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Abstract— In this paper, we focus on how to control the robot
end-effector to track an object, meanwhile, to approach it with a
suitable posture for grasping. We named it “Approaching Visual
Servoing”. A proposed hand & eye-vergence dual control system
is used to perform Approaching Visual Servoing, aiming at
quick eye-tracking and stable hand servoing and approaching.
This idea stems from hammerhead shark whose eyes turn to
gaze at the target prey to be suited to triangulation, enhancing
the ability to measure precisely the distance to the prey for
catching it. This animal’s visual tracking includes motion con-
trol by visual servoing and triangular eye vergence. Moreover,
a 3-D pose tracking method that combines “1-Step GA (genetic
algorithm)” and hand-motion feedforword compensation is
proposed. Our approach differs from known tracking methods
using optimization based on Taylor expansion, for it allows the
proposed method not to be annoyed by how to sneak out of local
minima. A convergence in time domain – whether the 3-D pose
tracking error decrease to zero in a successively input images
by video rate – , is discussed and verified through Lyapunov
method. Both Lyapunouv-stable pose tracking and Approaching
Visual Servoing are confirmed by experiments using a 7-link
manipulator installed with two mobile cameras.

I. INTRODUCTION

Grasping is one of the most common tasks in robot
applications. To correctly grasp an object, vision-based tech-
niques are considered to be used to continuously recover
the articular pose of the hand. Visual tracking and servoing
are such kind of researches. In early stage, a number of
researches deal with visual tracking of a moving object
[1]-[3], which enabled the robot manipulator to real-time
visual tracking of arbitrary 3-D object travelling at unknown
velocities in a 2-D space (depth is given as known). Visual
tracking satisfies the tracking velocity by decreasing the
tracking degree of freedom (DoF). But for grasping, robot
needs to approach a moving object with a suitable posture,
2-D visual tracking is not enough to do this. Therefore,
recently much research attention turn to focus on full DoF
pose regulator of the robot end-effector toward a target
object, that is, visual servoing [4]-[7]. Visual servoing is
difficult for the full DoF pose measurement and complicated
manipulator’s motion control. But most authors only address
these two problems as isolated issues. Different kinds of
visual servoing, position-based, image-based or 2 1

2 -D visual
servoing is usually discussed based on the assumption that
pose measurement is known or could be easily received.
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On the other hand, in computer vision field, feature-based,
appearance-based and model-based methods are proposed for
pose measurement and tracking [8], [9]. But they are seldom
discussed together with robot motion or hand-eye motion.
In our previous paper [10], we considered the interaction
between the sensing unit and the robot motion in the vision
feedback control system, and proposed a MFF (hand-motion
feedforword method) to compensate the target’s fictional
motion seeing in the camera frame that comes from the hand-
eye motion.

In visual servoing, when the target moves so fast that
the manipulator can not catch up the speed of the target
because of the big mass of whole manipulator itself, the
object may disappear in the sight of the cameras, resulting
in that the visual feedback of the system is cut. Loosing
feedback information, the robot may fall in some unexpected
motion, being dangerous. So it is important to keep the
camera tracking the target. To realize this stable tracking
ability against quick and unknown motion of the target,
we propose to control the cameras and the manipulator
separately. Because of the small mass and inertia moment
of the cameras, it can track the target better, like animals
track target with eye motion before rotate their heads to the
target to improve dynamical tracking ability. Hand & eye-
vergence dual visual servoing system was firstly proposed
in [11], aiming at enhancing object observability and system
stability. It includes two loops: an outer loop that direct a
manipulator toward a target object and an inner loop that
direct active motion of binocular camera for quick tracking
and accurate recognition.

This paper is a continuous work of [10] and [11]. The new
contents and contributions are:

1) A convergence in time domain – whether the 3-D pose
tracking error decrease to zero in successively input images
by video rate – , is verified through Lyapunov method.

The tracking problem is treated as an optimization problem
of time-varying non-linear function that express the matching
degree between the model and the object. We use “1-step
GA” recognition method combined with MFF compensation
to solve this optimization problem. Our approach differs from
known tracking methods using optimization based on Taylor
expansion that is annoyed by how to sneak out of local
minima [12] [13]. Lyapunov analysis is shown to guarantee
that a tracking error of a moving target in task coordinates
can be reduced to small value and the assumptions used
for the convergence of errors are realistic in practical 3D
tracking situation. In addition, experimental verification of
the Lyapunov-stable pose tracking is also presented, in which
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Fig. 1. Approaching Visual Servoing

pose tracking is received under influences of dynamical
oscillations of hand-eye cameras.

2) Define “Approaching Visual Servoing” and realize it by
hand & eye-vergence dual control system.

Tasks in which visual information is used to direct a
manipulator approach a target based on a time-varying re-
lation ET M (t) (end-effector frame is ΣE , target frame is
ΣM ) are referred to “Approaching Visual Servoing”. Take
Fig.1 as an example, in Fig.1(a), the end-effector keep
approaching a moved target object and finally stop near to it
at time t?; and in Fig.1(b), the motion of the target object is
shuttle rotation, the end-effector keep approaching the object
through a curved pose tracking trajectory given by ET M (t1),
· · · , ET M (tn), · · · , ET M (t?), finally it gets near to the
object, and then grasping could be performed. Such kind of
tasks in Fig.1 will be experimentally realized by a 7-link
manipulator installed with a stereo mobile camera system,
using the hand & eye-vergence dual control system.

II. LYAPUNOUV-STABLE POSE TRACKING

A. “1-step GA + MFF” Pose Tracking Method

The GA-based scene recognition method described here
can be designated as an “evolutionary recognition method”,
since for every step of the GA’s evolution, it struggles to
perform the recognition of a target in the input raw-image
to the recognition system. To recognize a target input by
CCD camera in real-time, and to avoid time lag waiting for
the convergence to a target, we used GA in such manner
that only one generation is processed to newly input image,
which we called “1-Step GA”. In this way, the GA searching
process and the convergence to the target does not consist in
one image but the convergence is achieved in the sequence
of the input image to recognize it in the continuously input
images. While using the elitist model of the GA, the dynamic
optimization of the fitness function in every new image,
which corresponds to the recognition result of a target can
be detected by the top genes in the GA in real-time.

MFF method has been proposed in [10] to compensate
the target’s fictional motion seeing in the camera frame that
comes from the hand-eye motion. Let matrix JM describe
how target pose change in ΣE with respect to changing of the
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Fig. 2. “1-step GA + MFF” Pose Tracking

manipulator’s joint angles. Then, we can predict the target
velocity in ΣE (ψ̇) based on the joint velocity q̇ of the
manipulator, as

ψ̇ = JM (q, ψ̂(t))q̇. (1)

Then we use ψ̇ to reset the GA individuals once they
evolved by one generation, described in Eq.2. An individual
of GA is defined as ψj

i (t), which means the i-th gene (i =
1, 2, · · · , p) in the j-th generation. The mark “?” denotes the
MFF reset individual. ∆t is the time cost in one generation.

ψ?j+1
i (t + ∆t) = ψ?j

i (t) + ψ̇∆t. (2)

By using (2), GA group can move together with the motion
of the target in ΣE , never loose it even under a high-
speed moving of robot manipulator. Since the effect on
the recognition from the dynamics of manipulator can be
compensated, recognition by hand-eye cameras is indepen-
dent of the dynamics of the manipulator, robust recognition
can be obtained just like using fixed cameras. This is so
called “1-step GA + MFF” pose tracking method, its flow
chart is shown in Fig.2. In the next section, we will give a
convergence proof through Lyapunov method.

B. Lyapunouv-Stable Verify

Theoretically optimal pose ψmax(t) that gives the highest
peak of F (ψ(t)) is defined as

ψmax(t) =
{
ψ(t)

∣∣ max
ψ∈L

F (ψ(t))
}
, (3)

where L represents 6-DoF searching space.
The genes of GA individual represented by ψj

i (t) is
defined by binary strings, which are generated randomly
in the initial population, with a given individual number p.
Denote ψGA

max(t) to be the maximum among the p genes of
ψj

i (t) in GA process,

ψGA
max(t) =

{
ψj

i (t)
∣∣ max
ψj

i∈L
F (ψj

i (t))
}
. (4)

In fact we cannot always guarantee the best individual of
GA ψGA

max(t) should coincide with the theoretically optimal
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pose ψmax(t), because the number of GA’s individuals is
not infinite. The difference between ψmax(t) and ψGA

max(t)
is denoted as

δψ(t) = ψmax(t) − ψGA
max(t). (5)

And the difference between F (ψmax(t)) and F (ψGA
max(t))

is denoted as

∆F (δψ(t)) = F (ψmax(t)) − F (ψGA
max(t)), (6)

Since F (ψmax(t))≥F (ψGA
max(t)), we have

∆F (δψ(t))≥0. (7)

Based on the definition of ∆F (δψ(t)) in (6), in this
research, we let GA’s work in the following way:

(a) GA evolves to minimize ∆F (δψ(t)).
(b) The elitist individual of GA is preserved at every
generation (elitist gene preservation strategy).

(c) ψGA
max(t) does keep the same value in the evolving

when the evolved new gene with different value gives
the same value of ∆F .

Here, we present two assumptions.
[Assumption 1] ∆F (δψ(t)) is positive definite.
This means the distribution of F (ψ(t)) satisfies

∆F (δψ(t)) = 0 if and only if δψ(t) = 0, which indicates
there is a single minimum in the searching space L. ∆F is
multipeak distribution having peaks and bottoms with limited
number.

[Assumption 2] Ḟ (ψGA
max(t))≥0.

Differentiating (6) by time t, we have

∆Ḟ (δψ(t)) = Ḟ (ψmax(t)) − Ḟ (ψGA
max(t)). (8)

We defined F (ψmax(t)) = 1 representing that the
true pose of the target object gives the highest peak.
Therefore, the time differentiation of F (ψmax(t)) will be
Ḟ (ψmax(t)) = 0. Thus, from (8) and [Assumption 2], we
have

∆Ḟ (δψ(t)) = −Ḟ (ψGA
max(t))≤0. (9)

ψGA
max(t) represents current best GA solution. [Assumption

2] means GA can change its best gene ψGA
max(t) to always

reduce the value of ∆F regardless of dynamic image or static
one, which indicates that the convergence speed to the target
in the dynamically continuous images should be faster than
the moving speed of the target object.

We cannot guarantee that the above two assumptions
always hold, since they depend on some factors such as
object’s shape, object’s speed, definition of F (ψ(t)), pa-
rameters of GA and viewpoint for observing, lightening
environment, et al.. However, we can make efforts to improve
the environment and correlation function and so on. Espe-
cially, the proposed “1-step GA + MFF” method effectively
increases the convergence speed since it removes the GA
group to compensate a part of the target motions coming
from the hand-eye motion.

Providing above two assumptions be satisfied, (7) and (9)
hold, then ∆F (δψ(t)) is so-called Lyapunov function. The
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objective here is to verify that δψ(t) asymptotically stable,
resulting in it converges to 0 by using the Lyapunov function
of ∆F (δψ(t)), meaning ψGA

max(t)−→ψmax(t), (t→∞),
and the following shows how to verify it.

Since ∆Ḟ (δψ(t)) is only negative semi-definite, in the
view of LaSalle theorem, δψ(t) asymptotically converges to
the invariant set of the solutions δψ satisfying ∆Ḟ (δψ(t)) =
0. Considering the following expression,

∆Ḟ (δψ(t)) =
∂∆F

∂δψ
· δψ̇ = 0, (10)

the first part ∂∆F/∂δψ describes partial differentiation
of ∆F with respect to δψ, implying steepest descending
direction of ∆F in the space of δψ; the second part δψ̇
describes the difference between the moving speed of the
target object and the evolution speed of the best gene of
GA, by the definition in (5).

Equation (10) shows the invariant set of the solutions
of ∆Ḟ (δψ(t)) = 0 includes (1): P1, the solution set of
∂∆F/∂δψ = 0; (2): P2, the solution set of δψ̇ = 0; and
(3): P3, the solution set satisfying ∂∆F/∂δψ 6= 0, δψ̇ 6= 0,
but their inner product is 0.

As shown in Fig. 3, P1 includes the points of δψ that
give the local maximum or minimum values of the function
∆F including 0. The number of these points is finite by
[Assumption 1] denoted by p, that is

P1 = {0, δψ1, δψ2, · · · , δψp−1}. (11)

The evolving process of GA may stay temporarily at the
same ∆F value. If the target object is static, it means the
best gene of GA stop at some moments for the reason that
the limited individuals of GA could not improve a current
solution that gives a smaller fitness function value ∆F during
some generations. And when the target object is moving,
δψ̇ = 0 means at these moments that the evolution speed
of the best gene of GA is equal to the moving speed of the
target object, by (5). The number of these points is assumed
to be possibly finite, denoted by q. Thus, we describe the set
of P2 as

P2 = {0, δψG1, δψG2, · · · δψG(q−1)}. (12)

Notice that there is another solution set of δψ: P3. In this
case, the vector of ∂∆F/∂δψ is vertical to the vector of
δψ̇ since the calculation (∆F/δψ) · δψ̇ in (10) means inner
cross product, which means GA evolves in the direction that
keeps a same fitness function value ∆F . This GA’s evolution
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way is forbidden in this research for the GA’s work rule (c)
that we have stated above. Then, P3 is null. So the invariant
set that δψ(t) asymptotically converges to is

P = P1

⋃
P2. (13)

Here, δψ1, δψ2, · · · , δψp−1 in P1 are all unstable, be-
cause we define “F (ψ(t)) is positive definite and satisfies
∆F (δψ(t)) = 0 if and only if δψ(t) = 0” in [Assumption
1], which means ∆F (δψi) > 0 (i = 1, 2, · · · , p − 1),
and only δψ = 0 gives minimum value of ∆F (δψ(t)),
so only δψ = 0 is stable. And in P2, all the points are
unstable except the point 0, for the reason that GA always
has possibility to get out of these points by its evolving
nature, which has been denoted in the GA’s work way (a)
that GA evolves to minimize ∆F (δψ(t)).

Therefore, 0 is the only stable point in the invariant set
of P , that is, δψ(t) will finally converges to 0. The image
of the changing of ∆F (δψ(t)) with respect to time t in the
whole GA’s evolution is shown in Fig.4.

The above verification shows δψ(t)→0, which means

ψGA
max(t)−→ψmax(t), (t→∞) (14)

Let tε denotes a convergence time, then

|δψ(t)| = |ψmax(t) − ψGA
max(t)|≤ε, (ε > 0, t≥tε) (15)

In (15), ε is tolerable extent that can be considered as
an observing error. Thus, it is possible to realize real-time
optimization, because ψGA

max(t) can be assumed to be in the
vicinity of the theoretically optimal ψmax(t) after tε.

C. Pose Tracking Experiment

Experimental verification of the proposed “1-step GA +
MFF” method is shown here. The target object is a 3D
marker that is composed of a red ball, a green ball and a
blue ball to identify the 3-DoF orientation. The ball radius
is 30[mm]. We compare the tracking result of using just “1-
step GA ” with that using “1-step GA + MFF” under a given
trajectory of the end-effecter with dynamical oscillation. To
see clearly the effectiveness of the proposed method, here,
we keep the target object static, so the target motion in the
camera view is purely generated by the motion of the camera.

1) Experimental Condition: The robot used in this experi-
mental system is a 7-Link manipulator, Mitsubishi Heavy In-
dustries PA-10 robot. Two cameras are mounted on the robot
manipulator’s end-effector. The image processing board, CT-
3001, receiving the image from the CCD camera is connected
to the DELL Optiplex GX1 (CPU: Pentium2, 400 MHz) host
computer.

A trajectory of end-effecter is given as a circle with a fixed
distance to the target and keeping the eye-line (z axis of ΣE)
passes the center of the target, as shown in Fig. 5(a)(b). The
initial hand pose is defined as ΣE0 (static frame). The desired
hand trajectory expressed in ΣE0 is

E0ψEd =





E0xEd(t) = d ∗ sin
(
θd(t)

)
E0yEd(t) = 0
E0zEd(t) = d − d ∗ cos

(
θd(t)

)
E0ε1Ed(t) = 0
E0ε2Ed(t) = sin θd(t)

2
E0ε3Ed(t) = 0

(16)

where d = 950[mm], θd(t) = 15sin(ωt)[deg], ω represents
the frequency of end-effecter’s motion. In this paper, we
use unit quaternion to represent orientation because of the
advantage of no singularities. Unit quaternion is composed of
four parameters, since a parameter η can be determined by ε,
we use only three parameters of ε to express the orientation,
detailed refer to [14].

Due to transient response made by the dynamics of the
manipulator, oscillation happens in the actual hand motion.
This makes the tracking the object more difficult. The effec-
tiveness of MFF method to solve this kind of problem will be
evaluated in this experiment, where the target object is static
in ΣW , set as E0ψM = [0, 60[mm], 950[mm], 0, 0, 0]T .

2) Experimental Result: We compare the methods of “1-
step GA” and “1-step GA + MFF” under the above given
trajectory of the end-effecter, the moving speed of the end-
effecter is set as ω = 0.628[rad/s], corresponding to the
motion period T = 10[s]. Time for the experimental process
is t = 0 ∼ 40[s].

Fig. 6 shows the estimation results by using just “1-
step GA” method, compared with the desired target pose in
camera frame. The true values of the 3-D pose of the target
object in ΣE are ψM . The tracking results using only “1-step
GA ” without MFF method are represented by ψ̂M . Fig. 7
shows the estimation results by using “1-step GA + MFF”
method, compared with the desired target pose in camera
frame. The tracking results using “1-step GA + MFF” are
denoted by ψ̂

?

M . Due to the dynamics of the manipulator,
the target object in the images includes the motion caused
by hand oscillation. The cosine curves in Fig. 6 and 7(b),
(c) are the obvious transient oscillation, and that also exist
in (d) and (f) as the orientation oscillation. Such oscillations
surely bring difficulty to object recognition.

Comparing the tracking results ψ̂M using “1-step GA”
and ψ̂

?

M using “1-step GA + MFF” , we find that“1-Step
GA” method cannot recognize precisely, especially during
the oscillation period, which can be seen from the result
that the dotted lines representing ψ̂M (t) without MFF is not
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Fig. 7. Desired pose of the target  M and the estimation results by  ̂?
M “ 1-step GA+MFF ” under hand-eye motion ω = 0.628[rad/s].

overlapping the true values of ψM (t), as shown in Fig. 6.
On the other hand,“1-step GA + MFF” method gives more
correct result since the dotted lines representing ψ̂

?

M (t) using
MFF almost overlaps the true values ψM (t) with smaller
pose error, as shown in Fig. 7. This experimental result
confirmed the recognition accuracy and stability by using
“1-step GA + MFF” method.

III. APPROACHING VISUAL SERVOING

A. Hand & Eye-vergence Controller
The block diagram of our proposed hand & eye-vergence

dual control system is shown in Fig. 8, which includes two
loops. An outer loop for conventional visual servoing that
direct a manipulator toward a target object, and an inner
loop for active motion of binocular camera for accurate and
broad observation of the target object.

For the outer loop, the desired hand velocity W ṙd is
calculated as

W ṙd = KPp

W rE,Ed + KVp

W ṙE,Ed; (17)

RawRawRawRaw
imageimageimageimage
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Fig. 8. Block diagram of the hand & eye-vergence visual servoing system

the desired hand angular velocity W ωd is calculated as
W ωd = KPo

W RE
E∆ε + KVo

W ωE,Ed, (18)

where hand error W rE,Ed, error velocity W ṙE,Ed, quater-
nion error E∆ε and angular velocity W ωE,Ed are calculated
by using the given servoing objective and the visual pose
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measurement, refer to [11].
The desired joint variable q̇d is obtained by

q̇d = J+(q)
[

W ṙd
W ωd

]
. (19)

The hardware control system of the velocity-based servo
system of PA10 is expressed as

τ = KSP (q̇d − q̇) + KSI

∫ t

0

(q̇d − q̇)dt (20)

where KSP and KSI are symmetric positive definite matrix
to determine PI gain.

The eye-vergence visual servoing is the inner loop of the
visual servoing system shown in Fig. 8. In this paper, we
use stereo mobile camera for eye-vergence visual servoing.
This mobile camera system has three DoF (Fig. 9), the left
and right camera’s poses are defined by φL = [θl, ψ]T ,
φR = [θr, ψ]T , where θl and θr are pan angles, and ψ is title
angle that is common for both cameras. Here, the positions
of cameras are supposed to be fixed.

The objective of the eye-vergence control is given by
CLud = [CLxd,

CL yd]T = 0, CRud = [CRxd,
CR yd]T = 0,

(21)
which means the objects is desired to be in the center of
the camera frame. We define CLû is the x and y direction
of CLψ̂ (object pose in left camera), and CRû is the x and
y direction of CRψ̂(object pose in right camera), then the
controller of eye-visual servoing is given by

φ̇L = KPL
(CLud −CL û) + KDL

(CLu̇d −CL ˙̂u), (22)
φ̇R = KPR

(CRud −CR û) + KDR
(CRu̇d −CR ˙̂u), (23)

where KPL
, KDL

, KPR
, KDR

are positive control gain.

B. Experiment of Approaching Visual Servoing

Here, we conduct the experiments of Approaching Visual
Servoing to a 3D marker by using the hand & eye-vergence
controller.

1) Experimental Condition: A photograph of our experi-
mental system is shown in Fig.10. The robot used in this
experimental system is a 7-Link manipulator, Mitsubishi
Heavy Industries PA-10 robot. Two mobile cameras are
mounted on the robot manipulator’s end-effector. The image
processing board, CT-3001, receiving the image from the
CCD camera is connected to the DELL Optiplex GX1 (CPU:
Pentium2, 400 MHz) host computer.

Fig.11 shows the coordinate system corresponding to
Fig.10. The initial pose of the end-effector is defined as ΣE0 ,
and given by

W T E0 =




0 0 1 −918
−1 0 0 0
0 −1 0 455
0 0 0 1


 , (24)

position unit: [mm].
2) Approaching Visual Servoing in z-axis: Here, a static

object is set as E0ψM = [0[mm], 50[mm], 900[mm], 0, 0,
0]T . The objective of the Approaching Visual Servoing is
given by

{
EdzM (t) = zmax − (zmax − zmin)t/T if(t≤T )
EdzM (t) = zmin if(t > T )

(25)
where we set zmax = 900[mm], zmin = 600[mm], T =
40[s]. The other objective parameters are given the same as
beginning (E0ψM ), that is,





EdxM (t) = 0
EdyM (t) = 50[mm]
Edε1M (t) = 0
Edε2M (t) = 0
Edε3M (t) = 0

(26)

The above objective of the Approaching Visual Servoing
given in (25), (26) means observing the target object from a
900[mm] faraway place to a 600[mm] distance, as shown in
Fig.10.

Figs.12(a) to (f) show the actual motion of the end-effector
with respect to the fixed frame of ΣE0 , defined as E0ψE ,
compared with the desired hand pose E0ψEd. As shown in
Fig.12(c), the end-effector is desired to move 300[mm] in
z-axis of ΣE0 in the first 40[s]; and keep 600[mm] distance
to the target object, no more approach, that is E0zEd =
300[mm] after 40[s]. The actual motion of the end-effector
shown in Fig.12(c) confirmed that this approaching motion
was achieved. The errors between the desired hand pose
E0ψEd and the actual hand pose E0ψE are limited in a
small range. When the end-effector became nearer to the
target object, the hand motion errors became smaller, since
the target object is bigger in the camera images, which is
easier for recognition.

Meanwhile, as the end-effector approach the target object,
the cameras change their pan angles to focus on the object,
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which has been confirmed by Figs.13(a) and (b). From 0[s] to
40[s], the angles of both left and right cameras are changed
from 4[deg] to 5.7[deg]. The pose changing of the cameras
look very small, less than 2[deg], however, consider the short
distance from the cameras to the target object, which is only
600[mm] in the last, even small rotation of the cameras is
enough to make sure the object is observable. After 40[s],
both the hand motion and cameras’ motion are converged,
which also confirmed the stability of our hand & eye dual
control system.

3) Approaching Visual Servoing to A Moving Object: In
this experiment, the target object is fixed on a mobile robot,
and moves together with the mobile robot, as shown in Fig.
14. The coordinate system of the mobile robot is represented
as ΣR. Here, the motion of the mobile robot is a shuttle
rotation around the z axis of ΣR given by

θd[deg] = a sin(
2π

T
)t, (27)

where we set a = 8[deg], T = 40[s]. The voltage of the right
and left wheel is given by

VR = kp(θd − θ) + kv(θ̇d − θ̇), (28)
VL = −VR, (29)

where kp and kv are suitable feedback PD control gains.
So, here Approaching Visual Servoing to a moving target

object is performed. The objective of visual servoing is the
same as the first experiment, given in (25), (26), but here we
set zmax = 900[mm], zmin = 550[mm], T = 60[s].

Figs. 15(a) to (f) are the experimental results, which show
the actual motion of the end-effector defined as E0ψE(t),
compared with the desired hand pose E0ψEd(t). In the
first 15[s], the mobile robot did not move, Approaching
Visual Servoing to a static object (the same with the first
experiment) was performed, so the trajectory of E0ψEd(t)
is a straight line from 0[s] to 15[s]. Then in the moment the
mobile robot started to move, the desired trajectory in Fig.
15(a),(e) began to turn to sin/cos curved line.

As shown in Fig.15(c), the end-effector is desired to move
350[mm] in z-axis of ΣE0 in the first 60[s]; and keep
550[mm] distance to the target object, no more approach,
that is E0zEd = 350[mm] after 60[s]. The motion image
is shown in Fig.1(b). The actual motion of the end-effector
shown in Fig.15(c) confirmed that this approaching motion
was achieved. And the actual motion of the end-effector
shown in Fig.15(a),(e) confirmed that the tracking of the
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Fig. 15. Hand pose of Approaching Visual Servoing to a moving object, using hand & eye-vergence dual control system.
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Fig. 16. Camera pose of Approaching Visual Servoing a moving object.

rotating object was achieved, with about 5[s] time delay. The
errors between the desired hand pose E0ψEd and the actual
hand pose E0ψE are limited in an acceptable range.

As the end-effector approach the target object, the cameras
change their pan angles to focus on the object, which has
been shown in Figs.16(a) and (b). The pan angle of the left
camera is changed from 4[deg] to 6[deg], and the right one
is changed from 2[deg] to 6[deg].

This experiment has shown that tracking and approaching
a moving object can be done by our proposed hand &
eye-vergence dual control system, which is a meaningful
preparation work for grasping.

IV. CONCLUSION

Intelligent robots are expected to do more service for
people, the basic work is grasping. This paper represented
two contributions for grasping.

1) A convergence of the 3-D pose tracking error in succes-
sively input images is discussed, and we clearly stated what
kind of condition leads to Lyapunov-stable pose tracking.
Our proposed “1-step GA + MFF” method is verified by
both Lyapunov analysis and experiments that shows stable
tracking can be realized even under the interference of quick
hand-eye motion.

2)“Approaching Visual Servoing” is defined and experi-
mentally realized by using hand & eye-vergence dual control
system. This enabled robot end-effector to track an object,
meanwhile, to approach it with a suitable posture, which is
a part of work for grasping.

In the near future, we have to deal with the problem
that how to catch up with a moving object. Object velocity

prediction should be performed to make sure the hand moves
faster than the object, else it could not catch it. Other
problems, like obstacle avoidance during grasping process,
grasping force control are also the subjects we want to
research on in future.
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