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Based on the analysis of the interaction between a manipulator’s hand and a working object, a model
representing the constraint dynamics of the robot is first discussed. The constraint forces are expressed
by an algebraic function of states, input generalized forces, and constraint condition, and then direct
position / force controller without force sensor is proposed based on the algebraic relation. To give the
grinding system the ability to adapt to any object shape being changed by grinding, we added a function
estimating the constraint condition in real time for the adaptive position / force control. Evaluations
through simulations by fitting the changing constraint surface with spline functions, indicate that reliable
position / force control and shape-grinding can be achieved by the proposed controller. Furthermore,
experiment by using this proposed constraint condition estimating method has been done initially.
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1 INTRODUCTION

Many researches have discussed on the force control
of robots for contacting tasks. Most force control strate-
gies are to use force sensors [1]-[5] to obtain force infor-
mation, where the reliability and accuracy are limited
since the work-sites of the robot are filled with noise
and thermal disturbances. On top of this, force sensors
could lead to the falling of the structure stiffness of ma-
nipulators, which is one of the most essential defects
for manipulators executing grinding tasks. To solve
these problems, some approaches using no force sen-
sor have been presented [6]-[8]. To ensure the stabilities
of the constrained motion, those force and position con-
trol methods have utilized Lyapunov’s stability analysis
under the inverse dynamic compensation [9]-[11]. Their
force control strategies have been explained intelligibly
in books and recently interaction control for six-degree-
of-freedom tasks has been compiled.

However, insofar as we survey the controllers intro-
duced in the books or published papers those papers
don’t base on the algebraic function of states and input
generalized forces derived from the relation between the
constraint condition and the equation of dynamics. So
we discuss first a strategy for simultaneous control of
the position and force without any force sensors, where
the equation of dynamics in reference to the constrained
force has been reformulated. The constrained force is
derived from the equation of dynamics and the con-
strained equation as an explicit algebraic function of
states and input generalized forces, which means force
information can be obtained by calculation rather than
by force sensing. Equation (1), which has been pointed
out by Hemami in the analysis of biped walking robot,
denotes also algebraic relation between the input torque
τ of the robot and exerting force to the working object

Fn, when robot’s end-effecter being in touch with a sur-
face in 3-D space:

Fn = a(x1, x2)−A(x1)τ , (1)

where, x1 and x2 are state variables. a(x1,x2) and
A(x1) are scalar function and vector one defined in fol-
lowing section. This algebraic equation has been known,
but it was the first time in robotics to be applied to the
sensing function of exerting force by Peng [10]. There
are controllers excluding any force feedback sensors but
realizing simultaneous control of position and force in
the constrained motions [1], [5], [7], [9].

A strategy to control force and position proposed in
this paper is also based on (1). Contrarily to Peng’s
Method to use (1) as a force sensor, we used the equa-
tion for calculating τ to achieve a desired exerting force
Fnd. Actually, the strategy is based on two facts of
(1) that have been ignored for a long time. The first
fact is that the force transmission process is an immedi-
ately process being stated clearly by (1) providing that
the manipulator’s structure is rigid. Contrarily, the oc-
currence of velocity and position is a time-consuming
process. By using this algebraic relation, it’s possible
to control the exerting force to the desired one without
time lag. Another important fact is the input gener-
alized forces have some redundancy against the con-
strained generalized forces in the constrained motion.
Based on the above analysis, we had confirmed our force
/ position control method can realize the grinding task
through real grinding robot.

The problem to be solved in our approach is that the
mathematical expression of algebraic constraint con-
dition should be defined in the controller instead of
the merit of not using force sensor. Grinding task re-
quires on-line estimation of changing constraint condi-
tion since the grinding is the action to change the con-
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Fig. 1: A grinding robot

straint condition. In [4], we estimated the object’s sur-
face using the grinder as a touch sensor, updated the
changing constraint condition in real time, and simu-
lation results showed that spline function is best for
on-line shape estimation. Based on the above prepara-
tion, we constructed a grinding robot to complete the
grinding experiment by using this proposed constraint
condition estimating method when the constraint sur-
face is flat, the experiment results will be discussed at
the end of this paper.

2 ANALYSIS OF GRINDING

TASK

Generally speaking, the grinding power is related to
the metal removal rate(weight of metal being removed
within unit time), which is determined by the depth of
cut, the width of cut, the linear velocity of the grinding
wheel, the feed rate and so on. There are many empir-
ical formulae available for the determination of grind-
ing power, and the desired force trajectory can then be
planned according to the power. The normal grinding
force Fn is exerted in the perpendicular direction of the
surface. It is a significant factor that affects ground ac-
curacy and surface roughness of workpiece. The value
Fn is also related to the grinding power or directly to
the tangential grinding force as

Ft = KtFn, (2)

where, Kt is an empirical coefficient, Ft is the tangential
grinding force.

The axial grinding force Fs is proportional with the
feed rate, and is much smaller than the former force.

Equation (2) is based on the situation that position
of the grinding cutter is controlled like currently used
machining center. But when a robot is used for the
grinding task, the exerting force to the object and the
position of the grinding cutter should be controlled si-
multaneously. And the Fn is generally determined by
the constrained situation.

For grinding task, the normal force and tangential
velocity are the most important two factors. To improve
grinding quality, it is usually desired that the normal
force is constant while the velocity is also constant in
the middle term of a grinding stroke.

Grinding is a kind of precision machining method and

the working condition is hard for a robot to do it pre-
cisely to a certain extent because of the rather large
contacting forces. Hence, force control is necessary be-
sides position control. Usually, force sensor is an essen-
tial element to control the force. However, the sensors
pose many problems as the above-mentioned. If possi-
ble, sensing without sensors is much better for the merit
of that there is no difficulty on the design and no cost.
The following will present how to obtain force informa-
tion by calculating rather than by using force sensors.

3 MODELING

3.1 Constrained dynamical systems

Hemami and Wyman have addressed the issue of con-
trol of a moving robot according to constraint condition
and examined the problem of the control of the biped
locomotion constrained in the frontal plane. Their pur-
pose was to control the position coordinates of the biped
locomotion rather than generalized forces included in
constrained dynamical equation. And the constrained
force is used as a determining condition to change the
dynamic model from constrained motion to free motion
of the legs. In this paper, the grinding manipulator
shown in Fig. 1, whose end-point is in contact with
the constrained surface, is modelled as following (3)
with Lagrangian equations of motion in term of the con-
straint forces, refering to what Hemami and Arimoto[7]
have done:

d

dt
(
∂L

∂q̇
)− (

∂L

∂q
) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (3)

where, L is the Lagrangian function, V is potential func-
tion, q is l(≥ 2) generalized coordinates, τ is l inputs.
Jc and Jr satisfy,

Jc =
∂C

∂q
/ ‖ ∂C

∂r
‖= ∂C

∂r

∼
Jr / ‖ ∂C

∂r
‖,

∼
Jr=

∂r

∂q
, JT

r =
∼
Jr

T

ṙ/ ‖ ṙ ‖,

r is the l position vector of the hand and can be ex-
pressed as a kinematic equation ,

r = r(q).

The discussing robot system does not have kinematical
redundancy. C is a scalar function of constraint, and
expressed as an equation of constraint

C(r(q)) = 0, (4)

Fn is the constrained force associated with C and Ft is
the tangential disturbance force.

Equation (3) can be extended to

M(q)q̈+H(q, q̇)+G(q)

=τ +JT
c (q)Fn−JT

r (q)Ft, (5)

where M is an l× l matrix, H and G are l vectors. The
state variable x is constructed by adjoining q and q̇:
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Fig. 2: Model of Constrained Dynamic System
x = (xT

1 , xT
2 )T =(qT , q̇T )T . The state-space equation

of the system are

ẋ1 = x2,

ẋ2 = −M−1(H(x1, x2) + G(x1))
+M−1(τ + JT

c (x1)Fn − JT
r x1)Ft), (6)

or in the compact form

ẋ = F (x, τ , Fn, Ft), (7)

where the dimension of x is n = 2l. In order to con-
trol the system (7) with constraints (4) , it can be
started firstly by differentiating the constraint equation
(4) twice with respect to time and rewriting the result
in terms of x:

D(x)ẋ = 0, (8)

where, D(x) is vector that the constrained motion of
the system is orthogonal. Premultiplying (7) by D(x)
according to (8), we can get

D(x)F (x, τ , Fn, Ft) = 0. (9)

This is a linear equation about the unknown constrained
force Fn , combining the constrained equation and the
equation of motion. (9) can be uniquely solved for Fn

as a function of the state x and input τ ,

−[
∂

∂q
(
∂C

∂q
)q̇]q̇ +(

∂C

∂q
)M−1(H(q, q̇) +G(q) +Jr

T Ft)

−(
∂C

∂q
)M−1τ = [(

∂C

∂q
)M−1(

∂C

∂q
)T ]Fn/ ‖ ∂C

∂r
‖, (10)

because the value of (∂C
∂q )M−1(∂C

∂q )T (= mc > 0) is
always positive scalar, hence it is also invertible. In this
case, from (10) Fn can be expressed as

Fn = Fn(x, τ , Ft), (11)

or a more detailed form

Fn = [(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 ‖ ∂C

∂r
‖

{−[
∂

∂q
(
∂C

∂q
)q̇]q̇+(

∂C

∂q
)M−1(H(q, q̇)+G(q)+Jr

T Ft)}

−[(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 ‖ ∂C

∂r
‖ {(∂C

∂q
)M−1}τ

4
= a(x1, x2) + A(x1)JT

r Ft −A(x1)τ , (12)

where, a(x1, x2) is a scalar representing the first term
in the expression of Fn, and A(x1) is an l vector to rep-
resent the coefficient vector of τ in the same expression.
Equations (7) and (11) compose a constrained dynami-
cal system that can be controlled.

Substituting the (12) into (6), the state equation of
the system including the constrained force (as Fn > 0 )
can be rewritten as

ẋ1 = x2,

ẋ2 = −M−1[H(x1,x2) + G(x1)− JT
c (x1)a(x1, x2)]

+M−1[(I − JT
c A)τ + (JT

c A− I)JT
r Ft]. (13)

The model of the constrained dynamical system is de-
picted in Fig. 2. Note that the solution of these
dynamic equations will always satisfy the constrained
equation (4), so that the normal position error will al-
ways be zero. On the other hand, in these dynamic
equations of constrained motions, the constrained force
Fn is not included, but with the control law presented
in the following section, the force can be controlled ex-
plicitly.

4 FORCE AND POSITION

CONTROLLER

4.1 Controller using predicted con-

straint condition

Reviewing the dynamic equation (3) and constraint
condition (4), it can be found that as l > 1, the number
of input generalized forces is more than that of the con-
strained forces. From this point and (12) we can claim
that there is some redundancy of constrained force be-
tween the input torque τ , and the constrained force Fn.
This condition is much similar to the kinematical redun-
dancy of redundant manipulator. Based on the above
argument and assuming that, the parameters of the (12)
are known and its state variables could be measured,
and a(x1, x2) and A(x1) could be calculated correctly,
which means that the constraint condition C = 0 is pre-
scribed. As a result, a control law is derived and can be
expressed as

τ = −A+(x1)
{

Fnd−a(x1, x2)−A(x1)JT
RFt

}

+(I−A+(x1)A(x1))k, (14)

where I is an identity matrix of l× l, Fnd is the desired
constrained forces, A(x1) is defined in (12) and A+(x1)
is a pseudoinverse matrix of it, a(x1,x2) is also defined
in (12). It can be confirmed easily that when the torque
τ calculated by Eqs.(14) be input to (12), we obtain
Fn = Fnd. This means the fact that the transmitting
process of realizing Fn by τ is instantaneous, enables
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â(x1;x2)J TR

Â
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the proposed system to be invertible. k is an arbitrary
vector which is defined as

k =
∼
Jr

T

(q)
{

Kp(rd − r) + Kd(ṙd − ṙ)
}

, (15)

where Kp=diag[kp1, · · ·, kpl] and Kd=diag[kd1, · · ·, kdl]
are coefficient matrices applied to the position and the
velocity control by the redundant degree of freedom
of A(x1), rd(q) is the desired position vector of the
end-effector along the constrained surface and r(q) is
the real position vector of it. The controller presented
by (14) and (15) assumes that the constraint condition
C = 0 be known precisely even though the grinding
operation is a task to change the constraint condition.
This looks like to be a contradiction, so we need to ob-
serve time-varying constraint conditions in real time by
using grinding tip as a touch sensor.

The time-varying constraint condition is estimated
as an approximate function by using position of the
grinding tip. The estimated condition is denoted by
Ĉ = 0. Hence, a(x1,x2) and A(x1) including ∂Ĉ/∂q

and ∂/∂q(∂Ĉ/∂q) are changed to â(x1, x2) and Â(x1)
as shown in (16), (17).

mc
−1‖ ∂Ĉ

∂r
‖{−[

∂

∂q
(
∂Ĉ

∂q
)q̇]q̇ + (

∂Ĉ

∂q
)M−1(h + g)}

4
= â(x1, x2) (16)

mc
−1‖ ∂Ĉ

∂r
‖{(∂Ĉ

∂q
)M−1} 4= Â(x1) (17)

As a result, a controller based on the estimated con-
strained condition is given as

τ̂ = −Â
+
(x1)

{
Fnd−â(x1, x2)− Â(x1)JT

RFt

}

+(I− Â
+
(x1)Â(x1))k, (18)

Fig.3 illustrates a control system constructed accord-
ing to the above control law that consists of a position
feedback control loop and a force feedfoward control.

Experiments to control position and force of the
grinder had shown that the maximal position error is
8[mm] and maximal force error is 3[N].

 

Fig. 4: The experiment when the constraint is known

4.2 Shape grinding

In the past, we did the experiment when working sur-
face was flat(which is shown in Fig.4), so we can just
do flat grinding. Now we want to grind the work-piece
into the one with different kinds of shapes, for exam-
ple, grinding the flat surface into a curved one, just
like dipicted in Fig. 5. In Fig. 5, we can find that
the desired working surface is prescribed, which means
the desired constrained condition Cd can be given and
known, so

Cd = y − fd(x) = 0. (19)

But the constrained condition C(j) (j=1, 2, · · ·) changed
by repeating grinding that is in the box of Constraint
Dynamical System in Fig. 3 is hard to be prede-
fined. First of all assume C(1)=0 is given. Provided
C(j)=0 is determined and if C(j+1)=0 can be decided
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through considering Fn(t), r(t), ṙ(t), then the consecu-
tive ground surfaces C(1)=0, C(2)=0, · · · can be defined
continuously. First we assume j-th ground constraint
condition as:

C(j) = y − f (j)(x) = 0 (20)

where, y is the y position of manipulator’s end-effector
in the coordinates Σw depicted in Fig. 5. f (j)(x) is the
working surface remained by j-th grinding. And f (j)(x)
is a function passing through all points, (x1, f (j)(x1)),
(x2, f (j)(x2)), · · ·, (xp, f (j)(xp)), these observed points
representing the j-th constraint condition obtained from
the grinding tip position since we proposed previously
the grinding tip is used for the touching sensor of ground
new surface. Here we assume f (j)(x) could be repre-
sented by a polynomial of (p− 1)-th order of x. Given
the above p points, we can easily decide the parameters
of polynomial function y = f (j)(x). If the current con-
strained condition can be got successfully, which means
the current working surface f (j)(x) can be detected cor-
rectly, the distance from the current working surface to
the desired working surface which is expressed as ∆h(j)

shown in Fig. 5 can be obtained easily,

∆h(j)(xi) = f (j)(x)
∣∣
x=xi

− fd(x)
∣∣
x=xi

(21)

In this case, we can obviously find that the desired con-
strained force should not be a constant. It should be
changed while ∆h(j) changes. So we redefine the desired
constrained force F

(j)
nd as a function of ∆h(j), shown as

follows:

F
(j)
nd (xi) = k∆h(j)(xi) (22)

where, k is a constant.
F

(j)
nd (xi)is given to the controller(18), then the ex-

erted force F
(j)
n (xi) is determined by(12). New-ground

surface f (j+1)(xi) can be represented through exerted
force F

(j)
n (xi) and previous constraint f (j)(xi) as

f (j+1)(xi)− f (j)(xi) =
k′

|ṙx|F
(j)
n (xi) (23)

where, k′ is a constant, and grinding tip’s velocity |ṙx| is
the real velocity of grinder, which is output from Con-
straint Dynamical system in Fig 3. Here is why we set
the coefficient of F

(j)
n (xi) with both k′ and |ṙx|. Accord-

ing to the fact of grinding process, we all know that with

Cd

C(j)
C(2)
C(1)

…

work-piece desired working surface

Åh

current working surface

link1

link2

grinder

Üw

Fig. 5: The model of shape grinding

a same constrained force, the bigger grinder’s velocity
will cause thinner ground depth. Therefore, coefficient
of F

(j)
n (xi) should be modeled as to be divided by ve-

locity term |ṙx|.Then k′ will be set along with |ṙx| to
make the influence of F

(j)
n (xi) more reasonable.

A condition that the new object shape f (j+1)(xi) have
to satisfy, i.e.,

y = f (j+1)(xi) (24)

Then C(j+1) can also be known:

C(j+1) = y − f (j+1)(x) = 0 (25)

So, starting from C(1), all of C(j) can be decided. What
we want to emphasize is Ci represents the resulted
ground shape of the object defined in the shape-grinding
simulator. In the next part, we will introduce several
estimation methods which are used to get Ĉi in current
time.

4.3 Constraint condition description

The j-th constrained surface C(j)=0, meaning j-th
grinding procedure, defined in the previous section is
a result of grinding, but the grinding controller have
to assume that C(j)=0 is unknown since the shape of
C(j)=0 is the result of grinding remained on the work
object in nature. Therefore we need an estimator of
C(j)=0 while the grinding process proceeding. On this
section we compare three methods to estimate grinding
surface in real time such as linear function, quadratic
function, and spline curve. Three simulations have been
done based on different constraint conditions. Here, an
unknown constrained condition is estimated as follow-
ing,
(Assumptions)
1. The end point position of the manipulator during
performing the grinding task can be surely measured
and updated.
2. The grinding task is defined in x− y plane.
3. When beginning to work, the initial condition of the
end-effector is known and it has touched the work ob-
ject.
4. The chipped and changed constraint condition can
be approximated by connections of minute sections.

Three methods which are fitting by linear function,
quadratic function and spline function had been used
to get the online estimation of the unknown constrained
condition.

4.3.1 Fitting by linear function

The unknown constrained surface is fitted by line
equation and is expressed as,

Ĉ
(j)
i+1 = y − αx− β, (26)

where Ĉ
(j)
i+1 = Ĉ(j)((i + 1)∆t) and ∆t = 0.0007[s] is

control period.
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Fig. 6: Fitting by cubic spline curve

The end-effector position at time (i − 1)∆t and i∆t
are denoted respectively as (xi−1, yi−1), (xi, yi). As you
know, a line f(x) = αx + β can be difined uniquely
by two points,with this two points coefficients of the
line equation α, β can be calculated. What we want to
emphasize here is the predicted condition Ĉ

(j)
i+1 = 0 at

time t = (i+1)∆t is calculated on-line from current and
past hand position of (xi−1, yi−1) and (xi, yi), and the
estimation is not done based on the previous grinding
result of Ĉ(j) = 0. So the proposed grinding method can
be adopted to unknown target object’s shape without
prior knowledge.

Then the constrained conditional expression can be
updated step by step.

4.3.2 Fitting by quadratic function

The unknown constrained surface is estimated by
quadratic curve and is expressed as,

Ĉi+1 = y − (ax2 + bx + c) (27)

The end-effector position at time (i − 2)∆t,(i − 1)∆t,
i∆t are denoted respectively as(xi−2, yi−2), (xi−1, yi−1),
and (xi, yi). Based on the three points,the coefficients
of quadratic curve (f(x) = ax2 + bx + c) obviously can
be calculated.

4.3.3 Fitting by cubic spline curve

The unknown constrained condition, which is in Fig.
3, is estimated and expressed as,

Ĉi+1 = y − [Ai(x− xi−1)3 + Bi(x− xi−1)2

+Ci(x− xi−1) + Di] (28)

The end-effector position at time (i − 1)∆t, i∆t are
denoted respectively as (xi−1, yi−1), (xi, yi).

The cubic spline curve denoted as

Si(x) = Ai(x− xi−1)3 + Bi(x− xi−1)2 + Ci(x− xi−1)

+Di, x ∈ [xi−1, xi](i = 1, 2, 3 · · · n) (29)

The constrained condition Ĉi+1 = y− (Ai(x− xi−1)3 +
Bi(x− xi−1)2 + Ci(x− xi−1) + Di) can be determined
as follows.

Firstly, let Si(x) satisfy the following conditions
shown in Fig. 6.

(A)Go through two ends of the interval

yi−1 = Si(xi−1) (30)

yi = Si(xi) (31)

(B)First-order differential of the spline polynomials
are equal at the end-point of adjoined function.

S
′
i+1(xi) = S

′
i(xi) (32)

(C)Second-order differential of the spline polynomials
are equal at the end-point of adjoined function.

S”
i+1(xi) = S”

i (xi) (33)

Inputting (29) into (30), (31), (32) and (33), we can
obtain:

Di = yi−1, (i = 1, 2, · · ·, n) (34)

Bi+1 =
3(ui − Ci)

hi
− 2Bi, (i = 1, 2, · · ·, n− 1) (35)

Ci+1 = 3ui −Bihi − 2Ci, (i = 1, 2, · · ·, n− 1) (36)

Ai =
ui − Ci

h2
i

− Bi

hi
, (i = 1, 2, · · ·, n) (37)

Where, hi = xi − xi−1, ui = (yi − yi−1)/hi. From
the above-mentioned result, the constrained conditional
expression Ĉi+1 can be updated step by step.

Here, we can see that the spline curve is defined by
two points and derivative at one point. Compared to
the quadratic function fitting and linear function fitting,
Fitting by cubic spline curve is more precise because
derivative is used at the current hand position.

5 EXPERIMENT

The experiment when constraint surface is being esti-
mated by quadratic spline curve method has been done
successfully. Parameters of the grinding robot manip-
ulator used in the experiment are: length of link 1
is 0.3[m], length of link 2 is 0.5[m], and the mass of
link 1 is 12.28[kg], the mass of link 2 is 7.64[kg]. The
specifications of first and second joints are as follows,
the first joint: AC Servo Motor, 200V, 400W, 2.6A;
the second joint: AC Servo Motor, 200V, 200W, 2.0A;
both are made by YASKAWA ELECTRIC Co.. The
desired constrained force, Fnd = 10[N], grinding resis-
tance, Ft = 0[N]. Here the force control performance
that the exerting force Fn be equal to the desired one,
Fnd, is expected to be realized by compensating the
effect generated by friction force Ft in (18). We had
confirmed this force control accuracy improvement by
real grinding experiments, so we will not discuss the
influence of Ft in this paper, thus setting Ft = 0[N].

The desired constrained surface is denoted as

f(x) = 0.51 (38)

The known constraint condition C = y−0.51 has been
recorded in Fig.7, at the same time, unknown constraint
condition Ĉ which was estimated by cubic spline curve
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Fig. 7: Trajectory comparison of end effector between
the known one and estimated one

fitting method through (28), has also been recorded in
Fig.7(in Fig.7, part 0.00m to 0.07m along x − axis,in
other words, part 0.0s to 2.4s in time span, has been cut
since during this interval, a big crash happened between
manipulator hand and work piece, moreover this same
treatment has been done to all the experiment results).
From this comparison figure, we can find that using the
proposed estimation method, the shape of constraint
surface can be estimated very well. And we consider
this kind of coincidence has provided an initial proof
for the operability of this proposed controlling method.
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Fig. 8: Change of τ1
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Fig. 9: Change of τ2

Then let’s take a look at the torque experiment re-
sults through Fig.8 to Fig.11. τ1 and τ2 which had
been calculated by (14) are shown in Fig.8 and Fig.9,
τ̂1 and τ̂2 which had been calculated by (18) are shown
in Fig.10 and Fig.11. τi(i = 1, 2) and τ̂i(i = 1, 2) are
different from each other, as we discussed in 4.1. When
τi(i = 1, 2) being calculated , the already known con-
straint condition C = 0 is used, but when τ̂i(i = 1, 2)
being calculated, the estimated constraint condition
Ĉ = 0 is used, which means that τ̂i(i = 1, 2) is the
calculation result from the estimation of constraint sur-
face using cubic spline curve fitting method.

Here we notice that torque is oscillating no matter un-
der the situation of known constraint condition C = 0
(Fig.8 and Fig.9) or the situation of estimated con-
straint condition Ĉ = 0(Fig.10 and Fig.11), so obviously
the oscillation does not just come from the estimated
constraint condition. Therefore, we pay attention on
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Fig. 10: Change of τ̂1
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Fig. 11: Change of τ̂2

the reason why torque is oscillating under the situation
of known constraint condition (C = 0) at first. A lot
of investigation has been done, we found the oscillation
occurred when constraint condition is known (C = 0),
totally comes from the oscillation of the two angle ve-
locity q̇m(m = 1, 2), as shown in Fig.12, q̇m(m = 1, 2)
is oscillating through the entire experiment time (5s),
and the influence has been brought into the change of
torque shown in Fig.8 and Fig.9. This kind of oscilla-
tion is not to be wanted as the torque should be steady
to drive the grinding robot. Therefore, we processed
the angle velocity of each link q̇m(m = 1, 2) by moving
average method (Eqn.39) to eliminate the oscillation.

q̇(i∆t) =
1
n

(
i∑

j=i−n

q̇(i∆t)) (∆t = 0.7ms) (39)

After some trial experiment when n is set as n =
2, 3, 4, 5, 10, 15, 20, 25, 30, we find when n = 30, the
torque’s oscillation can be weaken to steady state. The
processed q̇m(m = 1, 2) is shown in Fig.13.

With this processed angle velocity q̇m(m = 1, 2), the
torque’s change is shown in Fig.14 and Fig.15. From
Fig.14 and Fig.15, we can find that torque’s oscillation
has been eliminated. Although the change of torque is
still out of flatness, but since the period of torque’s jump
now is more or less 210ms, which is much bigger than
the period of angle velocity’s jump(∆t = 0.7ms), we
can declare that the influence of oscillation from angle
velocity’s jump has been totally eliminated when torque
τi(i = 1, 2) is calculated.

6 CONCLUSIONS

The presented methodology allows computation of
the forces, as an alternative to sensing. Hence, the
system is controlled with no force sensor, instead of
that, requiring measurement of changing constraint con-
dition. The cubic spline curve fitting for changing and
unknown constraint surface which is due result of grind-
ing nature, is used in the shape-grinding experiment.
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Fig. 12: Change of two angle velocity
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Fig. 13: Change of two angle velocity

Until now, we have done the grinding experiment when
constraint surface is flat by this proposed controlling
method without any force sensor. But there are still
some unfavorable experiment phenomenon appeared in
torque’s change such as the oscillation we discussed in
former chapter. Next we will try to do the grinding ex-
periment by using the angle velocity which is processed
by moving average method with cubic spline-estimate
constraint condition.
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