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Recently, a number of researches related to under-
water vehicle has been conducted worldwide with the
huge demand in different applications. In this paper,
we propose visual servoing for underwater vehicle us-
ing dual-eyes cameras. A new method of pose estima-
tion scheme that is based on 3D model-based recog-
nition is proposed for real-time pose tracking to be
applied in Autonomous Underwater Vehicle (AUV). In
this method, we use 3D marker as a passive target that
is simple but enough rich of information. 1-step Ge-
netic Algorithm (GA) is utilized in searching process
of pose in term of optimization, because of its effec-
tiveness, simplicity and promising performance of re-
cursive evaluation, for real-time pose tracking perfor-
mance. The proposed system is implemented as soft-
ware implementation and Remotely Operated Vehicle
(ROV) is used as a test-bed. In simulated experiment,
the ROV recognizes the target, estimates the relative
pose of vehicle with respect to the target and controls
the vehicle to be regulated in desired pose. PID control
concept is adapted for proper regulation function. Fi-
nally, the robustness of the proposed system is verified
in the case when there is physical disturbance and in
the case when the target object is partially occluded.
Experiments are conducted in indoor pool. Experi-
mental results show recognition accuracy and regulat-
ing performance with errors kept in centimeter level.

Keywords: visual servoing, stereo camera, genetic algo-
rithm, underwater vehicle, model-based recognition

1. Introduction

Nowadays, visual servoing in which visual information
is used to control the robot’s motion plays an important
role in different domains of application with the rapid
progresses in computer vision technology. Generally, vi-
sual servoing techniques are divided into two categories;
Image-Based Visual Servoing (IBVS) and Position-Based
Visual Servoing (PBVS). In IBVS techniques, images
from camera are used directly for control of robot. In

Journal of Robotics and Mechatronics Vol.28 No.4, 2016

PBVS, information of known object are extracted and
interpreted from the images and used in controlling of
robot in reference space rather than in image space as
in IBVS [1-3]. Based on the location of camera, eye-
in-hand and eye-to-hand configuration are considered ac-
cording to the requirement of application. Then, the tech-
niques are differentiated based on the number of cam-
eras; from single to multi cameras. Even though there
are some limitations for real-time applications in terms of
image-acquisition-quantization accuracy and processing
rates, the role of visual information has been expanding
rapidly in industry and human society in line with efforts
of researchers [4, 5].

Like the land and space systems, a number of re-
searches on underwater vehicle using visual servoing has
been conducted worldwide recently [6—24]. Each of them
is with different merits and limitations. Most of re-
searches are based on the monocular vision [6, 7]. In [8],
vision system using artificial underwater landmarks in or-
der to be able to act autonomously using two cameras was
reported. In the contribution of [9], features in plate are
extracted and relative pose is estimated using the oriented
FAST and rotated BRIEF (ORB) feature extractor. Even
though two cameras are equipped in [8,9], only one of
cameras is used to estimate the position and orientation of
the target and another camera is for another task. There
are some related works using stereo vision for underwa-
ter vehicle [10, 11]. In [10], a new approach of position
measurement for underwater vehicle-manipulator systems
using pan-tilt-slide cameras categorized in IBVS was pro-
posed. Epipolar geometry calculation of target consisting
of three LED is realized using slide mechanism. Com-
bining monocular and binocular vision positioning algo-
rithm was introduced in [11], reducing limitation of im-
age matching technique using two cameras. In [11], dead
reckoning algorithm was introduced as an aided naviga-
tion because of longer computing time for vision based
navigation. Geometry calculation for relative position of
target consisting of LED is used in both [10, 11]. In con-
trast, we have developed vision-based underwater vehi-
cle using standalone dual-eyes cameras and 3D marker in
PBVS that is passive target for real-time pose tracking as
shown in Fig. 1.
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Fig. 1. Underwater vehicle and 3D marker.

In proposed system, the system estimates a relative po-
sition and orientation between ROV and target object us-
ing 3D model-based matching method utilizing genetic
algorithm. We examined regulating relative pose perfor-
mance that means the robot has to be kept constant in the
desired relative pose with respect to the target even though
there is disturbance and 3D marker is partially occluded.
It is shown experimentally that regulating experiment can
be implemented using proposed system, approving its ro-
bustness.

The paper is organized as follows: Section 2 presents
problem statement of the proposed work. Section 3 de-
scribes the proposed system along with the detailed ex-
planation of the system. Experiments to assess the perfor-
mance of the proposed system are described in Section 4.
Experimental results and discussions are presented in Sec-
tion 5. The final section concludes the paper.

2. Problem Statement

Most of the related works reported for pose estimation
are based on features-based method in which man-made
features are extracted from images and matched the corre-
sponding features in other images [3, 10]. There are some
notable studies on 3D pose estimation and tracking [25—
29]. In 3D pose estimation, interpretation such as epipolar
geometry using multiple views provides precise pose esti-
mation, especially camera depth measurement. However,
these methods demand huge computation load for real-
time application and matching between interested features
makes the system performance too much dependent espe-
cially on corresponding authenticity of points in the im-
ages of plural cameras. The wrong points pairs induce 3D
pose estimation errors, resulting in corruption of visual
servoing closed loop. Therefore, 3D reconstruction tech-
niques are too expensive for accurate pose estimation of
the known object. Avoiding these limitations in features-
based methods that are based on 2D to 3D reconstruction,
pose estimation using 3D model-based matching utilizing
GA based on the concept of 3D to 2D projection is uti-
lized in this paper.

Apart from indoor visual servoing environment, real
underwater environment provides different kinds of dis-
turbances in terms of physical disturbance to the move-
ment of vehicle due to ocean current and target occlusion
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especially when vision-sensor is dominant in navigation
sensor unit. Therefore, the robustness of proposed sys-
tem is verified in regulating performance in the case when
there is physical disturbance from different directions of
vehicle and in the case when the target is partially oc-
cluded.

3. Proposed System

This paper introduces one of solutions for motion con-
trol of underwater vehicle using vision-based control. The
basic concept of the vision-based control technology is
to minimize an error that is represented by difference be-
tween image measurement and desired value. In proposed
system, desired value is relative pose (position and orien-
tation) of vehicle with respect to target in Cartesian space
rather than in image space and image measurements are a
set of 3D parameters from which current pose is estimated
in real-time.

The main task of this work is to control the underwa-
ter vehicle to be regulated in desired pose to the target by
means of visual servoing. In this system, the images ac-
quired from the dual-eyes cameras are sent to a PC. Then,
the real-time 3D pose estimation of the target object is
executed in software implementation of the PC. Finally,
based on the error between target value and estimated
value, command signals generated from calculating the
voltage value gained by P controller for the thrusters are
input into ROV in order to keep desired pose. Accord-
ing to effectiveness, 3D model-based matching method is
reported for 3D pose estimation for AUV.

3.1. 3D Model-Based Matching Method Using
Stereo Vision

Instead of calculation of the absolute position of the ve-
hicle and the target, the relative pose of the vehicle with
respect to the known target is estimated using 3D model-
based recognition. In this method, knowing the informa-
tion of the 3D marker and desired relative pose to the un-
derwater vehicle, the solid model of the target is prede-
fined and projected to 2D images. Then, the relative pose
is calculated by comparing the projected solid model im-
age with the captured 2D images by dual cameras.

Left and right cameras are mounted in vehicle in fixed
and parallel position. Coordinate frames of image, cam-
era, vehicle and model are defined as shown in Fig. 2.
Searching area is assumed to be around the target as
shown in Fig. 3. The relative pose between ROV and 3D
marker is determined by six parameters (x, y, z, €1, &, &),
where the first three are position in Cartesian coordinate
frame and the latter are orientation in Euler coordinate
system represented by unit quaternion avoiding singular-
ity issues [30].

Figure 4 explains how to estimate the relative pose us-
ing 3D model-based matching method. Firstly, 3D marker
models with different poses are initially set up in random
within searching 3D space. The main task is to find the
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Fig. 4. 3D recognition process.

model that coincides exactly with the real 3D marker and
then use the pose of that selected model as the estimated
relative pose. To measure the matching degree, we define
fitness function to be evaluated in 2D images. However,
the number of all possible models within searching area is
too huge for system to be evaluated with real-time perfor-
mance. Therefore, we need optimization method to limit
the number of models and generate new models until the
best model is detected. In Fig. 4, it can be seen that a
number of 3D models are initiated in random. Then, they
are projected to 2D image planes of left and right cameras
and matched with real target images using fitness value.
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Based on some fitter models, new models are generated
until generated models approach to the real target. Finally,
the best model is detected and the pose of detected model
is selected as the estimated one. Note that this recognition
process has to be performed within video rate (33 ms in
our system).

3.1.1. 3D Marker Design

Target object is designed as shown in Fig. 5 named as
the 3D marker that consists of three spheres (40 mm in
diameter) whose colors are red, green and blue. As it
is the passive type object, its advantages are simplicity,
full information and no power needed. The basic colors
are chosen because of their distance to each other in hue
value space that is less sensitive to the environment. In
some works [10, 11], the target is array of LED light that
needs power, image pre-processing such as edge detec-
tion against reflection issues. On the other hand, the res-
olution of the pose especially orientation is limited when
the LED source is hidden partially and frequently. More-
over, the concept based on the group of pixels rather than
individual pixels in proposed system highlights merits of
model-based method over feature-based ones.

3.1.2. Fitness Function

To estimate the relative pose by comparing target object
and object models, fitness value that is correlation func-
tion representing a matching degree of projected model
against the real target in the image is used as the evalua-
tion parameter. As shown in Fig. 6, there are two areas in
model object to score fitness value namely; the inner one
that is the same size as the target sphere and the another
one is background area. The portion of the captured target
that lies inside the inner area of model will score up the
fitness value and the portion that lies inside of the back-
ground area will score down the fitness value. It means
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Fig. 7. Gene representing for position and orientation.

the fitness value will be maximum when the target and
the model are in coincidence. The overall fitness value is
calculated from left image and right image. The detailed
explanation can be seen in previous works [31-33].

3.2. 1-Step GA

Left and right images are directly matched with the
searching models until one of the models that has the
maximum fitness value is found to represent the truthful
pose. Consideration of all possible models in searching
area is time consuming for real-time application. There-
fore, the searching problem addresses to the optimization
one. According to the effectiveness, simplicity and re-
peatable evaluation performance, 1-step GA is used in this
experiment. GA named as 1-step GA is capable of real-
time recognition of the target object. The effectiveness of
1-step GA was confirmed in robots especially manipula-
tors and reported in previous works [30,34-37]. The sta-
bility of the system was also confirmed by means of Lya-
punouyv analysis in previous work [36]. In this method,
the genes as shown in Fig. 7 that represent the different
relative poses of 3D model to the ROV are initiated ran-
domly and evaluated to get the best gene that represents
the actual pose of the object. Fig. 7 shows a gene repre-
senting position and orientation with 12 bit per each pa-
rameter. Selection of number of bits for each parameter
is to get maximum resolution of pose based on the PC
performance. Through the steps of GA (Selection, Cross
over and Mutation), a number of genes that represent dif-
ferent poses are evaluated by the defined fitness function
to get the best gene with the most truthful estimated pose.
Property of forwarding the top gene candidates to next
generation highlights the robustness of the system against
disturbances that may be resulted from image noises even
when the target object can be seen partially. The speed
of evaluation of gene covers the video rate that is 33 ms
so that the genes can be evaluated up to 9 times in the
experiments as shown in Fig. 8.

3.3. Controller

To eliminate the error in relative pose to the target,
conventional P controller is used as shown in Egs. (1)—
(4). Even though the proposed system estimates all six
variables of pose, torque around x-axis and y-axis are ne-
glected in control system because the x-axis and y-axis
rotations are naturally restored to zero by the restoration
torque made by the z-axis distance between the center of
buoyance and the one of gravity. Therefore, only four de-
gree of freedom is considered in control system. ON-OFF
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control is used for control in left and right direction (y-
axis) and the other three degree of freedom are controlled
by P controller. According to the recognition accuracy
that is millimeter level and experimental results in move-
ment of ROV, the threshold for ON-OFF control is defined
to be 5 mm as shown in Eq. (2). The proportional gain for
each thruster is tuned according to the experimental re-
sults. The block diagram of the proposed control system
is shown in Fig. 9.

vy = pl(xd fx) +2.5
(vi =0V forthrust 9.8 Nin Xy (1)
of Xy, vi =5V for —9.8 N)

5V
((yg —y < —5 mm) for
thrust in Yy of Xy is

Back and forth
direction
(Xp axis in Fig. 3)

—49N)
Left and right 25V
direction vy = ((=5<ys—y<5) (2)
(Yy axis in Fig. 3) meaning thrust equals
to zero)
ov

((y4 —y >S5 mm) for
thrust in Yy of £y is 4.9 N)

Rotation v3 = kp2(€s4 — £) +2.5
(around Zy axis : (v3 =0V for 0.882 N in Zy (3)
in Fig. 3) of Ty, v3 = 5 V for —0.882 N)

Vg = kp3(zd —z)+2.5
(v4=0Vfor—49NinZy . . (4
of Xy, va =5V for4.9N)

Vertical direction .
(Zy axis in Fig. 3) °
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where, vi is input voltage for each of two horizontal
thrusters (shown in Fig. 10(c)) for movement of ROV in
back and forth direction (X in Fig. 3); v, is input voltage
for traverse thruster (shown in Fig. 10(b)) for movement
of ROV in right and left direction (Yy in Fig. 3); v3 is in-
put voltage for thrusters for rotation movement of ROV
around z-axis (Zy in Fig. 3), and v4 is input voltage for
vertical thruster (shown in Fig. 10(d)) for movement of
ROV in vertical direction (Zg in Fig. 3). Note that the ro-
tation of vehicle is controlled by two horizontal thrusters
that rotate in opposite direction.

3.4. Underwater Vehicle

Remotely controlled underwater robot used in this
experiment (manufactured by KOWA, maximum depth
50 m) is shown in Fig. 10. Two fixed forward cameras
with the same specification (imaging element CCD, pixel
number 380,000 pixel, signal system NTSC, minimum II-
lumination 0.8 1x, no zoom) are mounted on ROV. The
two fixed forward cameras are used for three-dimensional
object recognition in visual servoing. In the thruster sys-
tem of ROV, 2 horizontal thrusters with maximum thrust
of 9.8 N, 1 vertical thruster with maximum thrust of 4.9 N
and 1 traverse thruster with 4.9 N are installed. In addi-
tion, it has been equipped with two units of LED lights
(5.8 W) for illumination source. The ROV used in this ex-
periment is actuated in 4 degrees of freedom (DoF) (x, y, z
and &3). The specifications of main hardware components
are summarized in Table 1.
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Table 1. Specification of ROV.

Max: operating depth [m] 50
Dimension [mm] 280 (W) x 380 (L) x 310 (H)
Dry weight [kg] 15

2 (horizontal), 1 (vertical)
1 (traverse)

2 (Front, fixed), 2 (Downward,
fixed), 1 (tilting and zooming)

Number of thrusters

Number of cameras

Number of LED lights 2(5.8W)
Number of line lasers 2 (2 mW)
Tether cable [m] 200

Aluminum alloy and
acrylate resin

9.8 (horizontal),
4.9 (vertical, traverse)

Structural materials

Maximum thrust
force [N]

4. Experiment of Visual Servoing

Experiments were conducted in simulated environment
in order to verify the effectiveness of the proposed visual
servoing. Firstly, the experiment in which the underwater
robot keeps the relative pose with fixed target, was con-
ducted while setting the experimental conditions approv-
ing that the robot is regulated to the final pose against the
target object. Secondly, the robustness against the phys-
ical disturbance was verified while visual servoing. Fi-
nally, the experiments were conducted in the case when
the target is seen partially.

4.1. Experimental Environment

A pool (length x width x height,2m x 3 m x 0.75 m)
filled with tap water was used as an experimental tank for
underwater vehicle experiments. ROV is tethered through
an cable with 200 m length to receive image informa-
tion and control signals as shown in Fig. 11. Based on
the images which are given by binocular camera, the 3D
information is calculated through model-based matching
method and Genetic Algorithm (GA). For physical dis-
turbance to disturb the movement of the vehicle, abrupt
external forces are applied to the vehicle by pushing the
vehicle in different direction using a rod. In order to per-
form experiments to confirm the robustness of the system
in case when the target is seen partially, one of the three
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Fig. 11. Layout of underwater experimental devices.
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(B)
Fig. 12. In the case when target is seen partially: (A) green
ball is invisible, (B) red ball is invisible.

spears is hidden for some times. In Fig. 12(A), the green
ball is hidden for few seconds while visual servoing and
Fig. 12(B) shows the case when the red ball is invisible.

4.2. System Configuration
4.2.1. Adjustment of Dead Zone

For manual operation by joystick instructions of the
controller in the remote-operated ROV, it has to have a
certain amount of dead zone voltage that makes thrusters
with no thrust in order to prevent malfunction due to the
motion of a human finger. On the other hand, in this study,
when approaching to the object by thruster propulsion, the
realization of the movement as well as the attitude control
performance of high accuracy is in millimeter. Therefore,
the characteristic of thrust of each thruster that changes
with respect to the dead zone in the control voltage can be
easily configured by using formulation in thrust approxi-
mation. Specifically, the dead band characteristics of the
ROV which was confirmed in preliminary experiments are
removed by means of linear approximation as a solid line
and thrust was configured in the control software so as to
generate.
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Fig. 13. Interface between robot and PC.

4.2.2. Camera Calibration

Precise calibration is critical factor where the task (pose
estimation in this work) to be achieved is expressed in
Cartesian space rather than image space. Therefore, cam-
era calibration process utilizing the projective transforma-
tion and the epipolar constraints of the baseline stereo
(parallel stereo) camera model has been taken carefully
along with the experiments.

4.2.3. Interfacing

Figure 13 shows the interfacing between proposed sys-
tem implemented in PC and the camera mounted in robot.
As the resolution of pose is in 12 bits, digital to analog
converter with high resolution is used for precise con-
trol. Even though there is initial delay time about 9 ms
in receiving dynamic video images with 33 ms, it does
not come in picture as issues for real-time operation.

4.2.4. Adjustment of Cable Tension

As the experimental environment is indoor pool, there
is space limitation for vehicle that is tethered through an
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cable. Therefore, cable tension may cause sometimes dis-
turbance in controlling the vehicle that should be in 4 DoF.
However, careful adjustment of cable position eliminates
these small issues while conducting experiments.

4.2.5. Desired Pose Setting

According to the range of camera for recognition and
experimental environment scale, the desired pose is set as
below. The negative distance in z-axis is the difference
between the origin of the camera and vehicle frame Yp.

xg = xy = 600 mm, Vd :HyM =0 mm,

d= HZM =—67 mm, &g4= 0°

where, x [mm], y [mm], z [mm], & [°] represent the po-
sition and orientation of the target object recognized by
GA. In order to regulate the underwater robot with this
desired relative pose to the target, the command voltage
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values v; ~ v4 fed to respective thrusters are calculated
from P controller.

5. Results and Discussion
5.1. Linearization of Dead Zone Voltage in
Thrusters

To remove the dead zone in control voltage, the lin-
earization of control voltage is performed according to the
experimental adjustment as shown in Fig. 14. Figs. 14(a),
(c), (e) show the initial characteristics of thrust and torque
control voltage observed in experimental measurements
and (b), (d), (f) are their corresponding adjusted ones.

5.2. 3D Recognition Accuracy

Figure 15(a) shows the time variation of the fitness
value at the time of GA recognition of underwater robot
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Table 2. Parameters for GA.

Number of genes 60

Positions (x [mm], y [mm], z [mm]),
Posture (&5 [°])
{x,y,z} = {£400,£400,4200}
Control period [ms] 33

Target variables

Search area [mm)]

Number of

GA evolution 9

that was regulated in x; = 600 mm, y; = 0 mm, z; =
—67 mm, &3, = 0°. According to the experiment result, it
can be seen that the fitness value is maintained above 0.8
within a few seconds from the recognition start. In gen-
eral, when performing precise visual servoing, GA recog-
nition accuracy is thought to be necessary 0.5 or more.
It was confirmed that the object recognition accuracy in
water using GA was almost the same degree of fitness in
comparison with the case in the air. This result addresses
huge benefit of reducing frequency of doing experiments
in water for testing every advanced step in recognition
process. Generally, it is difficult to confirm how much
speed of moving target can be detected by the speed of
evaluation of GA. However, two contributions in the pro-
posed system provide promising performance considering
this fact. The first one is that 1-step GA forwards its best
candidates to the next generations. On the other hand, the
regulating control algorithm keeps field of view of both
cameras after initial recognition. For example, when the
relative pose makes the invisible of right camera for cer-
tain reasons such as the target is moving or the vehicle
is physically disturbed after recognition, the control al-
gorithm makes priority to turn left direction while visual
servoing. Table 2 shows the parameters of GA for con-
ducted experiment.

5.3. Regulating Performance

The regulating performance by means of visual servo-
ing is shown in Fig. 15. Fig. 15(a) shows the fitness value
recognized by 1-step GA, Fig. 15(f) shows the position of
underwater robot in the regulation as measured in 1-step
GA and Figs. 15(b)—(e), (g)—(j) represent the errors be-
tween the relative pose of the target and that of the under-
water robot, and the torque to restore it, respectively.

Although error in the relative target pose appears con-
stantly and the four thrusters operate simultaneously,
there are some pose fluctuation according to the cable ten-
sion during robot movement and reflected waves from the
pool sides that occur due to water pressure changes with
robot movement. However, the proposed system is able to
regulate the relative pose by canceling these disturbance
elements. As the lateral thruster control is ON-OFF logic,
the position error in this axis may be significant compar-
ing to the others. Therefore, P controller will be adopted
for that thruster in near future.
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(c) Disturbance in z-axis direction (d) Disturbance in around z- axis

Fig. 16. Physical disturbance in different directions: (a)
x-axis, (b) y-axis, (c) z-axis, (d) around z-axis.

5.4. Robustness Against Physical Disturbances

The robustness of the proposed system should be veri-
fied considering all possibilities that the real environment
could provides the vehicle. Therefore, physical distur-
bances are simulated for proposed system. Abrupt ex-
ternal forces to move the vehicle for distance of 150 ~
200 mm between 1.5 to 2.0 s in difference directions and
to rotate 15° per 1 s for rotation around a vertical axis by
means of a rod from the outside of pool are applied as
shown in Fig. 16 and the robustness of the visual servoing
is analyzed.

Regulating performance with disturbance in vertical
axis is shown in Fig. 17. Fig. 17 shows (a) the fitness of
GA recognition, (b) the error between the relative pose of
the object target and underwater robot in z-axis direction
and, (c) the same results of (b) enlarged view from 55 s to
65 s. The disturbance has been added in each of the fig-
ures after 20 s and 60 s from the beginning of the exper-
iment. Fig. 17(c) shows enlarged view during regulating
response against prodding to be seen how the system be-
haved in real-time. In the period shown with (A) and (B)
in Fig. 17(d), it is found that varying the thrust (torque)
is applied to the thrusters in response to error from the
relative target pose while maintaining the visual servo al-
though fitness is temporarily lowered when a disturbance
is applied. From the above results, the proposed system
can be restored to its desired pose within a few seconds
~ several 10 seconds for all of these disturbances. There-
fore, it was confirmed that the system is robust against
external disturbances.

5.5. Robustness Against Target Visibility

To verify the robustness of the system in terms of tar-
get visibility, visual servoing when the object is partially
seen was conducted. In simulated environment, one of
the spheres was hidden for certain period and the visual
servoing performance is analysed. Fig. 18 shows recog-
nition performance when the red sphere of target object
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Fig. 18. Recognition performance: (a) recognized model and real target, (b) fitness value when red ball is hidden in some period,
(c) comparison of full search and GA search when all three balls are visible, (d) comparison of full search and GA search when red

ball is invisible.

is invisible for some period shown as (A), and Fig. 19
shows the result when green sphere is being hidden from
the view of the vehicle’s camera. As shown in figures,
the fitness value is reduced for the period when target is
partially seen. To evaluate the proposed system utilizing
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1-step GA, recognition results are compared to the system
in which the best gene is searched throughout all possible
poses without using GA. For instance, the recognized po-
sitions in z-y plane with respect to fitness are shown in
Figs. 18 and 19. The poses evaluated in full searching are
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Fig. 19. Recognition performance: (a) recognized model and real target, (b) fitness value when green ball is hidden in some period,
(c) comparison of full search and GA search when all three balls are visible, (d) comparison of full search and GA search when

green ball is invisible.

represented as contour and the ones evaluated by 1-step
GA are shown as black doted ones. These results high-
light the promising optimization performance of GA to
find the best gene using only some selected candidates for
real-time. Figs. 20 and 21 are snap photos of conduct-
ing the visual servoing when the target object is partially
hidden. It can be seen that the system is able to estimate
the relative pose even one ball is hidden. The estimated
model of the hidden ball can be seen as doted circle in
cover white plane.

Figure 22 shows the regulating performance when the
red ball is hidden during 20-30 seconds and 40-50 sec-
onds from the view of the vehicle. Firstly the system
recognizes the object with 1.2 fitness value in few sec-
onds. Then, it can be seen that the fitness value reduces
to around 0.8 from 1.2 for the period in which the red
ball is hidden. According to the experimental results as
shown in Figs. 22(b), (c), (d), however, the proposed sys-
tem can maintain pose estimation accuracy and regulating
performance even the object is partially occluded. The
position error in y-axis direction is significant comparing
to others because of the ON-OFF control in transverse di-
rection thruster. According to the several experiments, it
was confirmed that the proposed system is robust not only
for physical disturbances but also when the object itself is
partially seen. Therefore, the proposed passive 3D marker
with known color, size and especially structure, and 1-step
GA which forwards the best genes to the next generation
might make this robustness come true in picture.

Journal of Robotics and Mechatronics Vol.28 No.4, 2016

6. Conclusion

For the applications where high homing accuracy are
needed, we have developed ROV using proposed visual
servoing. In this study, we carried out underwater experi-
ments with regulating performance using visual servoing
by dual-eyes cameras. The experimental results show not
only high recognition accuracy about 20 mm but also
real-time application utilizing 3D model-based matching
and 1-step GA for optimization in pose estimation. Some
experiments were conducted to verify the robustness of
the proposed system against physical disturbances in dif-
ferent directions. The system can restore the relative tar-
get pose of the object against physical disturbances in vi-
sual servoing. Therefore, the proposed system is stable
against external force disturbances. Finally, the recogni-
tion accuracy and regulating performance are reported in
the case when the object is partially seen. These results
highlight the effectiveness of the proposed system. As
a future plan, sea trial experiments will be conducted in
near future.
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