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Abstract— This paper proposes a design method of general-
ized minimum variance control (GMVC) using strong stability
rate. Strong stability rate is a novel and simple concept for
plant safety, and it is defined by ratio of the open-loop gain
and the closed-loop gain of controlled system through Youla-
Kucera parametrization. For safety, it is desirable that the
open-loop output is closer to the closed-loop output even if
feedback signal becomes zero by accident. In other words, ratio
of open-loop gain and closed-loop gain plays an important role
for safety. Therefore this paper extends GMVC using coprime
factorization and designs strongly stable GMVC with strong
stability rate. A numerical example is given in order to verify
the validity of the proposed method.

I. INTRODUCTION

Generalized Minimum Variance Control (GMVC) has
been proposed by Clarke and others[1]. GMVC is one of
the control methods for application in industry. For example,
GMVC can be used for a design method of PID controller’s
gains[2], [3]. Moreover the closed-loop stability of self-
tuning GMVC with white noise has been considered and
assured[4]. In order to design GMVC systems, generalized
output is selected for the closed-loop system to be stable.
Then the controller is designed to minimize the variance
of the generalized output, and it cannot be designed inde-
pendently of the closed-loop system. In case of application
for industry, it is desirable that both closed-loop system
and controller are stable for safety. In other words, even
if closed-loop characteristic is designed, it is desirable that
the characteristic of controller can be designed to be stable
independently.

Authors have proposed extended GMVC design
method[5], [6]. The extended method introduces a
new design parameter for conventional GMVC by using
Youla-Kucera parameterization[7]. In the method, the poles
of controller can be designed by the newly introduced
parameter and can be chosen independently of the poles of
closed-loop system. Therefore if controller is designed to
be stable, a strongly stable system can be obtained, which
means that both closed-loop system and controller are stable.
Although the authors have proposed design methods[8], [9],
[10], [11], [12] by using coprime factorization approach
and showed that strongly stable system can be obtained,
the open-loop output was not considered clearly. Under the
assumption that the controlled plant is stable, the stable
open-loop output has a possibility that its value strays out
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of reference signal largely when feedback signal becomes
zero by accident, even if the obtained system is strongly
stable. This situation causes abnormal rise in temperature
for thermal process or overflow for tank system. That is,
safety for strongly stable system has not been considered
adequately.

For this problem, concept of strong stability rate has been
proposed[13], [15], [16] and a design method of generalized
predictive control system using it has also been explored[14].
Strong stability rate is defined by ratio of the open-loop
gain and the closed-loop gain of controlled system through
Youla-Kucera parametrization. And it can assess the safety
of controlled system in the meaning of whether the open-
loop gain is close to the closed-loop gain or not. If best
value of strong stability rate is given, open-loop output of
controlled system does not stray out of reference signal.
In this case, for example, abnormal rise in temperature for
thermal process or overflow for tank system does not occur
because the open-loop output keeps at reference signal even
if feedback signal becomes zero by accident. Therefore this
paper proposes a design method of GMVC system using
strong stability rate through coprime factorization. In this
paper strongly stable system based on strong stability rate
is obtained. A numerical example is given in order to verify
the validity of the proposed method.

This paper is organized as follows. Section 2 describes
problem statement and conventional GMVC. Section 3 shows
concept of strong stability rate using coprime factorization.
In section 4 GMVC system design through strong stability
rate is proposed. In section 5 a numerical example is pre-
sented. Section 6 summarizes the result of this paper.

Notations This paper assumes that the controlled plant
is stable. z−1 means backward shift operator z−1y(t) =
y(t−1). A[z−1] and A(z−1) means polynomial and rational
function with z−1 respectively. Steady state gain A(1) of
transfer function is calculated as z−1 = 1 under the assump-
tion that signals such as input and output for system does
not change with regard to time t.

II. PROBLEM STATEMENT

The following single-input single-output system is consid-
ered.

A[z−1]y(t) = z−kmB[z−1]u(t) + C[z−1]ξ(t) (1)

t = 0, 1, 2 · · ·

Where u(t) and y(t) are input and output respectively. km is
time delay, ξ(t) is a white Gaussian noise with zero mean.
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A[z−1], B[z−1] and C[z−1] are the polynomials with degrees
n, m and l.

A[z−1] = 1 + a1z
−1 + · · · anz−n

B[z−1] = b0 + b1z
−1 + · · · bmz−m (2)

C[z−1] = 1 + c1z
−1 + · · · clz−l

On the system (1) the following assumptions are hold.

[A.1] The degrees n, m and l of A[z−1], B[z−1] and
C[z−1], and the time delay km are known.

[A.2] The coefficients of A[z−1], B[z−1] and C[z−1] are
known.

[A.3] The polynomials A[z−1] and B[z−1], A[z−1] and
C[z−1] are coprime.

[A.4] The polynomial C[z−1] is stable.

The control objective is to make the output y(t) track the
reference signal w(t). To achieve this objective, the following
performance index J averaged over the noise is minimized;

Φ(t+ km) = P [z−1]y(t+ km) +Q[z−1]u(t)

−R[z−1]w(t) (3)

J = Ex[Φ
2(t+ km)] (4)

where Φ(t + km) is called as generalized output. P [z−1],
Q[z−1] and R[z−1] are polynomials with degrees of np, nq

and nr. These polynomials are selected to obtain stable desir-
able closed-loop poles. In conventional GMVC, Diophantine
equation is given for solutions E[z−1] and F [z−1].

P [z−1]C[z−1] = A[z−1]E[z−1] + z−kmF [z−1] (5)

where

E[z−1] = 1 + e1z
−1 + · · ·+ ekm−1z

−(km−1) (6)

F [z−1] = f0 + f1z
−1 + · · ·+ fn1z

−n1 (7)

n1 = max{n− 1, np + l − km} (8)

The solution E[z−1] is used to calculate the following poly-
nomial G[z−1]. T [z−1] gives the closed-loop characteristics.

G[z−1] = E[z−1]B[z−1] + C[z−1]Q[z−1] (9)

T [z−1] = P [z−1]B[z−1] +Q[z−1]A[z−1] (10)

From (5) and (9), the generalized output and its prediction
are given.

Φ(t+ km) = Φ̂(t+ km|t) + E[z−1]ξ(t+ km)(11)

Φ̂(t+ km|t) = (F [z−1]y(t) +G[z−1]u(t)

−C[z−1]R[z−1]w(t))/C[z−1] (12)

Since the prediction Φ̂(t + km|t) and the noise term
E[z−1]ξ(t+ km) have no correlation each other, the control
law u(t) to minimize J can be obtained by the following
equation.

Φ̂(t+ km|t) = 0 (13)

Then the control law is obtained as,

u(t) =
C[z−1]R[z−1]

G[z−1]
w(t)− F [z−1]

G[z−1]
y(t) (14)

The closed-loop system can be given by (14).

y(t) =
z−kmB[z−1]R[z−1]

T [z−1]
w(t) +

G[z−1]

T [z−1]
ξ(t) (15)

Where T [z−1] is defined in (10)

III. STRONG STABILITY RATE

This section shows the concept of strong stability rate and
the preliminary.

A. Coprime Factorization of Controlled Systems

For coprime factorization approach, the family of stable
rational functions RH∞ is considered;

RH∞ = {G(z−1) =
Gn[z

−1]

Gd[z−1]
,

Gd[z
−1]: stable polynomial}

Transfer function Gp(z
−1) is given in the form of a ratio of

rational functions in RH∞,

y(t) = Gp(z
−1)u(t)

= N(z−1)D−1(z−1)u(t) (16)

N(z−1) and D(z−1) are rational functions in RH∞ and
coprime each other. This paper assumes that the controlled
system Gp(z

−1) is stable.
Next, the following Bezout identity is considered.

X(z−1)N(z−1) + Y (z−1)D(z−1) = 1 (17)

Where the solutions X(z−1) and Y (z−1) of Bezout identity
are in RH∞. Then all the stabilizing compensator is given
in Youla-Kucera parameterization[7] from (16) and (17).

u(t) = C1(z
−1)w(t)− C2(z

−1)y(t) (18)

C1(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1) (19)

C2(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

· (X(z−1) + U(z−1)D(z−1)) (20)

U(z−1), K(z−1) ∈ RH∞ are design parameters and w(t) is
reference signal. From (18), (19), (20) and (16), the closed-
loop transfer function is given.

y(t) = N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)−N(z−1)D−1(z−1)

·(Y (z−1)− U(z−1)N(z−1))−1(X(z−1)

+U(z−1)D(z−1))y(t) (21)

Therefore

{D(z−1)(Y (z−1)− U(z−1)N(z−1)) +N(z−1)

·(X(z−1) + U(z−1)D(z−1))}y(t)
= N(z−1)K(z−1)w(t) (22)

Then the closed-loop transfer function is given from (17).

y(t) = N(z−1)K(z−1)w(t) (23)

If the compensator is designed for settling control, the output
y(t) converges to w(t) as time progresses. It means that the
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steady-state gain of closed-loop system (23) is designed to
be N(1)K(1) = 1. Moreover the design parameter U(z−1)
in the stabilizing compensator (18) does not affect (23).
Therefore when closed-loop system (23) is designed to be
stable and stabilizing compensator (18) is also designed to
be stable through U(z−1), Strongly stable system can be
obtained. Here it is noticed that the closed-loop system (23)
is independent of design parameter U(z−1).

B. Concept of Strong Stability Rate

In the previous research[17], although the authors have
proposed a design method of strongly stable system and
given the selection method of design parameter U , which can
equate steady state gains of the closed-loop system and the
open-loop system, the condition of U is rigid for designing
strongly stable system and there was a case that strongly
stable system could not be obtained. Therefore the authors
relaxed the condition of U in place of not equating the
steady state gains of the closed-loop and open-loop systems.
Moreover, for one of the safety indices, strong stability
rate[13], [15] has been defined as nearness of the steady
state gains in the assumption that a strongly stable system
was obtained.

In this subsection the concept is described briefly. When
considering the open-loop system for the closed-loop system
(23) (assuming that the feedback signal C2(z

−1)y(t) in the
stabilizing compensator (18) becomes zero), the compensator
(18) is given as follows.

u(t) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1)w(t) (24)

From (16), the open-loop transfer function from w to y is
given as,

y(t) = N(z−1)D−1(z−1)u(t)

= N(z−1)D−1(z−1)(Y (z−1)− U(z−1)

·N(z−1))−1K(z−1)w(t)

= (Y (z−1)D(z−1)− U(z−1)N(z−1)D(z−1))−1

·N(z−1)K(z−1)w(t) (25)

Because of Y (z−1)D(z−1) = 1−X(z−1)N(z−1), the open-
loop system can be obtained as the following equation.

y(t) = (1−X(z−1)N(z−1)− U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t)

= {1− (X(z−1) + U(z−1)D(z−1))N(z−1)}−1

·N(z−1)K(z−1)w(t) (26)

Therefore the steady state of this system is given.

y(t) = {1− (X(1) + U(1)D(1))N(1)}−1

·N(1)K(1)w(t) (27)

From (23) and (27), defining strong stability rate s as ratio
of steady state gains of closed-loop and open-loop systems,
the following definition is given.

s =
{1− (X(1) + U(1)D(1))N(1)}−1N(1)K(1)

N(1)K(1)

= {1− (X(1) + U(1)D(1))N(1)}−1 (28)

It can find that strong stability rate s is equal to the steady
state gain of the open-loop system, and the design parameter
U(1) can design the poles of compensator (18) without
changing the closed-loop poles of (23). In the case of
s = 1 the steady state gain of open-loop system becomes
equal to the closed-loop’s one, even if the feedback signal
C2(z

−1)y(t) in (18) becomes zero. That is, the open-loop
system’s output becomes equal to the reference signal w(t)
in steady state. For this case, it means that the strongly stable
system gives the highest safety. On the other hands, in the
case of s ̸= 1, the open-loop system’s output converges to
a constant value but deviates from w(t). For example, this
case implies possibility for abnormal temperature increase
of temperature control systems or overflow of tank systems.
Therefore strong stability rate s means that s = 1 is best for
safety and s ̸= 1 shows a decline in safety.

In the next section generalized minimum variance control
system is designed through strong stability rate under the
assumption that the controlled plant is stable and the strongly
stable system is obtained by design parameter U(1).

IV. GMVC SYSTEM DESIGN THROUGH STRONG

STABILITY RATE

In case that P [z−1] and Q[z−1] in generalized output are
chosen for T [z−1] to be stable, comparing transfer function
(16) to (15), N(z−1) and D(z−1) can be chosen as follows;

N(z−1) = z−kmB[z−1]/T [z−1] (29)

D(z−1) = A[z−1]/T [z−1] (30)

Substituting (29) and (30) into Bezout equation (17) and
comparing it to Diophantine equation (5), the solutions
X(z−1) and Y (z−1) of Bezout equation are given.

X(z−1) = F [z−1]/C[z−1] (31)

Y (z−1) = G[z−1]/C[z−1] (32)

Then the control law (14) is obtained from Youla-Kucera
parameterization (18) by selecting the design parameters as,

K(z−1) = R[z−1] (33)

U(z−1) = 0 (34)

To extend the controller (14), instead of choosing U(z−1)
as 0, it is used as a new design parameter U(z−1) = U(1)
for the controller (18). In the previous research[17] although
the design parameter is given as U(1) = −D−1(1)X(1),
whether strongly stable system can be obtained or not
depends on the values of D(1) or X(1). As mentioned
above, the proposed method in this paper uses the following
parameter with arbitrary constant α in order to relax the
condition of U(1).

U(1) = −αD−1(1)X(1) (35)

Then the extended controller through U(1) is obtained as
follows.

(G[z−1]T [z−1]− U(1)z−kmB[z−1]C[z−1])u(t)

= C[z−1]T [z−1]R[z−1]w(t)− (F [z−1]T [z−1]

+U(1)A[z−1]C[z−1])y(t) (36)
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If α = 1 is selected, the design parameter becomes equal to
[17]. Moreover in the case that the strongly stable system
was obtained, strong stability rate becomes s = 1 because
of (28). On the other side, if a strongly stable system
was not obtained by α = 1, α must be selected so that
the compensator (18) becomes stable. In this case, strong
stability rate s does not become 1. It means that the steady
state output for the open-loop system deviates from the
reference signal w(t).

To calculate this control law, the polynomial operating on
u(t) in the left-hand side of (36) is divided by the leading
term g0 and the remaining term.

G[z−1]T [z−1]− U(1)z−kmB[z−1]C[z−1]

= g0 + z−1G′[z−1] (37)

Therefore the control law (36) is calculated by

u(t) =
1

g0
{C[z−1]T [z−1]R[z−1]w(t)

−(F [z−1]T [z−1] + U(1)A[z−1]C[z−1])y(t)

−G′[z−1]u(t− 1)} (38)

From (23) it is noticed that the transfer function from
reference signal to output is independent of U(z−1). And the
poles of compensator can be given by the following equation.

G[z−1]T [z−1]− U(1)z−kmB[z−1]C[z−1] = 0 (39)

Therefore the extended controller can be re-designed not only
to be stable but also to make strong stability rate s closer to
1 by selecting α in (35).

V. NUMERICAL EXAMPLE

In this section, the numerical example is shown to verify
the validity of the proposed method. The following controlled
system is considered.

A[z−1] = 1 + 0.6z−1 + 0.7z−2

B[z−1] = 0.5− 1.5z−1

C[z−1] = 1, km = 1

Simulation steps are 200, the initial values of output and
input are assumed to be zero. The disturbance as the white
Gaussian noise with the variance σ2 = 0.04 is heuristically
added to the output. In order to design the closed-loop
characteristic to be stable, the generalized output is given
so as to make the controlled output y(t) track the reference
signal w(t) = 1.

Φ(t+ 1) = y(t+ 1) + 0.8u(t)− 0.84z−2 · w(t)

The feedback signal C2(z
−1)y(t) becomes zero after 140th

steps. The absolute value of closed-loop poles is 0.6563. So
the closed-loop system is designed to be stable. U(1) =
−αD−1(1)X(1) is calculated as 0.4273 for α = 0.9. Then
the absolute values of compensator’s poles are 0.9217 and
0.585. That is, the compensator makes the strongly stable
system. In this case the strong stability rate is s = 1.1831 and
it means that the open-loop output in steady state becomes
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Fig. 1. Conventional GMVC (output)

1.1831 for the reference signal w(t) = 1. Therefore it finds
that the new design parameter U(1) = −αD−1(1)X(1) can
construct a strongly stable system by α and the derived
strongly stable system can be evaluated through strong
stability rate s.

When the new design parameter is selected as U(1) = 0,
the compensator becomes the conventional GMVC (14).
Then the absolute value of compensator’s pole is 1.1538
although the closed-loop poles become equal to the proposed
ones. It means that the conventional GMVC of this case does
not make strongly stable system. From this point it finds
that the new design parameter U(1) = −αD−1(1)X(1) is
effective to construct a strongly stable system evaluated by
strong stability rate.

Fig.1 and Fig.3 show the plant outputs by the conventional
GMVC and the proposed method. The broken lines of these
figures show the reference signal. The solid lines of them
show the plant output. Fig.2 and Fig.4 show the control
input. When the feedback signal becomes zero after 140th
step, the output and the input by the conventional GMVC
diverge. On the other hand, the proposed method do not
diverge because U(1) described above gives the strongly
stable system. Moreover, the different value of variance for
disturbance (σ2 = 0.2) was confirmed. Fig.5 and Fig.7
show the plant outputs by the conventional GMVC and the
proposed method. In each figure, the broken line and the
solid line mean reference signal and plant output respectively.
Fig.6 and Fig.8 show the control inputs. Even if the feedback
signal became zero after 140th step, their results did not
change. That is, the proposed method also gives a strongly
stable system in this case.

VI. CONCLUSION

In this paper, a design method of generalized minimum
variance control using strong stability rate was given. And
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Fig. 2. Conventional GMVC (input)
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Fig. 3. Proposed method (output)

the numerical example was shown to verify the validity of
the proposed method.

As future works, there is an extension to multi-input multi-
output systems using the proposed method. Moreover model-
free control system through strong stability rate will be
considered.
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