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Abstract. We have been investigating a method to compose some intelligent robots. Continuous catching and releasing ex-
periment for fish induces the fish to find some escaping strategies staying at corners of a pool. To make fish-catching robot
more intelligent than fish’s adapting and escaping abilities, we have proposed a chaos-generator comprising Neural-Network-
Differential-Equation(NNDE) and an evolving mechanism to have the system generate chaotic trajectories as many as possible.
We believe that the fish could not be adaptive enough to escape from chasing net with chaos motions since unpredictable chaotic
motions of net may go beyond the fish’s adapting abilities to the net motions. In this report we confirmed that the proposed
system can generate plural chaos and the chaos is valid for fish catching robot.
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1. INTRODUCTION
Animal world has been used conceptually by robotics as a source of inspiration for machine intelli-

gence. For the purpose of studying animal behavior and intelligence, the model of interaction between
animals and machines is proposed in researches like [1]. Crucial characteristic of machine intelligence is
that the robot should be able to use input information from sensor to know how to behave in a changing
environment and furthermore can learn from the environment for safety like avoiding obstacle. As known
universally the robot intelligence has reached a relatively high level, still the word “intelligence" is an
abstract term, so the measurement of the intelligence level of a robot has become necessary. A practical
and systematic strategy for measuring machine intelligence quotient (MIQ) of human-machine cooper-
ative systems is proposed in [2].
In our approach, we evaluate the intelligence degree between fish and the robot by Fish-Catching op-

eration. We considered that the antagonistic relationship can be very meaningful as one way to discuss
robotic intelligence.
By evolutionary algorithms, Visual Servoing and Object Recognizing based on the input image from

a CCD camera mounted on the manipulator has been studied in our laboratory(Fig.1) [3], and we suc-
ceeded in catching a fish by a net attached at the hand of the manipulator based on the real-time visual
tracking under the method of Gazing GA [4] to enhance the real-time pose-tracking ability.
Through above experiments, we have learned that it is not effective for fish catching to simply pursue the
current fish position by visual servoing with velocity feedback control. Actually, the consistent tracking
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is sometimes impossible because the fish alter motion pattern suddenly maybe under some emotional rea-
sons of fear. Those behaviors are thought to be caused by emotional factors and they can also be thought
as a kind of innate fish intelligence, even though not in a high level. While observing the fish’s adapting
behavior to escape in the antagonistic relationship with the robot, that is continuous catching/releasing
experiments, we found that we can define a "Fish Learning Speed"(FLS) representing decreasing veloc-
ity of fish number caught by the robot through continuous catching/releasing operation. Through this
measure we can compare the innate intelligence of the fish and the intelligence of the robot.
It has been well known that many chaotic signals exist in our body, for example, in nerves, in motions

of eye-balls and in heart-beating periods [5]. Therefore we thought that imitating such animal’s internal
dynamics and putting chaos into robots have something meaningfulness to get the robot more intelligent.
We embed chaos into the Robot Dynamics in order to supplement the deficiency of our Fish-Catching
system [6]. Therefore what we have to pay attention to the fish’s nature that the fish does continue to
conceive always escaping strategy against new stressing situation. This means that robot’s intelligence to
override the fish’s thinking ability needs infinite source of idea of catching motions.
To generate such catching motion, we have proposed Neural-Network-Differential-Equation(NNDE)

that can generate plural chaos and inherently have a possibility to be able to generate infinite varieties
of chaos, derived from the neural network’s ability to approximate any nonlinear function as accurate as
with desirable precision[7]. In this paper, we report analyses of chaos generated by NNDE and confirm
the validity for fish catching robot.

2. PROBLEM OF FISH-CATCHING
To compare intelligence between fish and the robot, we kept a procedure to catch a fish and release

it immediately continuously for 30 minutes in once operation. We released 5 fishes (length is about
40[mm]) in the pool in advance, and once the fish got caught, it would be released to the same pool at
once. Based on the idea that the fish may get tired as time passing, we had expected that the capturing
operation would become smoother.
But to our astonishment, the number of fishes caught decreased gradually. The reason that catching

number decreased may lie in the fish learning ability. For example, the fish learn how to run away around
the net by circular swimming motion with about constant velocity, having made a steady state position
error that the net cannot reach to the chasing fish. Or the fish stay in the opposite corner against the net
in the pool. And also, the fish keep staying within the clearance between the edge of the pool and the
net where the net is inhibited to enter. To solve these problems, and to compose more intelligent fish
catching systems, we thought that the net’s chaos behavior with many chaotic variety can be overcome
those fish’s escaping intelligence, since huge variety of chaos trajectories seems to be unpredictable for
the fish to adapt them. This strategy to overcome fish’s adaptive intelligence is based on a hypothesis that
unpredictability of the motion of the chasing net produced by plural chaos can make the fish’s learning
logic confuse. Then we propose Neural-Network-Differential-Equation to generate chaos as many as
possible.

3. FISH LERNING SPEED
To evaluate numerically how fast the fish can learn to escape the net, we adapted Linear Least-Square

approximation to the fish-catching decreasing tendency, resulting in FLS=−0.30 as shown in Fig.6 VS,
which exhibit the number of fish caught by the robot in five minutes, on condition of the caught fish
released into the same pool immediately. The decreasing coefficient −0.30 represents adapting or learn-
ing speed of the fish as a group when the fish’s intelligence is compared to robot’s catching ability. We
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Fig. 1. Experiment system
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Fig. 2. Block diagram of Chaos Generation

named the coefficient as “Fish Learning Speed”(FLS), since the decreasing tendency that is the value of
coefficient can represent the fish’s learning speed to conceive a new escaping strategies—stay at corner
or swim with constant speed on a circle trajectory.

4. CHAOS GENERATE SYSTEM

we proposed a new chaos generator using N.N.. In the chaos generator we proposed, nonlinear dif-
ferential equation is expressed with N.N.. N.N. has been proven to have an ability to approximate any
nonlinear functions with arbitrarily high accuracy[7]. Including the function expressed by N.N. in a dif-
ferential equation, a nonlinear function part of the nonlinear differential equation can be changed var-
iously. Considering N.N. which has input layer, hidden layer and output layer and has nonlinear map-
ping p(t) = [x(t), y(t), z(t)]T to f(p(t)). The N.N. output is ṗ(t) = [ẋ(t), ẏ(t), ż(t)]T and p(t) is
obtained by integrating ṗ(t) with Runge-Kutta method. A closed loop system is composed by feed-
back p(t) to the N.N. input and this system represents ṗ(t) = f(p(t)). A block diagram which repre-
sents ṗ(t) = f(p(t)) as N.N. is shown in Fig. 2. Here, a method that search the N.N. weight coeffi-
cients which generate chaos is introduced. Fig. 2 represents the block diagram that finds chaos by using
Genetic Algorithm(GA). The GA evolves genes representing a vector qi = [q1i, q2i, . . . , qni]T which
means N.N. weight coefficients quantity to search N.N. weight coefficients maximizing gi defined as
ṗ(t) = f(p(t)), gi = k1 · λ1i − k2 · |λ2i| − k3 · λ3i. where k1, k2 and k3 are positive coefficients. To
evaluate qi, qi is set to N.N. as weight coefficients and ṗ(t) = f(p(t)) is solved by numerical integration
and solved trajectory pi(t) appears. In addition, Lyapunov numbers L = [λ1, λ2, λ3]T , (λ1 > λ2 > λ3)
of the trajectory are calculated. Evolution of GA tries to maximize the fitness function gi. The relation-
ship between positive and negative Lyapunov spectrum is (+, 0,−) and gi is composed to get large value
when λ1i, λ2i, λ3i correspond with Lyapunov spectrum (+, 0,−). gi maximization by GA leads NNDE
to have chaos trajectory. This procedure is repeated many times and chaos trajectory can be generated by
searching a trajectory which satisfies Lyapunov number of chaos with GA.

5. CHAOS VERIFICATION
In this section, Lyapunov number, Poincare return map, Sensitivity of initial value and Fractal dimen-

sion are introduced as indices of chaos.

5.1. Lyapunov number

As one of criteria to evaluate a chaos’ character of time function f (t) at discrete time ti in time domain,
Lyapunov number expressed by the following equation is well known,λ = limN→∞

1
N

∑N−1
i=0 log |f ′(ti)|,
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Fig. 3. Sensitivity of initial value (Chaos 01)
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Fig. 4. Sensitivity of initial value (x-coordinate)

where positive value can represent that the irregular oscillation diverts from a standard trajectory, which
expands like exponential function

5.2. Poincare return map

Poincare return map verifies whether trajectory has a structure of stretching and folding. Stretching
means a trajectory goes away from a point of convergence and folding means a trajectory is brought back
to a point of convergence. This structure is a basic chaos property.

5.3. Sensitivity of initial value

The small perturbation of the current trajectory may lead to significantly different future behavior.
Sensitivity of initial value is popularly known as the "butterfly effect". This structure is a basic chaos
property too.

5.4. Fractal dimension

In this subsection, Fractal dimension is introduced as an index of chaos. Fractal dimension represents
self-similarity of chaos attractor and if Fractal dimension of a trajectory is not integer, it can be said that
the trajectory has self-similarity.

6. CHAOS VERIFICATION RESULT

So far we have found four chaos patterns with different weight coefficients explored by GA men-
tioned in the previous section. We named them with serial numbers as chaos 01∼04. The followings are
verifications of these chaos with each individual characters.

6.1. chaos 01

In this subsection, chaos 01 is verified whether the trajectory has chaos properties or not from view-
points of Lyapunov number, Sensitivity of initial value, Poincare return map and Fractal dimension.

6.1.1. Lyapunov number
Lyapunov numbers are λ1 = 0.014585, λ2 = −0.003314 and λ3 = −0.165381. These corresponded

to the Lyapunov spectrum of chaos,(+, 0,−).
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Fig. 5. Poincare Returnmap
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Fig. 6. The result of experiments

Table 1
Character of Chaos 02∼04

Chaos02 Chaos03 Chaos04
0.01919 0.015934 0.01208

Lyapunov number −0.00733 −0.002172 −0.00143

−0.10379 −0.123026 −0.075448

Fractal dimension 1.78474 1.89099 1.8799

Poincare return map Fig. 5(b) Fig. 5(c) Fig. 5(d)
Sensitivity of initial value Fig. 4

6.1.2. Poincare return map
Poincare section is put at x − z plane(x < 0) and a difference between the origin and trajectory

intersection with poincare section is defined as r. Chaos 01’s poincare return map appear in Fig. 5(a).
One dimensional map can be seen in the figure, from which we can understand that the map represents
streaching (left half of the Fig. 5(a)) and folding (right half) that are essential characters to generate
chaos.

6.1.3. Sensitivity of initial value
Here, a difference between trajectories with minutely different initial value are shown as εx, εy, εz .

Initial values of a trajectory (x1(t), y1(t), z1(t)) are set as x1(0) = 1.00, y1(0) = 1.00, z1(0) = 1.00 and
initial value of another trajectory (x2(t), y2(t), z2(t)) are set as x2(0) = 1.01, y2(0) = 1.01, z2(0) =
1.01. εx, εy, εz are defined as εx = x1(t) − x2(t), εy = y1(t) − y2(t), εz = z1(t) − z2(t). Fig. 3 shows
εx, εy, εz of chaos 01. Because εx, εy, εz are almost zero from 0s to 400s, they are not shown until 400[s].
We can see from Fig. 3 that the difference between the two trajectories with minute difference of initial
values diverts suddenly about 800 seconds having passed, this means the slight different initial values
make large separation with each other, indicating sensitivity of initial value, which is one of the character
of chaos.

6.1.4. Fractal dimension
Fractal dimension of chaos 01 is 1.36058, which is non integer and chaos 01 has self-similarity. There-

fore, the chaos property of chaos 01 has been verified from the viewpoint of Lyapunov number, Sensitiv-
ity of initial value, Poincare return map and Fractal dimension.
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Fig. 7. Recognized position in Visual Serovoing Fig. 8. Recognized position with chaos

6.2. chaos 02∼04
Verifications of chaos 02∼04 are summarized at TABLE 1. Lyapunov number column represent

λ1, λ2, λ3 from the top to bottom and Lyapunov spectrums of chaos 02∼04 are confirmed as (+, 0,−).
And also the table shows Fractal dimensions of chaos 02∼04 are non integer and thus chaos 02∼04 have
self-similarity. Poincare return maps are shown in Fig. 5(b),(c),(d) and one dimensional map can be seen
in these figures. Time-profile of differences between trajectories with minutely different initial value are
shown in Fig. 4. εx_i(i = 02, 03, 04) represent chaos 02∼04 x-coordinate differences between trajecto-
ries. Because εx_02, εx_03, εx_04 are almost zero from 0s to 250s, they are not shown until 250s. Initial
values are same as chaos 01’s. As for y and z coordinates, they are similar to x, omitted to spare the
space. We can see from Fig. 4 that the difference between the two trajectories with minute difference of
initial values diverts suddenly. Each chaos properties are confirmed about chaos 02∼04 as well as chaos
01.

7. Adaptence chaos to robot
The chaos made by NNDE is actually adapted to the robot dynamics. Fig.6 shows the results of visual

servoing and chaos experiments. In comparison with visual servoing (FLS=－ 0.30), it is said that chaos
trajectory (FLS=－ 0.08) reduced the learning speed of fish.
Fig.7 and 8 show fish positions recognized by the robot in Visual Servoing and chaos experiments. Fig.7
(a)(b) show fish escaped from the net in circular swimming and Fig.7(c) shows fish gradually stayed at
corner to escape from the net. In the case of chaos, Fig.8 shows fish did’nt tend to change the oneself
movement like staying at corners as time goes by. It indicates that the robot tried to drive fish from the
corners by chaos and the fish couldn’t take escaping strategy that fish stay at corners. So, it be concluded
that chaos has the catching possibilities for a escaping fish.

References
[1] M. Bohlen, A robot in a cage-exploring interactions between animals and robots, CIRA,1999, pp.214-219.
[2] Hee-Jun Park, Byung Kook Kim, Kye Young Lim: “measuring the machine intelligence quotient (MIQ) of human-machine

cooperative systems”, IEEE Trans. vol.31, 2001, pp.89-96.
[3] M. Minami, J. Agubanhan, and T. Asakura: “Manipulator Visual Servoing and Tracking of Fish using Genetic Algorithm”,

Int. J. of Industrial Robot, Vol.29, No.4, 1999, pp.278-289.
[4] Visual Servoing to catch fish Using Global/local GA Search Hidekazu Suzuki, Mamoru Minami IEEE/ASME Transactions

on Mechatronics, Vol.10, Issue 3, 352-357 (2005.6)
[5] K. Aihara: “Chaos in Neural System”, pp.126-151, 1993 (in Japanese).
[6] Jun Hirao and Mamoru Minami, “Intelligence Comparison between Fish and Robot using Chaos and Random", Proceed-

ings of the 2008 IEEE/ASME international Conference on Advanced Intelligent Mechatronics July 2 - 5, 2008, Xi ’an,
China, pp552-557.

[7] K. Funahashi： On the Approximate Realization of Continuous Mappings by Neural Networks，Neural Networks，2，
183/191 (1989)


