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Abstract– In this paper, we use on-line 1-step genetic algorithm (1-step GA) to recognize the 6-D object in a much
bigger space comparing with other recognition methods, then we guarantee the convergence of this method by Lyapunov
theorem. But visual servoing methods for hand-eye configuration have been presented so far seems to be vulnerable for
tracking ability since it may lose a moving target. Our proposal to solve this problem is that the controller for visual
servoing of the hand and the eye-vergence should be separated independantly based on decoupling each other. Base on
this prerequisite the eye-vergence system to track target object in camera in view sight (trackability) can be much faster
than conventional visual servoing with fixed cameras.
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1 Introduction
Comparing with the visual servoing systems whose

cameras are static to the world, the hand-eye visual ser-
voing systems are easy to become unstable because of the
disturb from the motion of the end-effector. Otherwise, the
hand-eye visual servoing systems can change its angle of
view easily. In our research, we use the hand-eye system
with two cameras.

On the other hand, a fixed-hand-eye system has some
disadvantages, making the observing ability deteriorated
depending on the relative geometry of the camera and the
target. Such as: the robot cannot observe the object well
when it is near the cameras (Fig. 1 (a)), small intersec-
tion of the possible sight space of the two cameras (Fig.
1 (b)), and the image of the object cannot appear in the
center of both cameras, so we could not get clear image
information of target and its periphery, reducing the pose
measurement accuracy (Fig. 1 (c)). To solve the prob-
lems above, in this paper, we give the cameras an ability
to rotate themselves to see target at center of the images.
There is no research using such rotatable hand-eye sys-
tem as far as we know. Thus it is possible to change the
pose of the cameras in order to observe the object better,
as it is shown in Fig. 2, enhancing the measurement accu-
racy in trigonometric calculation and peripheral distortion
of camera lens by observing target at the center of lens.
Moreover, recent researches on visual servoing are limited
generally in a swath of tracking an object while keeping a
certain constant distance 3), 4), 5). But the final objective
of visual servoing lies in approaching the end-effector to
a target and then work on it, like grasping. In this case,
the desired relation between the cameras and the object is
time varying, so such rotational camera system in Fig. 2 is
required to keep suitable viewpoint all the time during the
visual servoing application.

In visual servoing application, it is important to keep the
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Fig. 2: Advantage of Eye-vergence system

object in the visual eye sight to make the visual feed back
to keep stable closed-loop dynamical motion. If the cam-
era lose the sight of target, its pose cannot be measured,
that means, the visual feedback is cut, and the robot may
fall in some unexpected motion, being dangerous. As it is
shown in Fig. 3 (a), in visual servoing system the cameras
can keep staring at the object at first in (a), but when the
target moves so fast that the manipulator can not catch up
the speed of the target because of the big mass of whole
manipulator itself, then the object may disappear in the
sight of the cameras, resulting in that the visual feedback
of the system is cut as shown in (b), loosing feedback in-
formation that appears most dangerous. So in visual servo-
ing system it is very important to keep the camera tracking
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the target. A system with high tracking ability also has
better security and validity. To realize this stable tracking
ability against quick and unknown motion of the target, we
propose to control the cameras and the manipulator sep-
arately. Because of the small mass and inertia moment
of the cameras, it can track the target better, as in Fig. 3
(c), like animals tracks target with eye motion before ro-
tate their heads to the target to improve dynamical tracking
ability.

To evaluate the observation of the camera, we put for-
ward a concept of trackability. This concept has been used
in 6), where trackability is defined as a kinematic function
of singular value of Jacobian matrix connecting hand’s ve-
locities and angular joint velocities, ignoring the relation-
ship between the hand and the target objects, including
the both dynamical motion of the target and the manip-
ulator, which seems to be essential for evaluating the eye-
vergence visual servoing. Then we define a new concept
of trackability to evaluate our visual servoing.

As shown in Fig.4, the proposed method includes two
loops: a loop for conventional visual servoing that direct
a manipulator toward a target object and an inner loop for
active motion of binocular camera for accurate and broad
observation of the target object. We set relatively high gain
to the eye-vergence controller to put the priority to the 3D
pose tracking to improve the system trackability.

2 On-line Evolutionary Recognition
2.1 3-D Model-based Matching

We use a model-based matching method to recognize a
target object in a 3-D searching area. A solid models is
located in ΣE , its position and orientation are determined
by six parameters, ψ = [rT , εT ]T , where r = [x, y, z]T ,
ε = [ε1, ε2, ε3]T . Here, the target’s orientation is repre-
sented by unit quaternion 1), which has an advantage that
can represent the orientation of a rigid body without sin-
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gularities, when −π < θ < π (θ is defined below). The
unit quaternion, is defined as

Q = {η, ε}, (1)

where

η = cos
θ

2
, ε = sin

θ

2
k, (2)

here, k(‖k‖ = 1) is the rotation axis and θ is the rotation
angle. η is called the scalar part of the quaternion while ε
is called the vector part of the quaternion. They are con-
strained by

η2 + εT ε = 1. (3)

In (3) η can be calculated by ε, so we just use three param-
eters ε to represent an orientation.

The left and right input images from the stereo cameras
are directly matched by the left and right searching mod-
els, which are projected from 3-D model onto 2-D image
plane. The matching degree of the model to the target can
be estimated by a correlation function between them as
F (ψ) by using the color information of the target. Please
refer to 9) for a detailed definition of F (ψ). When the
searching models fit to the target objects being imaged in
the right and left images, F (ψ) gives the maximum value.
Therefore the 3-D object’s position/orientation measure-
ment problem can be converted to a searching problem of
ψ that maximizes F (ψ). We solve this optimization prob-
lem by 1-step GA method that will be explained in the next
section.

2.2 GA-based On-line Recognition “1-step GA”
Theoretically optimal pose ψmax(t) that gives the high-

est peak of F (ψ(t)) is defined as

ψmax(t) =
{
ψ(t)

∣∣ max
ψ∈L

F (ψ(t))
}

(4)

where L represents 6-DoF searching space of
x, y, z, ε1, ε2, ε3.

An individual of GA is defined as ψj
i (t), which means

the i-th gene (i = 1, 2, · · · , p) in the j-th generation, to
search ψmax(t). Denote ψGA

max(t) to be the maximum
among the p genes of ψj

i (t) in GA process,

ψGA
max(t) =

{
ψj

i (t)
∣∣ max
ψj

i∈L
F (ψj

i (t))
}
. (5)
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Fig. 5: ∆F (δψ(t)) is positive definite

In fact we cannot always guarantee the best individual of
GA ψGA

max(t) should coincide with the theoretically opti-
mal pose ψmax(t), because the number of GA’s individ-
uals is not infinite. The difference between ψmax(t) and
ψGA

max(t) is denoted as

δψ(t) = ψmax(t) − ψGA
max(t). (6)

And the difference between F (ψmax(t)) and F (ψGA
max(t))

is denoted as

∆F (δψ(t)) = F (ψmax(t)) − F (ψGA
max(t)), (7)

Since F (ψmax(t))≥F (ψGA
max(t)), we have

∆F (δψ(t))≥0. (8)

Based on the definition of ∆F (δψ(t)) in (7), in this re-
search, we let GA work in the following way:

(a) GA evolves to minimize ∆F (δψ(t)).

(b) The elitist individual of GA is preserved at every gen-
eration (elitist gene preservation strategy).

(c) ψGA
max(t) does keep the same value in the evolving

when the evolved new gene with different value gives
the same value of ∆F .

Here, we present two assumptions.
[Assumption 1] ∆F (δψ(t)) is positive definite.
This means the distribution of F (ψ(t)) satisfies

∆F (δψ(t)) = 0 if and only if δψ(t) = 0, which indi-
cates ∆F (δψ(t)) = 0 has a sole minimum at δψ(t) = 0
over the searching space L, even though ∆F is multi-peak
distribution having peaks and bottoms with limited num-
ber. When the model overlap the target object in the image,
then the situation can make ∆F have the sole minimum in
L. 0 ≤ F (ψ(t)) ≤ 1, since F (ψ(t)) is normalized to
be less than 1 and negative value to be set as zero by a
definition of correlation function F (ψ(t)) 2). So the fit-
ness function is always less than 1 except only one point
which means the ψGA

max(t) can express the target object’s
pose, as shown in Fig. 5(a). From (7), we can see when
ψGA

max(t) = 1, ∆F (δψ(t)) = 0 (Fig. 5(b)), which means

that only in this case, ψGA
max(t) can express the actual pose

of the target object.
[Assumption 2] Ḟ (ψGA

max(t))≥0.
This means GA evolves itself to get a bigger fitness

function value (Ḟ (ψGA
max(t)) > 0) or keep a same value

(Ḟ (ψGA
max(t)) = 0). It is not only an assumption but

also the character of GA if the target object is static, be-
cause the elitist individual is preserved in every genera-
tion of GA. However, when the target object is moving,
Ḟ (ψGA

max(t))≥0 will indicate that the convergence speed
to the target in the dynamical images should be faster than
the moving speed of the target object. Furthermore, with
the pose tracking in dynamic scene being input at a certain
video rate, this assumption means that F (ψGA

max(t)) have
the tendency of approaching to F (ψmax(t)), and ψGA

max(t)
moves toward ψmax(t) in each period of the input image,
or keeps a distance to ψmax(t). Since in this paper we
think that the object’s motion is enough slow comparing
the calculation speed of GA’s evolving to find F (ψGA

max(t))
from the view point that the one image be input every input
video period and evolving iterations in input video period
are enough to catch up with the F (ψGA

max(t)) being sta-
tionary during the input video period.

Differentiating (7) by time t, we have

∆Ḟ (δψ(t)) = Ḟ (ψmax(t)) − Ḟ (ψGA
max(t)). (9)

We defined F (ψmax(t)) = 1 representing that the
true pose of the target object gives the highest peak.
Therefore, the time differentiation of F (ψmax(t)) will be
Ḟ (ψmax(t)) = 0. Thus, from (9) and [Assumption 2], we
have

∆Ḟ (δψ(t)) = −Ḟ (ψGA
max(t))≤0. (10)

ψGA
max(t) represents current best GA solution. [Assump-

tion 2] means GA can change its best gene ψGA
max(t) to al-

ways reduce the value of ∆F regardless of dynamic image
or static one, which indicates that the convergence speed
to the target in the dynamically continuous images should
be faster than the moving speed of the target object.

We cannot guarantee that the above two assumptions al-
ways hold, since they depend on some factors such as ob-
ject’s shape, object’s speed, definition of F (ψ(t)), param-
eters of GA and viewpoint for observing, lightening envi-
ronment, computer’s performance et al. However, we can
make efforts to improve the environment and correlation
function and so on. Providing above two assumptions be
satisfied, (8) and (10) hold, then ∆F (δψ(t)) is so-called
Lyapunov function. The objective here is to verify that
δψ(t) asymptotically stable, resulting in it converges to 0
by using the Lyapunov function of ∆F (δψ(t)), meaning
ψGA

max(t)−→ψmax(t), (t→∞), and the following shows
how to verify it.

Since ∆Ḟ (δψ(t)) is only negative semi-definite, in
the view of LaSalle theorem, δψ(t) asymptotically con-
verges to the invariant set of the solutions δψ satisfying
∆Ḟ (δψ(t)) = 0. Considering the following expression,

∆Ḟ (δψ(t)) =
∂∆F

∂δψ
· δψ̇ = 0, (11)
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the first part ∂∆F/∂δψ describes partial differentiation
of ∆F with respect to δψ, implying steepest descending
direction of ∆F in the space of δψ; the second part δψ̇
describes the difference between the moving speed of the
target object and the evolution speed of the best gene of
GA, by the definition in (6).

Equation (11) shows the invariant set of the solutions
of ∆Ḟ (δψ(t)) = 0 includes (1): P1, the solution set of
∂∆F/∂δψ = 0; (2): P2, the solution set of δψ̇ = 0;
and (3): P3, the solution set satisfying ∂∆F/∂δψ 6= 0,
δψ̇ 6= 0, but their inner product is 0.

As shown in Fig. 6, P1 includes the points of δψ that
give the local maximum or minimum values of the func-
tion ∆F including 0. The number of these points is finite
by [Assumption 1] denoted by p, that is

P1 = {0, δψ1, δψ2, · · · , δψp−1}. (12)

Concerning (1), the evolving process of GA may stay tem-
porarily at the same ∆F value. If the target object is static,
it means the best gene of GA stops at some moments for
the reason that the limited individuals of GA could not im-
prove a current solution that gives a smaller fitness func-
tion value ∆F during some generations. And when the
target object is moving, δψ̇ = 0 means at these moments
that the evolution speed of the best gene of GA is equal to
the moving speed of the target object, by (6). The number
of these points is assumed to be possibly finite, denoted by
q. Thus, we describe the set of P2 as

P2 = {0, δψG1, δψG2, · · · δψG(q−1)}. (13)

Notice that there is another solution set of δψ: P3. In
this case, the vector of ∂∆F/∂δψ is vertical to the vector
of δψ̇ since the calculation (∆F/δψ) · δψ̇ in (11) means
inner cross product, which means GA evolves in the di-
rection that keeps a same fitness function value ∆F . This

GA’s evolution way is forbidden in this research for the
GA work rule (c) that we have stated above. Then, P3 is
null. So the invariant set that δψ(t) asymptotically con-
verges to is

P = P1

⋃
P2. (14)

Here, δψ1, δψ2, · · · , δψp−1 in P1 are all unstable since
δF (δψi) > 0 (i = 1, 2, · · · , p − 1), and only δψ = 0
is stable from [Assumption 1], since when t → ∞ there
should always remain the possibility to get out of local
maximum/minimum of δψ1 · · · δψp−1 And all the points
in P2 except the point 0 are unstable because GA has pos-
sibility to get out of these points by its evolving nature.
Therefore, 0 is the only stable point in the invariant set of
P , that is, δψ(t) will finally converges to 0. The image of
the changing of ∆F (δψ(t)) with respect to time t in the
whole GA’s evolution is shown in Fig.7.

The above verification shows δψ(t)→0, which means

ψGA
max(t)−→ψmax(t), (t→∞) (15)

Let tε denotes a convergence time, then

|δψ(t)| = |ψmax(t) − ψGA
max(t)|≤ε, (ε > 0, t≥tε) (16)

In (16), ε is tolerable extent that can be considered as a
observing error. Thus, it is possible to realize real-time
optimization, because ψGA

max(t) can be assumed to be in
the vicinity of the theoretically optimal ψmax(t) after tε.

Above discussion is under the condition of continuous
time. Here, when we consider evolution time of each gen-
eration of GA denoted by ∆t. The GA’s evolving process
is described as

ψj
i (t)

evolve−→ ψj+1
i (t + ∆t). (17)

Obviously, this time-discrete evolution with the interval of
time ∆t may enlarge the recognition error δψ(t). Should
this undesirable influence of ∆t be considered, the tolera-
ble pose error ε will expand to ε′ as,

|δψ(t)|≤ε′, (ε′ > ε > 0). (18)

Since the GA process to recognize the target’s pose at
the current time is executed at least one time with the pe-
riod of ∆t as the current quasi-optimal pose ψGA

max(t) is
output synchronously, we named this on-line recognition
method as “ 1-step GA”. We have confirmed that the above
real-time optimization problem could be solved by “1-step
GA” through several experiments to recognize swimming
fish 7), human face 3) and rectangular solid block 8).

3 Hand & Eye Visual Servoing
3.1 Experiment circumstance

The Mitsubishi PA-10 robot arm is a 7-DoF robot arm
manufactured by Mitsubishi Heavy Industries, as shown
in Fig. 8 (a). Two rotatable cameras with two pan an-
gles and one sharing tilt angle mounted on the end-effector
are FCB-1X11A manufactured by Sony Industries (Fig.
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8 (b)). The frame frequency of stereo cameras is set as
33fps. The image processing board, CT-3001, receiving
the image from the CCD camera is connected to the DELL
WORKSTATION PWS650 (CPU: Xeon, 2.00 GHz) host
computer.

3.2 Desired-trajectory generation
As shown in Fig. 9, the world coordinate frame is de-

noted by ΣW , the target coordinate frame is denoted by
ΣM , and the desired and actual end-effector coordinate
frame is denoted by ΣEd, ΣE separately. The desired
relative relation between the target and the end-effector
is given by Homogeneous Transformation as EdT M , the
relation between the target and the actual end-effector is
given by ET M , then the difference between the desired
end-effector pose ΣEd and the actual end-effector pose ΣE

is denoted as ET Ed, ET Ed can be decribed by:

ET Ed(t) = ET M (t)EdT−1
M (t) (19)

(19) is a general deduction that satisfies arbitrary object
motion W T M (t) and arbitrary visual servoing objective
EdT M (t). However, the relation ET M (t) is only ob-
served by cameras using the on-line model-based recog-
nition method and 1-step GA 3), 9). Let ΣM̂ denote the
detected object, there always exist an error between the
actual object ΣM and the detected one ΣM̂ . So in visual
servoing, (19) will be rewritten based on ΣM̂ that includes
the error MT M̂ , as

ET Ed(t) = ET M̂ (t)EdT−1

M̂
(t), (20)

where ET M̂ = ET M determined by the given visual ser-
voing objective. Differentiating (20) with respect to time
yields

EṪ Ed(t) = EṪ M̂ (t)M̂T Ed(t) + ET M̂ (t)M̂ Ṫ Ed(t),
(21)
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Differentiating Eq. (21) with respect to time again

ET̈ Ed(t) = ET̈ M̂ (t)M̂T Ed(t)+2EṪ M̂ (t)M̂ Ṫ Ed(t)+
ET M̂ (t)M̂ T̈ Ed(t), (22)

Where M̂T Ed, M̂ Ṫ Ed, M̂ T̈ Ed are given as the desired vi-
sual servoing objective. ET M̂ , EṪ M̂ , ET̈ M̂ can be ob-
served by cameras. As shown in Fig. 9, there are two
errors that we have to decrease to 0 in the visual servoing
process. First one is the error between the actual object
and the detected one MT M̂ , and the other is the error be-
tween the desired end-effector and the actual one ET Ed.
In our research, the error of MT M̂ is decreased by on-
line recognition method of 1-step GA, MFF compensation
method and the eye-vergence camera system, and the er-
ror of ET Ed can be decreased by the hand visual servoing
controller.

3.3 Hand & Eye Visual Servoing Controller
The block diagram of our proposed hand & eye-

vergence visual servoing controller is shown in Fig. 4.
The hand-visual servoing is the outer loop. A detailed
block diagram of hand visual servoing control is depicted
in Fig.10. Based on the above analysis of the desired-
trajectory generation, the desired hand velocity W ṙd is
calculated as,

W ṙd = KPp

W rE,Ed + KVp

W ṙE,Ed, (23)

where W rE,Ed,
W ṙE,Ed are given by transforming

ET Ed and EṪ Ed from ΣE to ΣW . KPp and KVp are
positive definite matrix to determine PD gain.

The desired hand angular velocity W ωd is calculated as,
W ωd = KPo

W RE
E∆ε + KVo

W ωE,Ed, (24)
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where E∆ε is the quaternion error that from the recog-
nition result directly, and W ωE,Ed can be calculated by
transforming ET Ed and EṪ Ed from ΣE to ΣW . Also,
KPo

and KVo
are suitable feedback matrix gains.

The desired joint variable q̇d is obtained by

q̇d = J+(q)
[

W ṙd
W ωd

]
. (25)

where J+(q) is the pseudo inverse matrix of J(q), and
J+(q) = JT (JJT )−1. The hardware control system of

the velocity-based servo system of PA10 is expressed as

τ = KSP (q̇d − q̇) + KSI

∫ t

0

(q̇d − q̇)dt (26)

where KSP and KSI are symmetric positive definite ma-
trix to determine PI gain.

The eye-vergence visual servoing is the inner loop of the
visual servoing system shown in Fig. 4. In this paper, we
use two pan-tilt cameras for eye-vergence visual servoing.
Here, the positions of cameras are supposed to be fixed on
the end-effector. For camera system, q8 is tilt angle, q9 and
q10 are pan angles, and q8 is common for both cameras. As
it is shown in Fig. 11, ExM̂ , EyM̂ , EzM̂ express position
of the detected object in the end-effector coordinate. The
desired angle of the camera joints are calculated by:

q8d = atan2(EzM̂ , ExM̂ ) (27)

q9d = atan2(l8R + EyM̂ , ExM̂ ) (28)

q10d = atan2(−l8L + EyM̂ , ExM̂ ) (29)

where l8L = l8R = 120[mm] that is the camera location.
We set the center line of the camera as the x axis of each
camera coordinate. Then the controller of eye-visual ser-
voing is given by

q̇8 = KPT
(q8d − q8) + KDT

(q̇8d − q̇8), (30)

q̇9 = KPC
(q9d − q9) + KDC

(q̇9d − q̇9), (31)

q̇10 = KPC
(q10d − q10) + KDC

(q̇10d − q̇10). (32)

where KPT
, KDT

, KPC
, KDC

are positive control gain.

4 experiment of hand & eye-vergence visual
servoing

To verify the effectiveness of the proposed hand & eye
visual servoing system, we conduct the experiment of vi-
sual servoing to a 3D marker that is composed of a red
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ball, a green ball and a blue ball as Fig. 12. The radiuses
of these three balls are set as 30[mm].

4.1 experiment condition
The initial hand pose is defined as ΣE0 , while the ini-

tial object pose is defined as ΣM0 , and the homogeneous
transformation matrix from ΣW to ΣM0 is:

W T M0 =




0 0 −1 −1410[mm]
1 0 0 0[mm]
0 −1 0 355[mm]
0 0 0 1


 . (33)

The target object move according to the following time
function

M0ψM = [0,M0 yM (t), 0, 0, 0, 0]T (34)
M0yM (t) = −200 sin(ωt)[mm] (35)

here, ω is the angular velocity of the motion of the object.
The relation between the object and the desired end-

effector is set as:

EdψM = [800[mm], 0, 0, 0, 0, 0] (36)

Here, to compare the trackability of the eye-vergence
system and fixed camera system, we define a concept of
gazing point. As it is shown in Fig. 13 the intersection of
the gazing line of right camera and the yM0-zM0 plane is
defined as the gazing point. The relative relation between

ΣM0 and ΣR is given by Homogeneous Transformation
as M0T R, M0T R conclude the rotation matrix M0RR and
the position vector M0pR, and the rotation matrix M0RR

can be written as [M0xR, M0yR, M0zR]. The direction of
M0lR in Fig. 13 is same to the direction of xR, and M0lR
can be expressed as:

M0lR = M0pR + kR
M0xR (37)

here kR is a scalar variable. The gazing point of
the right camera expressed in ΣM0 is M0pGR =
[0, M0yGR, M0zGR]T . For M0lR = M0pGR in x direction,
(M0pR)x + kR(M0xR)x = 0. And usually (M0xR)x 6= 0,
kR can be calculated by kR = −(M0pR)x/(M0xR)x, and
the y, z coordinate of the gazing point in ΣM0 can be cal-
cated by:

M0yGR = (M0pR)y + kR(M0xR)y (38)
M0zGR = (M0pR)z + kR(M0xR)z (39)

The target object’s motion is given by (34), (35), because
the motion of the target object M is parallel to the yM0

, we
take M0yM (t) as the input, and the gazing point of the right
camera M0yGR(t) as the response. And define the concept
of trackability by the frequency response of M0yGR(t), the
trackability of the left camera can be defined in the same
way.

4.2 Experiment Results
In Fig. 14, we show the result of our experiment, we

change the ω in (34) from 0.01 to 1.256 and get the data
of the gazing point of the cameras of eye-vergence sys-
tem and the gazing point of the end-effector of the fixed
camera system seperately, we do the experiment 10 times
at every ω we selected, and use the average delay time
and the amplitude to draw the frequence response curve.
The amplitude-frequence curve and the delay frequency
curve are shown in Fig.14 (a) and Fig.14 (b). Here, for
the fixed camera A = M0yM (t), B = M0yGE(t). For
the right camera of Eye-Vergence system A = M0yM (t),
B = M0yGR(t), for the left camera A = M0yM (t),
B = M0yGL(t). In this two figures the abscissa axes
are ω. In (a), (b), we sign the angular velocity when
ω = 0.314, 0.628, 1.256, and show the position of the gaz-
ing point of the cameras in eye-vergence experiment and
the position of the gazing point of the end-effector in fixed
camera experiment in (c), (d), (e). From (a), (b) we can see
that the fixed-camera system cannot track the target object
when ω is faster than 0.628 so in (e), there is only the data
of the cameras and the target object. From Fig. 14 (a)
we can see the data of the cameras and the end-effector all
become smaller as ω increases but the curve of the fixed
camera system is always below the curves of the cameras,
which means that delay of the fixed camera system is big-
ger than the eye-vergence system, from (b) the the curve
of the fixed camera system is also below the curves of the
cameras, we can see that the amplitude of the eye-vergence
system is more closed to the target object than the fixed
camera system, so from (a) and (b) we can get the conclu-
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Fig. 14: Comparison of Cameras’ and End-effector’s Trackabilities by Frequency Response

sion that the eye-vergence system has the better trackabil-
ity than the fixed-camera system. To be understood easily,
we show the position of the gazing point of the cameras
in eye-vergence experiment and the position of the gaz-
ing point of the end-effector in fixed camera experiment
in (c), (d), (e). and M0 ẏM (0) = −200[mm/s], while the
target object moved from static, so it cannot move stably
at first, we use the data when the target object’s motion
became stable. From the figures it is also easily to see that
comparing with the fixed camera system, the eye-vergence
system can track the target object better.

5 Conclusion
In this paper, we put forward a new concept to evaluate

the observation ability on a moving object of visual servo-
ing system, and introduce the importance of it. Then we
introduce the recognition method using “1-step GA” and
our eye-vergence system. To check the trackability of eye-
vergence visual servoing system, we did some experiments
of eye-vergence system and fixed camera system sepa-
rately. In the experiments we compared the amplitude-
frequency and phase-frequency curves of the gazing point
of the cameras of the eye-vergence system and the fixed
camera system by moving object in different angular ve-
locities, and get the conclusion that the trackability and
stability of the eye-vergence system is better than that of
the fixed-camera system by analyze the experiment data.
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