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Abstract: In our laboratory, to make the intelligent robot, we executed fish’s catch experiment by a robot, and compared
the intelligence of both : robot’s catching ability and fish’s escaping ability. When experimenting repeatedly on catching
and releasing, the fish began to generate evasive actions, for example staying at corners of the pool in which the fish swims.
We tried to catch the fish using some strategies such as prediction servoing, chaos orbits and random motions to overcome
the fish’s escaping strategies. In this paper, we used visual servoing and prediction servoing in combinations with chaos
orbits and random motions of the net. We have compared the number of captured fish—the relative intelligence quotient
of the fish by comparing with robot and evasive action. Then we have confirmed the effective strategies, and evaluated
the results we have experimented this time.
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1. INTRODUCTION

In recent years, visual tracking and servoing in which
visual information is used to direct the end-effector of a
manipulator toward a target object has been studied in
some researches [1], [2]. A new trend of machine in-
telligence [3] that differs from the classical AI has been
applied intensively to the field of robotics and other re-
search areas like intelligent control system. Typically,
the animal world has been used conceptually by robotics
researcher as a source of inspiration for machine intel-
ligence. For the purpose of studying animal behavior
and intelligence, the model of interaction between ani-
mals and machines is proposed in researches like [4]. A
crucial characteristic of machine intelligence is that the
robot should be able to use input information from sensor
to know how to behave in a changing environment and
furthermore can learn from the environment like avoid-
ing obstacle.
　 In our system, we will evaluate the intelligence degree
between fish and the robot by Fish-Catching operation.
We can declare that the fish-catching system combined
with chaotic net motion be smarter than the fish when the
robot can beat the fish’s intelligence by catching it contin-
uously and successfully even after the fish finds out some
escaping strategy. As we did not find the research about
the intelligence comparison between animal and robot,
we mainly dedicate ourselves to constructing a smart sys-
tem that is more intelligent than the fish. We consider that
the competitive relation can be very meaningful as one
way to discuss robotic intelligence. So we not only em-
ploy the inspiration of animal behavior for robot intellec-
tualization, we can also conceive a robot that can exceed
the animal’s intelligence. By evolutionary algorithms, Vi-
sual Servoing and Object Recognizing based on the input
image from a CCD camera mounted on the manipulator
has been studied in our laboratory(Fig.1), and we suc-
ceeded in catching a fish by a net attached at the hand of
the manipulator based on the real-time visual recognition
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Fig. 1 Experimental system

under the method of Gazing GA to enhance the real-time
searching ability.

By evolutionary algorithms [5], Visual Servoing and
Object Recognizing based on the input image from a
CCD camera mounted on the manipulator has been stud-
ied in our laboratory(Fig.1) [6], and we succeeded in
catching a fish by a net attached at the hand of the ma-
nipulator based on the real-time visual tracking under the
method of Gazing GA [7], [8] to enhance the real-time
searching ability.

We have learned that it is not effective for fish catching
to simply pursue the escaping fish by visual servoing with
velocity feedback control. Actually, the effective tracking
can be impossible because the fish can sometimes alter
motion pattern suddenly under some emotional reasons
of fear or the fish can take some strategy to try to get rid of
the bothering net that keeps chasing it. Those behaviors
are thought to be caused by emotional factors and they
can also be treated as a kind of innate fish intelligence,
even though not in a high level. Based on the fish behav-
ior observation in the real Fish-Catching experiment, the
fish mostly swims stick to the pool edge for avoiding the
net after being caught several times. That fish’s behavior



is a serious problem for the Fish-Catching task because
when the fish only stay at the corner where the robot’s net
attached at hand is prohibited to enter the corner in Fish-
Catching operation for avoiding the net crashing against
pool walls. That shows the robot system is not intelligent
enough, so effective method is expected to be conceived
in order to cope with the fish’s escaping strategy. While
observing the fish’s adapting behavior to escape in the
competitive relations with the robot, we found that we
can define a“ Fish’s Intelligent Quotient”(FIQ) [9] rep-
resenting decreasing velocity of fish number caught by
the net through continuous catching/releasing operation,
which stand for the fish’s learning velocity. Through this
measure we will compare the innate intelligence of the
fish and the artificial intelligence of the robot.

In this paper we explain about the fish catching method
and evaluation index in section 2, how to make chaos and
how is the chaos implemented into net motions in sec-
tion 3, fish catching experiments in section 4, followed
by conclusion in section 5.

2. FISH CATCHING SYSTEM
2.1 On-line Tracking

Consider the 2-D raw-image of a target fish shown in
Fig.2(a), its corresponding 3-D plot is shown in Fig.2(b).
In this figure(b), the vertical axis represents the image
brightness values, and the horizontal axis, the image
plane. To search for such a target fish in the raw-image, a
geometrical triangular shape of the surface-strips model
as shown in Fig.3(a) is used. Let us denote the inside
surface of the model as Sss1 and the contour-strips as
Sss2. Also, the combination is designated as Sss. When
the position and orientation of surface-strips model Sss

is defined as φ(t) = [x(t), y(t), θ(t) ]T , which desig-
nates the position and orientation of the origin of the
model, then Sss moves in the camera frame and a set
of x-y coordinates of the moving model is expressed as
Sss(φ). Then the brightness distribution of raw-image
corresponding to the area of the moving model is ex-
pressed as p(r̃i,j), r̃i,j ∈ Sss(φ), then the evaluation
function Fss(φ) of the moving surface-strips model is
given by Eq.(1).

Fss(φ(t)) =
∑

r̃i,j∈Sss1(φ(t))

p(r̃i,j) −
∑

r̃i,j∈Sss2(φ(t))

p(r̃i,j) (1)

This expression means the integrated brightness differ-
ence between the one of the internal surface and the one
of the contour-strips of the surface-strips model. The fil-
tering result of the surface-strips model-based function
of Eq.(1) with respect to Fig.2(a) is shown in Fig.3(b).
We can see the filtering result has a peak correspond-
ing to the position of the target fish in the raw-image.
An evaluation using the surface-strips model means that
Fss(φ(t)) takes into account the integration and differ-
entiation of the object signal and the background noise
simultaneously, and we can see this character is effective
for such noisy image as shown in Fig.2(a). Actually we
cannot get always the highest peek in the filtered image

0000

50505050

100100100100

150150150150

200200200200

250250250250

0000128128128128

128128128128

FishFishFishFish NoiseNoiseNoiseNoise

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

0000

FishFishFishFish

NoisesNoisesNoisesNoises
（（（（Stone, Water grass)Stone, Water grass)Stone, Water grass)Stone, Water grass)

Noises (Bubbles)Noises (Bubbles)Noises (Bubbles)Noises (Bubbles)

X

Y

X

Y

0000

50505050

100100100100

150150150150

200200200200

250250250250

0000128128128128

128128128128

FishFishFishFish NoiseNoiseNoiseNoise

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

B
ri

g
h

tn
es

s 
v
a

lu
e

0000

FishFishFishFish

NoisesNoisesNoisesNoises
（（（（Stone, Water grass)Stone, Water grass)Stone, Water grass)Stone, Water grass)

Noises (Bubbles)Noises (Bubbles)Noises (Bubbles)Noises (Bubbles)

X

Y

X

Y

(a)2-D raw-image (b)3-D raw-image
Fig. 2 Raw-image of swimming fish
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(a)Surface-strips model (b)Fss(φ)
Fig. 3 Surface-strips Model to search a fish

at the position of the target object, but we can set such
an environment that the highest value of Fss(φ(t)) is ob-
tained only if Sss1 fits to the target object being imaged.

As the result of above discussion the problem of recog-
nition of a fish and detection of its position/orientation is
converted to a searching problem of φ(t) such that max-
imizes Fss(φ(t)). Fss(φ(t)) is used as a fitness func-
tion of Genetic Algorithm (GA) to recognize a target in
a dynamic image input by video rate, 33 [fps]. The on-
line tracking system must have real-time nature, that is,
the searching model must converge to the fish in the suc-
cessively input dynamic images. An evolutionary recog-
nition process for dynamic images is realized by such
method whose model-based matching by evolving pro-
cess in GA be applied at least only one time to one raw
image input successively by video rate. We named it
as “1-step GA,”[6]. When the converging speed of the
model to the target in the dynamic images should be faster
than the swimming speed of the fish, then the position
indicated by the highest gene represents the fish’s posi-
tion in real-time. We have confirmed that the above time-
variant optimization problem to solve φ(t) maximizing
Fss(φ(t)) could be solved by “1-step GA.”

We named it as “1-Step GA ” [6]. When the converg-
ing speed of the model to the target in the dynamic images
should be faster than the swimming speed of the fish in
the dynamic images, then the position indicated by the
highest genes represents the fish’s position in the succes-
sively input images in real-time.

2.2 Chaos

r(t) = [x(t), y(t)]T represents the fish’s position in
Camera Frame whose center is set at to be the center of
catching net, then r(t) means position deviation from net
to Fish, means r(t) = ∆r(t).

The desired hand velocity at the i-th control period ṙi
d
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Fig. 4 Result of catching number

is calculated as

ṙi
d = KP ∆ri + KV (∆ri − ∆ri−1) (2)

where ∆ri denotes the servoing position error detected
by 1-Step GA [6]. KP and KV given are positive def-
inite matrix to determine PD gain. Now we add chaos
items to (2) above, and we also need to redefine the mean-
ing of ṙi

d. The simple PD servo control method given by
(2) is modulated to combine a visual servoing and chaos
net motion by redefinding ∆ri as,

∆ri = k1 · ∆ri
fish + k2 · ∆ri

chaos (3)

Here ∆ri
fish =

[
∆xi

fish, ∆yi
fish

]
is the track-

ing error of fish from the center of camera frame, and
∆ri

chaos =
[

∆xi
chaos, ∆yi

chaos

]
denotes a chaotic

oscillation in x − y plane around the center of camera
frame. Therefore the hand motion pattern can be de-
termined by the switch value k1 and k2. k1 = 1 and
k2 = 0 indicate pure visual servoing, and k1 = 0 and
k2 = 1 indicate the net will track chaotic trajectory made
by Neural-Network-Differential-Equation(NNDE) being
explained later in this paper. The desired joint variable
q̇d is determined by inverse kinematics based on ṙd by
using the Jacobian matrix J(q), and is expressed by

q̇d = J+(q)ṙd (4)

where J+(q) is the pseudoinverse matrix of J(q). The
robot used in this experimental system is a 7-Link manip-
ulator, Mitsubishi Heavy Industries PA-10 robot.

2.3 Random motions
The deformed random trajectories x(t), y(t) are used

to define ∆ri
random as ∆ri

random =
[

x(t), y(t)
]

and
by replacing a eq.(3) as follows, random is used on the
same conditions as the time of chaos [9].

∆ri = k1 · ∆ri
fish + k2 · ∆ri

random (5)

2.4 Prediction servoing
This way act predicting T[s] after, and tracking future

position of fish. We replaced ∆ri as

∆ri = r̂(t + ∆T ). (6)

In this experiment, the time is to predict the future posi-
tion in 0.48[s] [10].

2.5 Fish Intelligence Quotient
To evaluate numerically how fast the fish can learn

to escape the net, we adapted Linear Least-Square ap-
proximation to the fish-catching decreasing tendency, re-
sulting in y = −0.486t + 20.7 as shown in ??, which
exhibit the number of fish caught by the robot in five
minutes, on condition of the caught fish released into
the same pool immediately. The decreasing coefficient
−0.486 represents adapting or learning velocity of the
fishes as a group when the fish’s intelligence is com-
pared with robot’s catching ability. We named the co-
efficient as “Fish’s Intelligence Quotient”(FIQ), since the
decreasing tendency that is the value of coefficient can
represent the fish’s learning velocity to conceive a new
escaping strategies—stay at the corner or swim with con-
stant speed on a circle trajectory. The larger minus value
of FIQ means high intelligence quotient of the fish, zero
does equal, and plus does less intelligent than robot’s. To
overcome the fishes’ intelligence, more intelligent robotic
system needs to track and catch the fish effectively, in
other words it comes to the problem on how to use the
item ∆ri

chaos in (3) effectively to exceed the fish intelli-
gence.

3. ORIGINAL CHAOS
3.1 Validity of chaos

In the late 1980s, the relationship between chaos and
function of the nervous system have been discussed. Mpi-
tosos and colleagues examined the pattern of rhythmic
firing of motor neurons of sea cucumber and showed
that frequency variation of continuous discharge relates
to the rhythm of the movement with chaotic behavior.
Thus, chaos exists in biological behavior. Whether the
nerve cell of the organism excited by a stimulation signal
seems to depend on nonlinearity of neurons’ connection.
Therefore, animal behavior and strategies can be evalu-
ated from view point of chaos, and it may be applicable
to fish catching.

3.2 The chaos model used in the experiment
Figure 6 shows the chaos model used in the exper-

iment. The chaos model was generated by the sys-
tem given by Fig.6 using Neural-Network-Differential-
Equation[11] in our laboratory. We define next nonlinear
differential equation including N.N. function f(p(t)) as

ṗ(t) = f(p(t)). (7)

p(t) = [p1(t), p2(t), p3(t)]T is state variable. The non-
linear function of f(p(t)) in (7) is constituted by N.N.’s
connections, which is exhibited in left part of Fig.6 where
the N.N. and integral function of outputs of N.N. and the
feedback of the integrated value to the inputs of N.N. con-
stitute nonlinear dynamical equation, (7).

4. FISH CATCHING EXPERIMENT
4.1 Problem of fish-catching

To compare fish’s escaping intelligence and robot’s
catching one, we kept a procedure that is catching a fish



Fig. 5 Chaos model
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and releasing it immediately continuously for 30 minutes.
5 fishes (size is about 40[mm]) are released in the pool in
advance, and once the fish was gotten, it would be re-
leased to the same pool at once. The result of this ex-
periment is shown in Fig.5, in which vertical axis repre-
sents the number of fish caught in successive 5 minutes
and horizontal axis represents the catching time. We had
expected that the capturing operation would become eas-
ier as time passing on consideration that the fish may get
tired. But to our astonishment, the number of fish caught
decreased gradually. The reason of decreased catching
number may lie in the fish’s learning ability. For ex-
ample, the fish can learn how to run away around the
net as shown in Fig.7 by circular swimming motion with
about constant velocity, having made a steady state po-
sition error that the net cannot reach to the chasing fish
with even constant speed. This steady state error between
the net and the fish inevitably appears by fish’s swim-
ming with constant speed, since the robot’s net is driver
by PD controller given by (2)—control theory suggests
that PD controller and ramp position input (equal to con-
stant velocity) made steady state error. Or the fish can
keep staying within the clearance between the edge of the
pool and the net shown in Fig.8 where the net is inhibited
to enter. To overcome these fish’s escaping intelligence,
and to achieve more intelligent fish catching systems, we
thought chaotic motion of the net with many varieties
can be a possible method to overcome those fish’s escap-
ing intelligence, since huge variety of chaos trajectories
seems to be unpredictable for the fish to adapt them.

4.2 Fish catching experiment
We did four fish catching experiments 1∼4 listed as

below. According to the experiments, prediction servoing
can be used to shorten the distance between the net and
fish, and chaos can be used to lure fish out from corner.

1. Visual servoing
2. Prediction servoing
3. Chaos
4. Random motions

　 The validity of the prediction servoing is tested by
comparing the experiment 1 with the experiment 2. In
the same way, the validity of the chaos is tested by com-
paring the experiment 1 with the experiment 3. The ex-
periment 3 was done in two ways by experienced fish and
inexperienced fish.

4.3 Catching action and fish’s escaping strategy
Catching actions were classified into pattern (A) and

(B). And fish’s escaping strategies were classified into
pattern (C) and (D). The patterns from (A) to (D) were
shown as below.

(A) Catching fish which swim at center
(B) Catching fish which was in corner
(C) Circular swimming motion(Fig.7)
(D) Keep staying at corner(Fig.8)

Fig. 7 Circular swimming / escaping motion

Fig. 8 Keeping stationary at corner

4.4 Environment of experiments
1. Experiment environment is shown below.
2. The kind of fish : Black Molly
3. The pool size : 330× 420mm
4. Height from a bottom to the water surface : 60mm
5. Water temperature was set as 30℃. If water tem-

perature is low, fish will weaken.
6. Experiment time is set as 30 minutes.
7. Five fish are used in one experiment.
8. If several fish are captured at one time, it counts as

one.

4.5 Results of experiment
4.5.1 Fish catching with visual servoing

Visual servoing is only used in this experiment. The
result is shown as Fig.9 and Fig.10.



As shown in Fig.9, the number of caught fish is de-
creasing with time because fish learned how to escape.
The ratio of the pattern (C) is decreasing gradually and
pattern (D) is increasing as shown in Fig.10. Fish learned
that the escaping action pattern (D) is safer than (C).
Fish judged safety position, because the motion of the
robot stops at the corners. FIQ shows the negative value,
namely the intelligence of the fish exceeded that of robot.

4.5.2 Fish catching with prediction servoing
It is the experiment of prediction servoing. The result

is shown as Fig.11 and Fig.12.
Fish can be caught more by prediction servoing than

by visual servoing, as shown in Fig.11. Prediction servo-
ing contacts the distance of the net and fish. It is effective
to the fish’s escaping action pattern (C). The ratio of the
pattern (C) changes to (D) as shown in Fig.12. Prediction
servoing became invalid with the end of the experiment.

4.5.3 Fish catching with chaos
It is the experiment of visual servoing added chaos

model. First, experiment was did with fish, which experi-
enced visual servoing. The result is shown as Fig.13 and
Fig.14. The fish learned keep staying in the corners in the
last experiment only visual servoing. The robot could not
catch the fish with the end of the last experiment. But the
robot added chaos could catch the fish from the beginning
of the experiment to the final stage. All the catching ac-
tion were pattern (B). The effect was checked that chaos
can lure fish from the corners. FIQ shows the positive
value, namely the intelligence of the robot exceeded that
of fish.

Second, we experimented on the fish which inexpe-
rienced visual servoing. The result is shown as Fig.15
and Fig.16. The fish mainly acted of the escaping ac-
tion pattern (D). Catching by chaos pattern (B), which is
effective in pattern (D) was few, and pattern (A) was in-
creasing. The reason considered, there was a possibility
that fatigue of the fish were related. FIQ shows the posi-
tive value, namely the intelligence of the robot exceeded
that of fish.

4.5.4 Fish catching with random motions
It is the experiment of visual servoing added random

motions. The result is shown as Fig.17 and Fig.18. The
escaping action (D) increased gradually. It has checked
the random motions cannot excite and lure the fish. FIQ
shows the negative value, namely the intelligence of the
fish exceeded the robot’s. A conclusion was that chaos
was more effective than the random motions against es-
caping action (D).

5. CONCLUSION
By this research, we experimented using visual servo-

ing, prediction servoing, chaos and random motions, and
compared them. Prediction servoing and chaos model
ware effective against fish’s escaping actions. In our lab-
oratory, we succeeded in generation of the plural chaos

orbits. It is desirable to conduct the experiment using
several chaos models in the future.
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