is the Lagrangian function, q is l(≥ 2) generalized co-
ordinates, τ is l inputs. The discussing robot system does
not have kinematical redundancy. C is a scalar function
of constraint, and expressed as an equation of constraints

C(r(q)) = 0, (5)

Fn is the constrained force associated with C and Ft is
the tangential disturbance force.
Equation (3) can be derived to be

M(q)q̈+H(q, q̇)+G(q)

=τ+JT
c (q)Fn−JT

r (q)Ft, (6)

whereM is an l × l matrix,H andG are l vectors. The
state variable x is constructed by adjoining q and q̇: x =
(xT

1 ,xT
2 )T=(qT , q̇T )T . The state-space equation of the

system are

ẋ1 = x2,

ẋ2 = −M−1(H(x1,x2) + G(x1))
+M−1(τ + JT

c (x1)Fn − JT
r x1)Ft), (7)

or in the compact form

ẋ = F (x, τ , Fn, Ft), (8)

where the dimension of x is n = 2l. In order to control
the system (8) with constraints (5) , it can be done firstly
by differentiating the constraint equation (5) twice with
respect to time and rewriting the result in terms of x:

D(x)ẋ = 0, (9)

where, D(x) is an n vector that the constrained motion
of the system is orthogonal. Premultiplying (8) byD(x)
derived from (9),

D(x)F (x, τ , Fn, Ft) = 0. (10)

This is a linear equation about the unknown constrained
force Fn , combining the constrained equation and the
equation of motion. (10) can be uniquely solved for Fn

as a function of the state x and input τ ,

−[
∂

∂q
(
∂C

∂q
)q̇]q̇ +(

∂C

∂q
)M−1(H(q, q̇) +G(q) +Jr

T Ft)

−(
∂C

∂q
)M−1τ = [(

∂C

∂q
)M−1(

∂C

∂q
)T ]Fn/ � ∂C

∂r
�, (11)
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Fig. 2 Model of Constrained Dynamic System

because the value of (∂C
∂q )M−1(∂C

∂q )T (= mc) is always
positive, hence it is also invertible. In this case, from (11)
Fn can be expressed as

Fn = Fn(x, τ , Ft), (12)

or a more detailed form

Fn = [(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 � ∂C

∂r
�

{−[
∂

∂q
(
∂C

∂q
)q̇]q̇+(

∂C

∂q
)M−1(H(q, q̇)+G(q)+Jr

T Ft)}

−[(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 � ∂C

∂r
� {(∂C

∂q
)M−1}τ

�
= a(x1,x2) + A(x1)JT

r Ft −A(x1)τ , (13)

where, a(x1,x2) is a scalar representing the first term in
the expression of Fn, and A(x1) is an l vector to repre-
sent the coefficient vector of τ in the same expression.
Equations (8) and (12) compose a constrained system
that can be controlled, if Fn = 0, describing the uncon-
strained motion of the system.
Substituting the (13) into (7), the state equation of the

system including the constrained force (as Fn > 0 ) can
be rewritten as

ẋ1 = x2,

ẋ2 = −M−1[H + G− JT
c (x1)a(x1,x2)]

+M−1[(I − JT
c A)τ + (JT

c A− I)JT
r Ft]. (14)

As the model of the constrained dynamic system denoted
in Fig.2, the solution of these dynamic equations will al-
ways satisfy the constrained equation (5), as a result of
the normal position error will always be zero,too.

3.2 Modeling of Grinding Process
In the past, we did the experiment when working sur-

face was flat, so we can just do flat grinding. Now we
want to grind the work-piece into the one with different
kinds of shapes, for example, grinding the flat surface into
a curved one, just like Fig.4. In Fig.4, we can find that the
desired working surface is prescribed (it can be decided
by us.), which means the desired constrained condition
Cd is known, so

Cd = y − fd(x) = 0 (15)

where r = [x,y] means the hand position given by (4).
But the constrained conditionC(j) (j = 1, 2, ···, d−1)
changed by the iterative grinding as shown in Fig. 3 and
Fig. 4 is defined,

C(j) = y − f (j)(x) = 0 (16)

We assume C(1) is known, that is to say, f (1)(x) is ini-
tially defined. f (j)(x) is the working surface remained
by i-th grinding. And f (j)(x) is a function passing
through all points, (x1, f (j)(x1)), (x2, f (j)(x2)), · · ·,
(xp, f (j)(xp)), these observed points representing the
(j)-th constraint condition obtained through the grinding
tip position used as a touching sensor of ground newly
surface. Here we assume f (j)(x) could be represented
by a polynomial of (p−1)-th order ofx. Given the above
p points, we can easily decide the parameters of polyno-
mial function y = f (j)(x). If the current constrained
condition can be got successfully, which means the cur-
rent working surface f (j)(x) can be detected correctly,
the depth from the current working surface to the desired
working surface which is expressed as ∆h(j) shown in
Fig. 4 can be obtained easily.

∆h(j)(xi) = f (j)(x)
��
x=xi

− fd(x)
��
x=xi

(17)

In this case, we can obviously find that the desired con-
strained force should not be a constant. It should be
changed while ∆h(j) changes. So we redefine the de-
sired constrained force F

(j)
nd as a function of ∆h(j),

shown as follows:

F
(j)
nd (xi) = k∆h(j)(xi) (18)

where, k is a constant.
F

(j)
nd (xi)is given to the controller(24), then the ex-

erted force F (j)
n (xi) is determined by(13). New-ground

surface f (j+1)(xi) can be represented through exerted
force F (j)

n (xi) and previous constraint f (j)(xi) as

f (j+1)(xi) − f (j)(xi) =
k�

|ṙx|F
(j)
n (xi) (19)

where, k� is a constant,|ṙx| is the real velocity of grinder
in x-axis, which is output from Dynamic system. Here
is why we set the coefficient of F (j)

n (xi) with both k�

and |ṙx|. According to the fact of grinding process, we

Fig. 4 The model of shape grinding
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Fig. 3 Shape-grinding position / force control system

all know that with a same constrained force, the big-
ger grinder’s velocity will cause thinner ground depth.
Therefore, coefficient of F (j)

n (xi) should be modeled as
to be divided by velocity term |ṙx|.Then k� will be set
along with |ṙx| to make the influence of F (j)

n (xi) more
reasonable.
A condition that the new object shape f (j+1)(xi)

have to satisfy, i.e.,

y = f (j+1)(xi) (20)

Then C(j+1) can also be known:

C(j+1) = y − f (j+1)(x) = 0 (21)

So, starting from C(1), all of C(j) can be decided.
What we want to emphasize is Ci represents the resulted
ground shape of the object defined in the shape-grinding
simulator.

4. FORCE AND POSITION
CONTROLLER

4.1 Controller using predicted constraint condition
Reviewing the dynamic equation (3) and constraint

condition (5), it can be found that as l > 1, the number
of input generalized forces is more than that of the con-
strained forces. From this point and (13) we can claim
that there is some redundancy of constrained force be-
tween the input torque τ , and the constrained force Fn.
This condition is much similar to the kinematical redun-
dancy of redundant manipulator. Based on the above ar-
gument and assuming that, the parameters of the (13)
are known and its state variables could be measured,
and a(x1, x2) andA(x1) could be calculated correctly,
which means that the constraint condition C = 0 is pre-
scribed. As a result, a control law is derived and can be
expressed as

τ = −A+(x1)
�
Fnd−a(x1, x2) − A(x1)JT

RFt

�

+(I − A+(x1)A(x1))k, (22)

where I is an identity matrix of l × l, Fnd is the de-
sired constrained forces, A(x1) is defined in (13) and
A+(x1) is the pseudoinverse matrix of it, a(x1, x2) is
also defined in (13) and k is an arbitrary vector which is
defined as

k =
∼
Jr

T

(q)
�
Kp(rd − r) + Kd(ṙd − ṙ)

�
, (23)

whereKp andKd are coefficient matrices applied to the
position and the velocity control by the redundant degree
of freedom ofA(x1), rd(q) is the desired position vec-
tor of the end-effector along the constrained surface and
r(q) is the real position vector of it. The controller pre-
sented by (22) and (23) assumes that the constraint con-
ditionC = 0 be known precisely even though the grind-
ing operation is a task to change the constraint condition.
This looks like to be a contradiction, so we need to ob-
serve time-varying constraint conditions in real time by
using grinding tip as a touch sensor.
The time-varying condition is estimated as an approx-

imate constrained function by position of the manipula-
tor hand, which based on the estimated constrained sur-
face. The estimated condition is denoted by Ĉ = 0.
Hence, a(x1, x2) and A(x1) including ∂Ĉ/∂q and
∂/∂q(∂Ĉ/∂q) are changed to â(x1, x2) and Â(x1)
as shown in (25), (26). They were used in the later simu-
lations of the unknown constrained condition. As a result,
a controller based on the estimated constrained condition
is given as

τ̂ = −Â
+
(x1)

�
Fnd−â(x1, x2) − Â(x1)JT

RFt

�

+(I − Â
+
(x1)Â(x1))k, (24)

mc
−1� ∂Ĉ

∂r
�{−[

∂

∂q
(
∂Ĉ

∂q
)q̇]q̇ + (

∂Ĉ

∂q
)M−1(h + g)}

�
= â(x1, x2) (25)

mc
−1� ∂Ĉ

∂r
�{(

∂Ĉ

∂q
)M−1} �

= Â(x1) (26)

Figure 3 illustrates a control system constructed accord-
ing to the above control law that consists of a position
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feedback control loop and a force feedfoward control.
It can be found from (13) and (24) that the constrained
force always equals to the desired one explicitly if the es-
timated constraint condition equals to the real one, i.e.,
C = Ĉ and Ft = 0. This is based on the fact that force
transmission is an instant process. In the next section, we
will introduce several prediction methods which are used
to get Ĉi in current time.
The experiment when the constraint is known have

been done successfully in Fig. 5. The maxima of position
error is about 8[mm], and the maxima of force error is
about 3[N]. Besed on the experiment when the constraint
is known, we propose the methods when the constraint is
unknown as follows.

Fig. 5 The experiment when the constraint is known

4.2 On-line Estimation of Constraint
When the constraint surface of the manipulator is un-

known, we fit respectively the constraint surface with lin-
ear function, quadratic function, and spline curve. Three
simulations have been done to base on different constraint
conditions. Here, an unknown constrained condition is
estimated as following,
(Assumptions)
1. The end point position of the manipulator during per-
forming the grinding task can be surely measured and up-
dated.
2. The grinding task is defined in x − y plane.
3. When beginning to work, the initial condition of the
end-effector is known and it has touched the work object.
4. The chipped and changed constraint condition can be
approximated by connections of minute sections.
Three methods which are fitting by linear function,

quadratic function and spline function had been used to
get the online estimation of the unknown constrained
condition and results of spline function is most accurate,
we adopt it in our final experiment. Here we just intro-
duce the spline curve fitting.

4.2.1 Fitting by quadratic spline curve
The unknown constrained condition, which is in Fig.

3, is estimated and expressed as,
Ĉi+1 = y − [Ai(x − xi−1)2 + Bi(x − xi−1) + Ci] (27)

The end-effector position at time (i − 1)∆t, i∆t are
denoted respectively as (xi−1, yi−1), (xi, yi).
The quadratic spline curve denoted as

Si(x) = Ai(x − xi−1)2 + Bi(x − xi−1) + Ci,

x ∈ [xi−1, xi](i = 1, 2, 3 · · · n) (28)

The constrained condition Ĉi+1 = y − (Ai(x −
xi−1)2+Bi(x−xi−1)+Ci) can be determined. And

we can get the coefficients of the spline curve uniquely as
follows.

Fig. 6 Fitting by quadratic spline curve

Firstly, let Si(x) satisfy the following conditions
shown in Fig. 6.
(A)Go through two ends of the interval
yi−1 = Si(xi−1) (29)
yi = Si(xi) (30)

(B)First-order differential of the spline polynomials
are equal at the end-point of adjoined function.

dSi+1(x)

dx

���
x=xi

=
dSi(x)

dx

���
x=xi

S
�
i+1(xi) = S

�
i(xi) (31)

Inputting (28) into (29), (30) and (31), we can obtain:
Ci = yi−1, (i = 1, 2, · · ·, n) (32)
Bi+1 = 2ui − Bi, (i = 1, 2, · · ·, n − 1) (33)

Ai =
Bi+1 − Bi

2hi

, (i = 1, 2, · · ·, n − 1) (34)

Where, hi = xi − xi−1, ui = yi−yi−1

hi
. From

the above-mentioned result, the constrained conditional
expression Ĉi+1 can be updated step by step.
In this point, we can see that the spline curve is defined

by two points and a derivative at some point. Compare
to the quadratic function fitting and liner function fitting,
Fitting by quadratic spline curve is more precise because
a derivative is used. So we can say fitting by quadratic
spline curve is the best method among the three methods.
It will be verified by simulations later.

5. SIMULATION
The model of grinding robot manipulator used in the

simulation is shown in Fig.4, whose parameters are:
length of link 1 is 0.3[m], length of link 2 is 0.5[m],
and the mass of link 1 is 12.28[kg], the mass of link 2
is 7.64[kg]. The end-effector velocity, 0.01[m/s], the
desired constrained force, Fnd = 5[N], grinding resis-
tance, Ft = 0[N].
The desired constrained surface is denoted as
f(x) = p − kcos(ωx) (35)

Where, p=0.50, k=0.09, ω=13.

5.1 Shape Grinding Simulation
Since we know that the spline curve fitting is the best,

we can use it to do the shape grinding just like Fig.4. In
this simulation, the constant k shown in (18) is 50, and
k

�
shown in (19) is 0.002. The trajectory of simulation is

showing Fig.7. The trajectory named O − A is the first
grinding, and then go back to the starting point through a
line which is namedA−B. The second grinding trajec-
tory is B − A. From the result, we can easily find that
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Fig. 7 The trajectory of simulation

Fig. 8 Error of x position

the part betweenO−A andB−A are cut. Then do that
again and again, it can be close to the desired trajectory
finally.
X position error and forcr error are shown in Fig.8,

and Fig.9 respectively. From these figures, we can find
the general tendency of position and force error is de-
crescent. And these errors are not only so tiny but also in
the allowable range.

∆h shown in Fig.10 means that the perpendicular dis-
tance from current position to desired position. After do-
ing many times, if∆h can be close to zero, it means the
shape grinding can be done very well. We show a combi-
nation of ∆h each time in Fig. 10, it means the change
process of ∆h. In this simulation, we used a 9-th order
polynomial, the terms of highter order than 9-th degree is
omitted. So it caused the tiny error.
From ∆h at the last time shown in Fig.10, we can

know maximum of ∆h at the last time is less than
0.01[m] after 18 times grinding. And as time passes,∆h
can be more smaller and less than 0.001[m] with about
50 times grinding.
Generally, although tiny errors exist, we can also say

that shape grinding can be done very well by this method.

6. CONCLUSIONS
The constrained dynamic equations of a manipulator

are derived and the constrained forces are expressed as
an explicit function of the state and inputs. The pre-
sented methodology allows computation of the forces,
as an alternative to sensing. Hence, the system is con-
trolled with no force sensor. The control law presented is
constructed by using the dynamical redundancy of con-
strained systems. The controller designed with this con-
trol law can be used for simultaneous control of force and
position. In the paper, we present three methods for es-

Fig. 9 Force Error

Fig. 10 The changes of∆h

timating the constrained condition to attain time-varying
unknown constrained information. The simulations indi-
cate the quadratic spline fitting for unknown constrained
surface is the most closed to the known constrained sur-
face. Hence we can say the perfermance of controller
with quadratic spline fitting is the best.
Moreover, the quadratic spline fitting for unknown

constrained surface is used in the shape grinding. From
the last results, we can find that it can be done very well
in the shaping-grinding.
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