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Abstract— Continuous catching and releasing experiment of
several fishes make the fishes find some escaping strategies. To
make fish-catching robot intelligent more than fish’s adapting
and escaping abilities, we have proposed a chaos-generator
comprising Neural-Network-Differential-Equation(NNDE) and
an evolving mechanism to have the NNDE generate chaotic
trajectories as many as possible. We believe that the fish could
not be adaptive enough to escape from chasing net with chaos
motions since unpredictable chaotic motions of net may go
beyond the fish’s adapting abilities. In this report we examine
interesting chaotic characters of plural chaos generated by
NNDE through Lyapunov number, Poincare return map, initial
value sensitivity and bifurcation map.

I. INTRODUCTION

A new trend of machine intelligence [1] that differs
from the classical AI has been applied intensively to the
field of robotics and other research areas like intelligent
control system. Animal world has been used conceptually by
robotics as a source of inspiration for machine intelligence.
For the purpose of studying animal behavior and intelligence,
the model of interaction between animals and machines is
proposed in researches like [2]. Crucial characteristic of
machine intelligence is that the robot should be able to use
input information from sensor to know how to behave in a
changing environment, and furthermore, the robot can learn
from the environment for safety like avoiding obstacle. As
known universally that the robot intelligence has reached
a relatively high level, still the word “intelligence” is an
abstract term, so the measurement of the intelligence level
of a robot has become necessary. A practical and systematic
strategy for measuring machine intelligence quotient (MIQ)
of human-machine cooperative systems is proposed in [3].

In our approach to pursue intelligent robot, we will eval-
uate the intelligence degree between fish and the robot by
Fish-Catching operation. We think that the system combined
with chaos be smarter than the fish when the robot can beat
the fish by catching it successfully even after the fish finds
out some escaping strategy. As we did not find the research
about the intelligence comparison between animal and robot,
we have mainly dedicated ourselves to constructing a smart
system that is more intelligent than the fish. We considered
that the competitive relation can be very meaningful as one
way to discuss robotic intelligence.

In recent years, visual tracking and servoing in which
visual information is used to direct the end-effector of a
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manipulator toward a target object has been studied in
some researches [4], [5]. By evolutionary algorithms [6],
Visual Servoing and Object Recognizing based on the input
image from a CCD camera mounted on the manipulator has
been studied in our laboratory(Fig.1) [7], and we succeeded
in catching a fish by a net attached at the hand of the
manipulator based on the real-time visual tracking under the
method of Gazing GA [8] to enhance the real-time searching
ability.

Through experiments, we have learned that it is not
effective for fish catching to simply pursue the current fish
position by visual servoing with velocity feedback control.
Actually, the consistent tracking is sometimes impossible
because the fish can alter motion pattern suddenly maybe
under some emotional reasons of fear. Those behaviors are
thought to be caused by emotional factors and they can also
be deemed as a kind of innate fish intelligence, even though
not in a high level.

While observing the fish’s adapting behavior to escape in
the competitive relations with the robot, that is continuous
catching/releasing experiments, we found that we can define
a “Fish’s Intelligent Quotient”(FIQ) representing decreasing
velocity of fish number caught by the net through continuous
catching/releasing operation. Through this measure we can
compare the innate intelligence of the fish and the artificial
intelligence of the robot.

It has been well known that many chaotic signals exist
in our body, for example, in nerves, in motions of eye-balls
and in heart-beating periods [9], [10]. Therefore we thought
that imitating such animal’s internal dynamics and putting
chaos into robots have something meaningfulness to address
fish’s intelligence. We embed chaos into the Robot Dynamics
in order to supplement the deficiency of our Fish-Catching
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system [11].
Therefore what we have to pay attention to the fish’s

nature is that the fish does continue to conceive always
escaping strategy against new stressing situation. This means
that robot’s intelligence to override the fish’s thinking ability
needs infinite source of idea of catching motions. To generate
such catching motion, we have proposed Neural-Network-
Differential-Equation(NNDE) that can produce plural chaos
and inherently have a possibility to be able to generate
infinite varieties of chaos, derived from the neural network’s
ability to approximate any nonlinear function as accurate as
with desirable precision[12], [13].

In this paper, we report analyses of chaos generated by
NNDE, especially noting how the generated chaos changes
depending on a single coefficient in neural network being
varied slightly through bifurcation diagram.

II. FISH TRACKING AND CATCHING

The problem of recognition of a fish and detection of its
position/orientation is converted to a searching problem of
r(t) = [x(t), y(t)]T in order to maximize F (r(t)), where
F (r(t)) represents correlation function of images and fish-
shaped matching model. F (r(t)) is used as a fitness function
of GA [8]. To recognize a target in a dynamic image input by
video rate, 33 [fps], the recognition system must have real-
time nature, that is, the searching model must converge to the
fish in the successively input raw images. An evolutionary
recognition process for dynamic images have been realized
by such method whose model-based matching by evolving
process in GA is applied at least only one time to one raw
image input successively by video rate. We named it as “1-
Step GA” [7]. When the converging speed of the model to
the target in the dynamic images should be faster than the
swimming speed of the fish in the dynamic images, then
the position indicated by the highest genes represent the
fish’s position in the successively input images in real-time.
We have confirmed that the above time-variant optimization
problem to solve r(t) maximizing F (r(t)) could be solved
by “1-Step GA”. r(t) = [x(t), y(t)]T represents the fish’s
position in Camera Frame whose center is set at the center
of catching net, then r(t) means position deviation from net
to Fish, means r(t) = ∆r(t) The desired hand velocity at
the i-th control period ṙi

d is calculated as

ṙi
d = KP ∆ri + KV (∆ri − ∆ri−1) (1)

where ∆ri denotes the servoing position error detected by 1-
Step GA [7]. KP and KV given are positive definite matrix
to determine PD gain. Now we add chaos items to (1) above,
and we also need to redefine the meaning of ṙi

d.
The simple PD servo control method given by (1) is

modulated to combine a visual servoing and chaos net motion
into the controller as follows,

∆ri = k1 · ∆ri
fish + k2 · ∆ri

chaos (2)

Here ∆ri
fish =

[
∆xi

fish ∆yi
fish

]
, is the tracking error

of fish from the center of camera frame, and ∆ri
chaos =[

∆xi
chaos ∆yi

chaos

]
denotes a chaotic oscillation in x−y
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Fig. 2. Result of catching number

(a) Motion (1) of a fish

(b) Motion (2) of a fish (c) Motion (3) of a fish

Fig. 3. Fish motion

plane around the center camera frame. Therefore the hand
motion pattern can be determined by the switch value k1 and
k2. k1 = 1 and k2 = 0 indicate visual servoing, and k1 = 0
and k2 = 1 indicate the net will track chaotic trajectory made
by NNDE being explained later in this report. The desired
joint variable q̇d is determined by inverse kinematics from
ṙd by using the Jacobian matrix J(q), and is expressed by

q̇d = J+(q)ṙd (3)

where J+(q) is the pseudo inverse matrix of J(q). The robot
used in this experimental system is a 7-Link manipulator,
Mitsubishi Heavy Industries PA-10 robot.

III. PROBLEM OF FISH-CATCHING

In order to check the system reliability in tracking and
catching process, we kept a procedure to catch a fish and
release it immediately continuously for 30 minutes. We
released 5 fishes (length is about 40[mm]) in the pool in
advance, and once the fish got caught, it would be released
to the same pool at once. The result of this experiment is
shown in Fig.2, in which vertical axis represents the number
of fishes caught in successive 5 minutes and horizontal
axis represents the catching time. We had expected that
the capturing operation would become smoother as time
passing on consideration that the fish may get tired. But
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Fig. 4. Block diagram of Chaos Generation

to our astonishment, the number of fishes caught decreased
gradually.

The reason of decreased catching number may lie in the
fish learning ability. For example, the fish can learn how
to run away around the net as shown in Fig.3(a) by circular
swimming motion with about constant velocity, having made
a steady state position error that the net cannot reach to
the chasing fish. Or the fish can stay in the opposite corner
against the net in the pool shown in Fig.3(b). And also, the
fish can keep staying within the clearance between the edge
of the pool and the net shown in Fig.3(c) where the net is
inhibited to enter.

To solve these problems, and to achieve more intelligent
fish catching systems, we thought chaos behavior of the
net with many chaotic varieties can be a possible method
to overcome those fish’s escaping intelligence, since huge
variety of chaos trajectories seems to be unpredictable for the
fish to adapt them. This strategy to overcome fish’s adaptive
intelligence is based on a hypothesis that unpredictability
of the motion of the chasing net produced by plural chaos
can made the fish’s learning logic confuse, getting the fish
catching robot having made intelligence than the fish’s.
Then we propose Neural-Network-Differential-Equation to
generate chaos as many as possible.

IV. FISH INTELLIGENCE QUOTIENT
To evaluate numerically how fast the fish can learn to

escape the net, we adapted Linear Least-Square approxi-
mation to the fish-catching decreasing tendency, resulting
in y = −0.486t + 20.7 as shown in Fig.2. The decreasing
coefficient −0.486 represents adapting or learning velocity of
the fishes as a group when the fish’s intelligence is compared
with robotic catching. We named the coefficient as “Fish’s
Intelligence Quotient”(FIQ). The larger minus value means
high intelligence quotient of the fish, zero does equal, and
plus does less intelligent than robot’s. To overcome the fish’s
intelligence, more intelligent robotic system needs to track
and catch the fish effectively. in other words it comes to the
problem on how to use the item ∆ri

chaos in (2) effectively
to exceed the fish’s intelligence.

V. NN-DIFFERENTIAL-EQUATION
Lorenz and Rossler models renowned as chaos genera-

tion comprise three differential equations, producing three-
dimensional chaotic trajectory in phase space. Since a
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Fig. 6. poincare return map

Neural-Network(N.N.) has been proven to have an ability to
approximate any non-linear functions with arbitrarily high
accuracy[12][13], we thought it is straightforward to make a
differential equation including N.N. so that it can generate
plural chaos by changing N.N.’s coefficients. We define
next nonlinear differential equation including N.N. function
f(p(t)) as

ṗ(t) = f(p(t)). (4)

p(t) = [x(t), y(t), z(t)]T is state variable. The nonlinear
function of f(p(t)) in (4) is constituted by N.N.’s connec-
tions, which is exhibited in left part of Fig.4 where the N.N.
and integral function of outputs of N.N. and the feedback
of the integrated value to the inputs of N.N. constitute
nonlinear dynamical equation, (4). We call it as Neural-
Network-Differential-Equation.

VI. CHAOS VERIFICATION METHOD

Since there have been no simple criterion to determine
whether irregular oscillation is a chaos or not, we have to
apply plural evaluations over the irregularities of trajectories
produced by NNDE. The followings are criteria being used
for judging the chaotic characters.

A. Lyapunov exponent

As one of criteria to evaluate a chaos’ character of time
function f(t) at discrete time ti in time domain, Lyapunov
exponent expressed by the following equation is well known,

λ = lim
N→∞

1
N

N−1∑

i=0

log
∣∣∣∣
df

dt
(ti)

∣∣∣∣, (5)

where positive value can represent that the irregular oscilla-
tion diverts from a standard trajectory, which expands like a
function of eat (a > 0).

B. Poincare section

Poincare section is to verify further whether trajectories
can be identified as chaos. Next, the Poincare section is
explained. First of all, we examine an simple closed curve
in three dimensions as shown in Fig5. The plane “A” that
intersects with this closed trajectory pointed by “P” is defined
as the Poincare section. The intersecting points are named
as Pn, Pn+1,Pn+2,· · · , and corresponding x-axis position
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on A are xn ,xn+1,xn+2,· · · , which are all pointed to the
Poincare Return Map as xn,xn+1,· · · as shown in Fig.6.
With the poincare return map of Fig.6 representing a shape
of “Λ”, the closed curve has a structure of stretching and
folding, corresponding left half and right one. This structure
is a basic character of chaos. Looking at the left half of Fig.6,
we can see the inclination coefficient dxn+1/dxn > 1 and
right half has dxn+1/dxn < −1, representing that left half
has expansion and the other does contraction.

C. Sensitivity of initial value

The small perturbation of the current trajectory may lead
to significantly different future behavior. Sensitivity of initial
value is popularly known as the ”butterfly effect”.

D. bifurcation diagram

After a solved trajectory p(t) = [x(t), y(t), z(t)] has been
obtained by numerical integration with found coefficients q
by gene in GA procedure, the crossing point of pk(t) with
x − z plain when the trajectory p(t) pass through the plain
k times are all recorded. In case of the period of p(t) being
1 cycle, one fixed point appears on the x − y plain. If it
is 2 cycle, two fixed points are spotted. Further, with the
p(t) having k cycle, the spots on x − y plain number k. A
diagram depicting an expanding on contracting transitions of
crossing points depending on changing a parameter relating
to the eq.(4), in this case one coefficient value of a neural
network. When p(t) is chaos, it has infinite period, then the
crossing spots appears on the x − z plain infinitely.

VII. CHAOS GENERATE SYSTEM

Fig.4 represents the block diagram to find chaos by using
GA and Lyapunov number. This GA is not 1-Step GA,
described in Chapter II but used as a normal GA’s procedure
that evolves genes representing neural network coefficient’s
value. The trajectory p(t) in time domain obtained from
Neural-Network-Differential-Equation is used for the calcu-
lation of Lyapunov number. Here, L = [λ1, λ2, λ3]T , (λ1 >
λ2 > λ > 3) is a Lyapunov number. Using this L for the
evolution of GA, fitness function is defined as follows,

g = k1 · λ1 − k2 · |λ2| − k3 · λ3. (6)

This fitness function incorporated the chaotic property of the
Lyapunov spectrum, which is one of factors to be essential
for generating chaos trajectory. Here, because we discuss
three-dimensional chaotic attractor in phase space, there
are 3 Lyapunov numbers. The relationship between positive
and negative Lyapunov spectrum is (+, 0,−), which means
resulted time trajectory of (4) may be thought to be chaos.
Parentheses indicate the sign of the Lyapunov spectrum. In

(a) Chaos 01 (b) Chaos 02

(c) Chaos 03 (d) Chaos 04

Fig. 8. Generated Chaos
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other words, λ1 is positive, λ2 is also positive or negative
small values, λ3 is negative case, the fitness function of (6)
appears to have relatively large positive value when λ1 > 0,
λ2 ≈ 0, λ3 < 0. In addition k1, k2 and k3 are positive
coefficients. The gene of GA is defined as shown in Fig.7,
with connection weights of N.N. being q = [q1, q2, . . . , qn]T .
In this report we adopted a network of 3×6×3 as shown in
Fig.4, then the number of connections and their coefficients
is 36, i.e., n=36. The bit length of qi is 16 bits. Because
the gene is expressed in binary, converted to decimal and
normalized into a range from 0 to 1. Then, generating a
trajectory p(t) based on a given gene having been determined
by GA at one previous generation and calculating Lyapunov
number, and evolving new generation of gene are repeated.
This GA’s evolution can find q to have a highest value of g
defined by (6), that means possible chaos trajectory.

VIII. VERIFICATION RESULTS

So far we have found four chaos patterns with different
neural coefficients explored by GA mentioned in the previous
section. We named them with a serial number as chaos
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TABLE I
LYAPUNOV NUMBER

chaos01 chaos02 chaos03 chaos04
λ1 0.014585 0.01919 0.015934 0.01208
λ2 -0.003314 0.00733 -0.002172 -0.00143
λ3 -0.165381 -0.10379 -0.123026 -0.075448

01∼chaos 04. The followings are the introduction of those
chaos with each individual character.

A. Chaos 01

We searched Lyapunov number, an sensitivity of initial
value, and the Poincare return map about chaos 01.

1) Lyapunov number: Lyapunov numbers are λ1 =
0.014585, λ2 = −0.003314 and λ3 = −0.165381. These are
corresponding to the Lyapunov spectrum of chaos,(+, 0,−).

2) Sensitivity to initial value: Two time-profile of tra-
jectories with minutely different initial value are shown
in Fig.9. The trajectories of (x1(t), y1(t), z1(t)) are the
results that originated from the initial values of x1(0) =
1.00, y1(0) = 1.00, z1(0) = 1.00 and (x2(t), y2(t), z2(t))
are from x2(0) = 1.01, y2(0) = 1.01, z2(0) = 1.01.
Trajectories of x1 and x2 are shown in Fig.9 .

We can see from Fig.9 that the two trajectories with minute
difference of initial values divert often about 800 seconds
having passed, this means the slight different initial values
make large separation with each other, indicating sensitivity
of initial value, which is one of the character of chaos. As
for y and z coordinates, they are similar, omitted to spare
the space.

3) Poincare return map: Chaos 01’s poincare return map
is shown in Fig.10. One dimensional map can be seen
in Fig.10, from which we can understand that the map
represents expanding (left half of the Fig.10) and contracting
(right half) that are essential characters to generate chaos.
Therefore, the property of chaos 01 has been confirmed from
the viewpoint of Lyapunov number, an sensitivity of initial
value, and the Poincare return map.

B. Chaos 02 ∼ 04

We have found other three chaos, 02, 03 and 04, where
Lyapunov numbers are listed in Table 1, including chaos 01
also. We confirmed all chaos trajectories have the Lyapunov
spectrum of chaos, (+, 0,−).

p1

p2

p3

Fig. 11. Neural Network for nonlinear function generation

IX. SENSITIVITY OF NEURON’S WEIGHT

We have noticed weight coefficient of N.N. that generated
chaos 03 are almost similar to chaos 04’s. That is, only one
weight coefficient is different, that is “q1” in Fig.11. We
think “q1” is related to the generation of chaos [14]. So we
increased the weight q1 gradually from “−1.0” to “+1.0”
with q1 increasing by 0.0001 and compare their trajectories.
The range of q1 is −1.0 ≤ q1 ≤ 1.0 and q1 is increased from
-1.0 by 0.1. In the case of −1.0 ≤ q1 ≤ −0.4, 0.2 ≤ q1 ≤
0.3 and 0.9 ≤ q1 ≤ 1.0, the trajectories diverged without
cyclic motions.

A. Bifurcation

1) Confirmation of pitchfork bifurcation: Figure12 shows
pitchfork bifurcation diagram with q1 increasing from −0.27
to 0.17 increasing by 0.0001. The value of r in vertical
axis means the x - axis coordinate of the spotted point
with the solved trajectory p(t) passed through x − z plain.
As increasing q1, the trajectory p(t) is bifurcated into two,
four, and falls into chaos behavior as you can see the
expanded depiction of Fig.12, around q1 = −0.2, which is
corresponding to the designated by the point “A” in Fig.13.
This is said to be “period doubling”, and typical phenomenon
in chaos. The case of q1 = −0.12, the spotted points are
scattered densely, meaning the trajectory diverged, resulting
in no periodical spotted point in x − z plain.

2) Confirmation of a window with 3 period: Figure14
shows the bifurcation diagram with q1 changing from 0.4
to 0.85, which is expanded from a part “B” of Fig.13. A
window with 3 period appeared when 0.47 ≤ q1 ≤ 0.5,
which is the typical phenomenon of chaos.

B. Generated trajectories in x − y − z space

Three typical trajectories of limit cycle, chaos, periodic
trajectory with three-period solution are examined below,
which correspond to q1 = −0.2807 with mark α, -0.1084,
mark β, 0.1744, mark γ, in Fig.12, and q1 = 0.4898 with
mark δ in Fig.14.

1) In case of q1 = −0.2807: About Fig.15, the left figure
shows the whole 3D trajectory. The right graph shows points
that the trajectory passed through x− z plane when q1 is set
at −0.2807. The horizontal axis means the number of the
trajectory that was passed the plane, and the value of r in
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vertical axis means the x - axis coordinate of the spotted
point in x− z plain. From the graph, this trajectory has one
period because it always shows about r = 65000, meaning

that generated trajectory represents a limit cycle.

2) In case of q1 = −0.1084: About Fig.16, the left
figure shows the whole 3D trajectory when q1 = −0.1084.
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The right graph shows points that the trajectory was passed
the plane. From the graph, this trajectory has random pass-
through points, representing chaotic character.

3) In case of q1 = 0.1744: About Fig.17, the left figure
shows the whole 3D trajectory. The right graph shows points
that the trajectory was passed the x−z plane. From the graph,
this trajectory has three periods because it shows three points
about r = 3000，r = 6500，r = 1000 by rotation.

4) In case of q1 = 0.4898: About Fig.18, the left figure
shows the whole 3D trajectory. The right graph shows points
that the trajectory was passed half plane. From the graph, this
trajectory is three periods because it shows about r = 4000，
r = 1000，r = 2500 by rotation. This window like section
has been called as window of chaos.

X. CONCLUSION

This paper proposed chaos generating system composed
of Neural Network and GA’s evolving ability to change the
Neural-Network-Differential-Equation to be able to generate
chaos. This chaos generating system has exploited the neural
network’s nature of approximation of any nonlinear function
with any desired accuracy.

Furthermore periodic trajectories and trajectory that has
huge variation of periods are confirmed by changing q1,
leaving a typical characters of chaos such as bifurcation
diagram against changing a sole coefficient of one neuron.
By this diagram, transition between chaos and not chaos has
been examined intensively. That is, we thought the proposed
NNDE is a system that generates chaos. A chaos motion
can make fishes confuse, so we think it will be effective
for fish catching. We will utilize these chaos motion for
overcoming fish’s escaping ability from chasing net from
now, and confirm the effectiveness.
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