
Experimental Evaluations of Prediction Servoing to Moving Object by

Hand-eye Robotic System

Yusuke Sunami1, Mamoru Minami1, Akira Yanou1

1Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
(Tel: +81-86-251-8924; E-mail: (y-sunami,minami,yanou)@suri.sys.okayama-u.ac.jp)

Abstract: In the field of robot vision, a control method called visual servoing attracts attention. The visual servoing is a
method to control robots by visual information in a feedback loop, which is obtained by video cameras. So, this method is
expected to be able to make robots adapt to tasks in changing or unknown environment. However, when the target object
moves quickly, it happens to be unable for the robots to track it due to dynamical effect, i.e., motion delay. To decrease
the delay, we have proposed prediction servoing control method, which utilizes prediction of the target position based on
the past observed position data of the object and learning by neural networks, and utilize predicted position as a desired
position for the visual servoing. In this research, we have confirmed how the learnig function in neural networks work for
precise prediction of target’s future position through visual servoing experiments.

Keywords: Visual Feedback Control, GA, Prediction Servoing.

1. INTRODUCTION

Nowadays, the robot has been used in various fields.
In recent years, robots’ behavior is required some ability
under the unknown environment and autonomous opera-
tion. However, robots’ behaviors are generally required
to repeat a sequence of motions and need the sequence of
motion to be taught by operators through commands writ-
ten by robotic language. However, robots, working in a
disaster area, space, hospital, and home, are required to
automatically work in unknown environment. Therefore,
we need a visual servoing system to recognize surround-
ing unknown environment. Visual servoing is thought to
be useful for making the robot active in unknown en-
vironment and in constantly changing environment, be-
cause it can control the robot using feedback loop built
visual information obtained from visual sensors.

However, when the target object moves quickly, it hap-
pens to be unable for the robot to track it, because of its
motion delay derived from dynamics of robots. To de-
crease the delay time, we have proposed a prediction ser-
voing control method, which is the method of predicting
by neural networks(N.N.) the position of the target object
based on the past position data of the object and learning
ability of the N.N. to decrease predicted errors, and uti-
lize it as a desired position for the visual servoing[1]-[5].

The method that predict future target position uses
circular approximation—calculate a future position on
a presumption of circular orbit based on the past target
position information. However, the target object does
not necessarily move along circular orbit. Error some-
time unavoidably increase when the circular approxima-
tion method is only used. So that, we use neural net-
works(N.N.) to reduce the prediction error to be zero.

In this research, the experiments were done to contrast
visual servoing with prediction servoing. The superiority
of prediction servoing was analyzed, and the effective-
ness of it was confirmed.
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(a)2-D raw-image (b)3-D raw-image
Fig. 1 Raw-image of swimming fish
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(a)Surface-strips model (b)F (φ)
Fig. 2 Surface-strips Model to search a fish

2. TRACKING METHOD
The tracking method of a target object uses Model-

based Matching method, 1-step GA and Gazing GA.
The model-based Matching method is a evaluation

method by fitness function valueF (φ). F (φ) is deter-
mined by the degree of overlapping of the model and the
target object —the model has information of shape and
brightness value of the target object. And to search for
such a target fish in the raw-image, a geometrical triangu-
lar shape of the surface-strips model as shown in Fig.2(a)
is used. Let us denote a set of the coordinates inside the
surface of the model asSss1 and the contour-stripsSss2,
and the combination asS. Here, the correlation function
F (φ) used as fitness function of the surface-strips model
with the image is given as Eq.(1).

F (φ(t))=
∑

r(t)∈Sss1(φ(t))

p(r(t))−
∑

r(t)∈Sss2(φ(t))

p(r(t)) (1)



It gives low fitness function value when the target object’s
shape is different from the model, giving high function
value only when shape and brightness value of the target
object and the model match. We get the correct informa-
tion of the target object’s pose.

1-step GA scatters the individual data with the pose of
the target object in the image, and finds target object’s
pose using selection, crossover and mutation. And evo-
lutionary process for the GA processing in real time is
repeated within a time interval of video rate(33fps) in the
Fig. 3.

Gazing GA adjusts the range of mutation by the level
of the fitness function value. Gazing GA searches glob-
ally when fitness function is low value and do locally
when fitness function is high value in the Fig. 4,5.

Detail of these method is written in references[5]-[9].

Table 1 Parameter of GA

Populationsize 40individuals
Selectionrate 0.4
Mutationrate 0.1

Lengthperindividual 12bits
Elitistmodel yes

Output

Output
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Calculate fitness value of each individual
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Sort individual based on 

their fitness value

Position and orientation of the best 
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Input Raw Image

YES

NO
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Fig. 3 1-step GA
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3. CIRCULAR APPROXIMATION
As first step for deriving a predicted future position of

the target object, the target object’s movement is assumed
to be circular motion, calculating the center point, radius,
and angular velocity of the circle from the position data
of the past successive three points.

Figure6 shows the method to calculate the center point
of the circle from the position data of the three points.
Here,rn−2 = (xn−2, yn−2) andrn−1 = (xn−1, yn−1)
denote past target objects’ position coordinates, andrn =
(xn, yn) does a current target object’s position coordi-
nate, and̂rn+k = (x̂n+k, ŷn+k) does a future target ob-
ject’s position coordinate at future time of∆t ·(n+k)[s].
The center point of the circle denoted bypn = (pn, qn) at
time t, wheren denotes current serial number and∆t · n
means current timet. Therefore, radiusln can be calcu-
lated by

ln = |rn − pn|. (2)

Assuming that the fish moves on a circle in successive
three calculation time, we have

|rn − pn| = |rn−1 − pn| = |rn−2 − pn|. (3)

The center position coordinatespn = (pn, qn) is cal-
culated by the Eq.(3), and the solutions are below,

pn =
Y10

2(X10)(Y21)− 2(X21)(Y10)

{(
Y21

Y10

)

(x2
n−1 − x2

n + y2
n−1 − y2

n)

−(x2
n−2 − x2

n−1 + y2
n−2 − y2

n−1)

}
(4)

qn =
1

2(Y21)
(x2

n−2 − x2
n−1

+y2
n−2 − y2

n−1 − 2X21pn). (5)

Where，

X21 = xn−2 − xn−1, X10 = xn−1 − xn

Y21 = yn−2 − yn−1, Y10 = yn−1 − yn.

Also radiusln can be calculated from the Eq.(2). Here,
we denoteρn = rn − pn and∆ρn = ρn − ρn−1, and
consider the equation shown below,

t = ρn ×∆ρn. (6)

Using z-component of the vectort = [tx, ty, tz]T , the
value of angular velocity can be approximated by the cov-
ering distance by adopting radius and pointn−1 to point
n as

ωn ≈ sign(tz)
|ρn − ρn−1|

∆t · ln . (7)

In order to calculate a future position of the target ob-
ject from the angular velocity and radius, target objects’
position coordinates must be represented by a trigono-
metric. A target object’s positionrn = (xn, yn) at cur-
rent timen is represented by Eq.(9), (10),pn = (pn, qn)
is calculated by target position coordinates of three points



andα expresses the angle of the current object’s position
based on the horizontal line shown in the Fig.6,7.

α = atan2(yn − qn, xn − pn) (8)

xn = pn + ln cosα (9)

yn = qn + ln sin α (10)

Then a predicted future position̂rC
j+k = (x̂C

j+k, ŷC
j+k)

through circular approximation after∆t · k[s] from cur-
rent timet is calculated by

x̂C
n+k = pn + ln cos(α + kωn∆t) (11)

ŷC
n+k = qn + ln sin(α + kωn∆t). (12)

pn=(pn;qn)

ln

!n rn = (xn; yn)

rnÄ1 =(xnÄ1; ynÄ1)rnÄ2=(xnÄ2;ynÄ2)

ã
r̂n+k = (̂xCn+k;ŷ

C
n+k)

!n x

y

Fig. 6 Circular Approximation by using vector
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4. PREDICTION LEARNING
In this research, the neural network learning is given

by the error Back Propagation(B.P.) [1][2]. The error
Back Propagation is one of the neural network learn-
ing method—it has been highly regarded as it has a
non-linear function approximation ability through adjust-
ing connection weights minutely. The neural network

changes the input-output relation by adjusting the values
of connection weightswij and thresholdsθi of the neu-
rons that make up the network.

4.1 Neural network to correct the Circular Approxi-
mation Error

When a predicted future target object positionr̂C
n+k

—based on circular approximation— and an actual target
positionrM

n+k at the time∆t · (n + k) are exactly the
same, the circular approximation error is0. And it means
that the prediction is correctly working. However, in fact,
it may happen predicted error∆r̂C

n+k at the time∆t ·
(n + k) because the target object behavior is non-linear
and emotional. The error is,

∆r̂C
n+k = rM

n+k − r̂C
n+k. (13)

Here, the predicted error after the time∆t · k has
passed from current time∆t · n is defined asEn+k.

En+k = ‖∆r̂C
n+k‖ (14)

The block diagram of the future target object’s position
prediction using in N.N. being learned by Back Propaga-
tion(B.P.) is shown in Fig.8. First,̂rC

n+k is calculated by
circular approximation by using Eq.(11),(12). The input
of the N.N. at the time∆t ·n is the predicted error vector
∆r̂C

n at the time∆t · (n− k), that is

∆r̂C
n = rM

n − r̂C
n . (15)

As shown in the Fig.8, the output of N.N. isδ̂
N

n+k. And
a prediction position with correction by N.N.̂rC,N

n+k =
(x̂C,N

n+k, ŷC,N
n+k) is denoted by Eq.(16).

r̂C,N
n+k = r̂C

n+k + δ̂
N

n+k (16)

The block diagram in Fig.8 expresses that we can cal-
culate prediction position of the target objectr̂C,N

n+k by

using circular approximation̂rC
n+k and correction with

N.N. by δ̂
N

n+k. The teaching signal of N.N.δrN
n+k is de-

fined as

δr̂N
n+k = ∆r̂C

n+k − δ̂
N

n+k. (17)

N.N. learns to diminishδrN
n+k to 0 by Error Back

Propagation method. Then given the situation that we can
assumeδr̂N

n+k → 0 when N.N. learning has been com-

pleted successfully. Then,∆r̂C
n+k = δ̂

N

n+k is derived
from Eq.(17). Then Eq.(13) is rewritten as

δ̂
N

n+k = rM
n+k − r̂C

n+k. (18)

By substituting Eq.(18) to Eq.(16), we get

r̂C,N
n+k = rM

n+k. (19)

This means that predicted position using circular ap-
proximation with correction by N.N. converges to the po-
sition of the object at the time∆t · (n+k) if N.N. should
decreaseδr̂N

n+k to zero by Back Propagation Learning.
∆r̂C

n is difference between position of the target ob-
ject rM

n and predicted future position by the circular ap-
proximationr̂C

n in the previous-time at∆t · (n − k)[s] .



And δ̂
N

n+k is an estimated error that is difference between
future position of the target objectrM

n+k andr̂C
n+k—is a

prediction future position by the circular approximation
in the future time∆t · (n + k)[s]. This means that this
method shows that we get correct position of the target
object when using both circular approximation and neu-
ral networks.

This method means if|δr̂N
n+k| < ε then guarantees

that |r̂C,N
n+k − rM

n+k| < ∆(ε). That means if the input for

N.N. δr̂N
n+k be kept to be less thanε by N.N.’s learning

ability, then the prediction error|r̂C,N
n+k − r̂M

n+k| will be
kept within∆(ε) that dependently be determined byε .

5. EXPERIMENTS
5.1 Experiment environment

Summary of the experimental machine is shown in
Fig.9. Arm robot PA-10’s hand—made by Mitsubishi
Heavy Industries— attaches video camera —video rate
33[fps].

And we use DELL Optiplex(CPU:Pentium42GHz) to
control the robot arm and predict behavioral and image
recognition, image input boards are used the cybertech
CT3001Rev2. It search in the GA for input image data
from the video camera. Then, obtained the recognition
position is saved and do as trajectory data. The target ob-
ject moves at an average of 10 seconds of 920mm length
course that can be linear motion and circular motion, it
shows in the Fig.10. And shape of the object is a black
triangle object height 35mm, length 20mm.

Camera

Target 

Object

PC

Fig. 9 Photograph of experiment system

75mm
185mm

20mm

35mm

Target Object 

Fig. 10 Target object and its moving course

5.2 Visual Servoing
The first, visual servo tracking control with queuing is

explained as follows. The relationship between the robot
and camera coordinates in the visual servo system incor-
porating a video recognition Gazing GA method shows
in Fig.11. The range area of the camera view is 150 and
120[mm] in x andy directions. The video recognition
Gazing GA system consists of 1-step GA[10]. The best
recognition results at each timeφ

n
= [xGA

n , yGA
n ] repre-

sents the model’s position—based on camera coordinate

ΣC— at the time∆t ·n in pixels. For this reason, the real
target object’s positionrM

n expressesCrM
n . Then posi-

tion error between the target object and the center posi-
tion of camera image can be described as follow,

∆Crn =C rM
n −C rH

n (20)

CrM
n =

[
kx 0
0 ky

]
φ

n
=

[
kxxGA

n

kyyGA
n

]
. (21)

The origin of the camera and recognition position are
to match so that it isCrH

n = 0. kx, ky are coefficients
to convert to unit[mm] to unit[pixel] in the image.kx, ky

value are determined by the zoom factor of the input im-
age and the mounting position of the camera of the ex-
perimental system. To move the manipulator in the direc-
tion of a object, position error∆Crn = [∆Cxn,∆Cxn]
that represented camera coordinate in unit[pixel] need to
change to work coordinate∆W rn in unit[mm] in coordi-
nateΣW . Here, its conversion equation denotes Eq.(22).

∆W rn =W RC∆Crn (22)

Here, W RC is the pose transformation matrix with
ΣW andΣC . Robot hands’ speed reading is described
as follow,

ṙd
n = KP ∆W rn + KV (∆W rn −∆W rn−1). (23)

The desired joint variablėqd
n is determined by inverse

kinematics fromṙd
n by using the Jacobian matrixJ(q),

and it is expressed by

q̇d
n = J+(q)ṙd

n , (24)

whereJ+(q) is the pseudo-inverse matrix ofJ(q). The
robot used in this experimental system is a 7-Link ma-
nipulator, Mitsubishi Heavy Industries PA-10 robot. The
control system, based on a PI control of PA-10 is ex-
pressed as

τ = KSP (q̇d
n − q̇n) + KSI(qd

n − qn). (25)

Here,qd
n is expressed as follow,

qd
n = f−1(rd

n). (26)

f−1() means the equation of motion of the inverse kine-
matics.

Here, KSP and KSI are positive definite diagonal
matrix. If target angular velocitiesqd

n converge to a con-
stant value by GA search, this mean, when target object
stop and GA converge to the pose of the target object,
goal positionrd

n correspond to target objects position,
and the robot hand is controlled directly above the object.
Servoing system that incorporate the controller of Eq.(25)
shows in Fig.12. Here, gainKP ,KV ,KSP ,KSI of
Eq.(23),(25) denote Table 2.

5.3 Prediction Servoing
We explain prediction servoing that predict the future

position of the target object and control the minions of
the robot hand to the predicted position. In visual servo-
ing, servoing of the target object was done using∆W rn



Table 2 Gain parameters

KP [ 0.75 0.75]
KV [ 0.35 0.35]

Link Number [ L1 L2 L3 L4 L5 L6 L7 ]
KSP [ 3200 3200 1400 1400 1000 1000 1000 ]
KSI [ 1362 1362 596 596 596 426 426 ]
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Fig. 12 Block diagram of the controller

—position error between the object and the hand. How-
ever, when the target object moves quickly, it happens to
be unable for the robot hand to track it due to robot’s mo-
tion delay.

Here, we considered control that can track an object
can be performed while anticipating when we can build
a system to track the prediction position using predicted
future positionr̂C,N

n+k of the target object in circular ap-
proximation and neural networks∆W rn is position er-
ror of the target object in Eq.(22). Therefore, Eq.(22)
will be speed reading about predicted position when pre-
dicted position of the target object. And it can change
goal velocityṙd

n in visual servoing to prediction servo-
ing. It will be noticed that∆W rn is used in Eq.(27) for
velocity feedback. Therefore, Eq.(23) denotes Eq.(27)
in prediction servoing change∆W rn to predicted error
∆W r̂C,N

n+k.

ṙd
n =KP ∆W r̂C,N

n+k + KV (∆W rn −∆W rn−1) (27)

Here,
∆W r̂C,N

n+k =W RC∆C r̂C,N
n+k (28)

∆C r̂C,N
n+k =C r̂C,N

n+k −C rH
n . (29)

Since this term is aimed to work for stabilizing

the robot hand and reducing the hand oscillation de-
rived term, ∆W rn is used instead of∆W r̂C,N

n+k. 　
KP , KV , KSP , KSI are set at same variables in Table
2.

5.4 Comparison of prediction servoing and visual ser-
voing in experiments

In order to verify whether it is valid prediction ser-
voing, we compared it with the visual servoing. In this
experiment, we use the target object that is moving at
an average of 10 seconds of 920mm length course that
can be linear motion and circular motion, and the shape
is a black triangle object height 35mm, length 20mm, it
shows in the Fig.10. Servoing experiment is carried out
about 160[s] both visual servoing, prediction servoing.

The data that is got at the experiment by each method
denotes Fig.13-16. Figure 13,14 are the image of every
seconds from camera image each method. From this re-
sult, we confirmed that the target object is in the cen-
ter position of the camera by prediction servoing than
visual servoing. Figure 15,16 show the norm the target
object’s position how far from the center position of the
camera image, and this error denotes|∆Crn|. Average
error |∆Crn| in visual servoing is 37.9[mm], and it in
prediction servoing is 19.3[mm]. From this result, we
confirmed that prediction servoing is more sensitive than
visual servoing.

0[s]

5[s]4[s]

2[s]

6[s]

1[s]

9[s]7[s] 8[s]

Fig. 13 Target object and hand motion image in visual
servoing

0[s]

5[s]4[s]

2[s]

6[s]

1[s]

9[s]7[s] 8[s]

Fig. 14 Target object and hand motion image in predic-
tion servoing
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Fig. 15 Target object and hand error in visual servoing
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Fig. 16 Target object and hand error in prediction servo-
ing

5.5 Change of the prediction error caused by changes
in the neural network

We looked in any changes in the neural network what
is happening with the prediction servoing. We confirmed
the total sum of the coefficients in the neural network has
decreased from Fig.17. The vertical axis in the Fig.17

denotes input-output ratio|δ̂N

n |/|∆r̂C
n | in the neural net-

work. |∆r̂C
n | is a norm of the error the input of in the neu-

ral network—refer Eq.(15), and|δ̂N

n | is a norm of correc-
tion value by the neural network. We confirmed the error
|∆C r̂C,N

n |—predicted future position̂rC,N
n using neural

networks and circular approximation and real recognize
positionCrM

n — decreases every time elapsed, as shown
in Fig.18. Table.3 shows average error of the first half and
the second half, it explain that we got better servoing re-
sult at second half than first. In this result, we confirmed
the neural network learning is that it allows the goal to
reduce the steady state error.

In this experiment, a target object moves a fixed
course. We did other experiment when a target object is a
fish—it moves random. As the result, it is better result by
prediction servoing method than visual servoing method.
Detail is written in references[5][11].

6. CONCLUSION
In this research, we confirmed that we got more sensi-

tive results by prediction servoing using circular approx-
imation and neural network than visual servoing, when
robot hand servo the target object that repeat the mo-
tion of certain. Error Back Propagation that is learning
method of neural network is learning to reduce the sta-
tionary error every time passes, We confirmed the ef-
fectiveness of the neural network. As future issues and
goal, now we used only one camera to recognition, so we
improve the performance of the object recognition using
two cameras. Also we make experiment systems to rec-
ognize three-dimensional control because it is not only
two-dimensional recognition.
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Fig. 18 Error that compared real position with prediction
position in prediction servoing

Table 3 Average error that compared real position with
prediction position in prediction servoing

0-80[s] 80-160[s]
|∆C x̂C,N |[mm] 31.4 24.9
|∆C ŷC,N | [mm] 24.0 19.3
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