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This paper proposes a design method of self-tuning
generalized minimum variance control based on on-
demand type feedback controller. A controller, such as
generalized minimum variance control (GMVC), gen-
eralized predictive control (GPC) and so on, can be
extended by using coprime factorization. Then new
design parameter is introduced into the extended con-
troller, and the parameter can re-design the charac-
teristic of the extended controller, keeping the closed-
loop characteristic that way. Although strong stabil-
ity systems can be obtained by the extended controller
in order to design safe systems, focusing on feedback
signal, the extended controller can adjust the magni-
tude of the feedback signal. That is, the proposed con-
troller can drive the magnitude of the feedback signal
to zero if the control objective was achieved. In other
words the feedback signal by the proposed method
can appear on demand of achieving the control ob-
jective. Therefore this paper proposes on-demand
type feedback controller using self-tuning GMVC for
plant with uncertainty. A numerical example is shown
in order to check the characteristic of the proposed
method.

Keywords: on-demand type feedback control, co-
prime factorization, generalized minimum variance con-
trol, self-tuning control

1. Introduction

Generalized Minimum Variance Control (GMVC) has
been proposed by Clarke and others [1]. GMVC is one
of the control methods for application in industry and the
controller is designed by generalized output to make the
closed-loop system stable. The control law can be ob-
tained by minimizing the variance of generalized output.
Once the generalized output is designed, the derived con-
troller cannot be re-designed without changing the closed-
loop characteristic. Industrial safety considerations make
it desirable that both the closed-loop system and con-
troller be stable, i.e., even if the closed-loop character-
istic has been designed, it is better that there is the margin
of re-designing the controller in order to design safe sys-

tems. Authors have proposed the extended GMVC design
method [2, 3]. The extended method introduces a new de-
sign parameter for conventional GMVC by using Youla-
Kucera parameterization [4–6]. In the method, the con-
troller can be re-designed by its parameter without chang-
ing the closed-loop characteristic. Therefore a strong sta-
bility system, which means that both closed-loop system
and controller are stable, can be obtained by re-designing
the controller [7–11]. The authors have proposed a con-
cept of strong stability rate [12–14] by using coprime fac-
torization and showed that strong stability system can be
obtained. Under the assumption that the controlled plant
is stable, the research about strong stability rate has fo-
cused on a stable open-loop output. For example, if the
value of strong stability rate becomes 1, the controlled
output becomes equal to reference signal in the steady
state whether the feedback loop is cut or not. This situ-
ation indicates that the control objective is achieved and
the feedback signal is not demanded (that is, the feed-
back signal becomes zero) in the steady state. In other
words, new concept controller is considered by using co-
prime factorization, whose feedback signal emerges based
on demand to make controlled output follow the refer-
ence signal, and becomes zero if controlled output be-
comes equal to the reference signal. In this method, the
role and the benefit that the feedback signal becomes zero
contribute to constructing safe systems because the output
of the proposed system does not diverge even if the feed-
back signal becomes zero by an accident. In particular,
when controlled output of thermal process is defined as
temperature [K], what the feedback signal becomes zero
means that the measured temperature becomes 0 K. In
this case, the controller will always operate to heat the
controlled plant in order to make the controlled output
follow the reference signal. Consequently, it causes ab-
normal temperature increase to the controlled plant. Al-
though it should be shutdown immediately in considera-
tion of safety if the feedback signal becomes zero by an
accident, the shutdown based on the predetermined pro-
cedure is desirable. Because the proposed method can
keep system safety even if the feedback signal is zero,
it can be shutdown safely. This characteristic is useful
for actual systems from the viewpoint of safety margin.
Although authors have newly proposed on-demand type
feedback controller [15], the case with plant uncertainty
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has not been considered. Therefore this paper proposes
self-tuning GMVC based on on-demand type feedback
controller. A numerical example is shown in order to
check the behavior of the proposed controller.

This paper is organized as follows. Section 2 describes
problem statement and conventional GMVC. Section 3
extends GMVC through coprime factorization and gives
the proposed self-tuning controller. Section 4 shows a nu-
merical example to check the behavior of on-demand type
feedback controller. Section 5 summarizes the result of
this paper.

Notations: This paper assumes that the controlled plant
is stable. z−1 means backward shift operator z−1y(t) =
y(t − 1). A[z−1] and A(z−1) mean polynomial and ratio-
nal function with z−1 respectively. Steady state gain A(1)
of transfer function is calculated as z−1 = 1 under the as-
sumption that signals such as input and output for system
does not change with regard to time t.

2. Problem Statement and Conventional
GMVC

A single-input single-output system is considered.

A[z−1]y(t) = z−kmB[z−1]u(t)+C[z−1]ξ (t) . . (1)
t = 0,1,2, . . .

u(t) and y(t) are input and output respectively. km is
time delay, ξ (t) is white Gaussian noise with zero mean.
A[z−1], B[z−1] and C[z−1] are the polynomials with de-
grees n, m and l.⎧⎪⎨

⎪⎩
A[z−1] = 1+a1z−1 + · · ·+anz−n

B[z−1] = b0 +b1z−1 + · · ·+bmz−m

C[z−1] = 1+ c1z−1 + · · ·+ clz−l
. . . (2)

On the system (1) the following assumptions are hold.

1. The degrees n, m and l of A[z−1], B[z−1] and C[z−1],
and the time delay km are known.

2. The coefficients of A[z−1], B[z−1] and C[z−1] are
known.

3. The polynomials A[z−1] and B[z−1], A[z−1] and
C[z−1] are coprime.

4. The polynomial C[z−1] is stable.

The control objective is to make the output y(t) follow the
reference signal w(t). To achieve this objective, perfor-
mance index J averaged over the noise is minimized.

Φ(t + km) = P[z−1]y(t + km)+Q[z−1]u(t)

−R[z−1]w(t) . . . . . . . . (3)

J = Ex[Φ2(t + km)] . . . . . . . . (4)

Φ(t + km) is generalized output. P[z−1], Q[z−1] and
R[z−1] are polynomials with degrees of np, nq and nr.
These polynomials are selected to obtain a stable closed-
loop characteristic. In conventional GMVC, Diophantine

equation is introduced to find E[z−1] and F [z−1].

P[z−1]C[z−1] = A[z−1]E[z−1]+ z−kmF [z−1] . . (5)

where

E[z−1] = 1+ e1z−1 + · · ·+ ekm−1z−(km−1) . . (6)

F [z−1] = f0 + f1z−1 + · · ·+ fn1 z−n1 . . . . (7)
n1 = max{n−1,np + l− km} . . . . . (8)

The solution E[z−1] of Diophantine equation is used to
calculate the following polynomial G[z−1]. T [z−1] gives
the closed-loop characteristic.

G[z−1] = E[z−1]B[z−1]+C[z−1]Q[z−1] . . . (9)

T [z−1] = P[z−1]B[z−1]+Q[z−1]A[z−1] . . . (10)

From Eqs. (5) and (9), the generalized output and the pre-
diction Φ̂(t + km|t) can be given.

Φ(t + km) = Φ̂(t + km|t)+E[z−1]ξ (t + km) . . (11)
Φ̂(t + km|t)

=
F[z−1]y(t)+G[z−1]u(t)−C[z−1]R[z−1]w(t)

C[z−1]
(12)

Since Φ̂(t +km|t) and the noise term E[z−1]ξ (t +km) have
no correlation each other, the control law u(t) to minimize
J can be obtained by the following equation.

Φ̂(t + km|t) = 0 . . . . . . . . . . . . (13)

Then the control law is obtained as following equation.

u(t) =
C[z−1]R[z−1]

G[z−1]
w(t)− F [z−1]

G[z−1]
y(t) . . . (14)

The closed-loop system for Eq. (14) can be given as,

y(t) =
z−kmB[z−1]R[z−1]

T [z−1]
w(t)+

G[z−1]
T [z−1]

ξ (t) . (15)

where T [z−1] is defined in Eq. (10).

3. Extension of GMVC by Coprime Factoriza-
tion

3.1. Coprimely Factorized Control Systems
For coprime factorization, the family of stable rational

functions RH∞ is considered,

RH∞ =
{

G(z−1) =
Gn[z−1]
Gd[z−1]

}
. . . . . (16)

Gd[z−1] is stable polynomial. Transfer function Gp(z−1)
in Eq. (1) between u(t) and y(t) is expressed by a ratio of
rational functions in RH∞,

y(t) =
z−kmB[z−1]

A[z−1]
u(t)

= Gp(z−1)u(t)

= N(z−1)D−1(z−1)u(t). . . . . . . (17)
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N(z−1) and D(z−1) are rational functions in RH∞ and co-
prime each other. This paper assumes that the controlled
system Gp(z−1) is stable. In the next step, the Bezout
identity is introduced.

X(z−1)N(z−1)+Y (z−1)D(z−1) = 1 . . . . (18)

The solutions X(z−1) and Y (z−1) of Bezout identity are
in RH∞. From Eqs. (17) and (18), all the stabilizing con-
troller can be expressed in Youla-Kucera parameteriza-
tion [4].

u(t) = C1(z−1)w(t)−C2(z−1)y(t) . . . . (19)

C1(z−1) = (Y (z−1)−U(z−1)N(z−1))−1K(z−1) (20)

C2(z−1) = (Y (z−1)−U(z−1)N(z−1))−1

· (X(z−1)+U(z−1)D(z−1)) . . . . (21)

U(z−1), K(z−1) ∈ RH∞ are free parameters. From
Eqs. (19), (20), (21) and (17), the closed-loop transfer
function is given.

y(t) = N(z−1)D−1(z−1)(Y (z−1)−U(z−1)

·N(z−1))−1K(z−1)w(t)−N(z−1)D−1(z−1)

·(Y (z−1)−U(z−1)N(z−1))−1(X(z−1)

+U(z−1)D(z−1))y(t) . . . . . . . (22)

From Eq. (18),

y(t) = N(z−1)K(z−1)w(t). . . . . . . . (23)

If the controller is designed for settling control, the out-
put y(t) follows and converges to w(t) as time progresses.
It means that the steady-state gain of closed-loop trans-
fer function (Eq. (23)) is designed to be N(1)K(1) = 1.
Moreover it finds that the design parameter U(z−1) in the
stabilizing controller (Eq. (19)) is independent of Eq. (23).
Therefore when closed-loop system (Eq. (23)) is designed
to be stable and stabilizing controller (Eq. (19)) is also de-
signed to be stable through U(z−1), strong stability sys-
tem can be obtained.

3.2. Concept of On-Demand Type Feedback
Controller

In the previous research [16], the authors have proposed
a design method of strong stability system and defined the
selection method of design parameter U(z−1), which can
equate steady state gains of the closed-loop system and
the open-loop system. In that research, it was found that
the derived closed-loop system allows that the feedback
signal becomes zero in the steady state because the con-
troller is designed to make the open-loop gain equal to the
closed-loop gain. It means that the feedback signal ap-
pears so as to achieve the control objective, and its signal
becomes zero when the control objective was achieved in
the steady state. Therefore this paper defines such a con-
troller as on-demand type feedback controller [15].

In this subsection, the concept is described briefly. As-
suming that the feedback signal C2(z−1)y(t) in the sta-
bilizing controller (Eq. (19)) becomes zero, and consid-
ering the open-loop system for the closed-loop system

(Eq. (23)), the controller (Eq. (19)) is given as follows.

u(t) = (Y (z−1)−U(z−1)N(z−1))−1K(z−1)w(t) (24)

From Eq. (17), the open-loop transfer function from w(t)
to y(t) is given.

y(t) = N(z−1)D−1(z−1)u(t)

= N(z−1)D−1(z−1)

·(Y (z−1)−U(z−1)N(z−1)
)−1

K(z−1)w(t)

=
(
Y (z−1)D(z−1)−U(z−1)N(z−1)D(z−1)

)−1

·N(z−1)K(z−1)w(t) . . . . . . . . (25)

Because of Y (z−1)D(z−1) = 1−X(z−1)N(z−1), the open-
loop system can be obtained as shown in the following
equation.

y(t) =
{

1− (X(z−1)+U(z−1)D(z−1))N(z−1)
}−1

·N(z−1)K(z−1)w(t) . . . . . . . . (26)

The steady state output y(t) of open-loop system is given.

y(t) = {1− (X(1)+U(1)D(1))N(1)}−1

·N(1)K(1)w(t) . . . . . . . . . . (27)

Moreover the design parameter U(z−1) =U(1) is selected
as follows.

U(1) = −D−1(1)X(1) . . . . . . . . . (28)

Then the steady state output y(t) in Eq. (27) can be ex-
pressed as following equation.

y(t) = N(1)K(1)w(t) . . . . . . . . . . (29)

The design parameter U(1) can give the poles of con-
troller (Eq. (19)) with keeping the closed-loop trans-
fer function (Eq. (23)) that way. From Eq. (29), the
steady state gain of open-loop system becomes equal
to the closed-loop’s gain, even if the feedback signal
C2(z−1)y(t) in Eq. (19) becomes zero. In other words, the
open-loop system’s output becomes equal to the reference
signal w(t) in the steady state because N(1)K(1) is de-
signed to be 1 through conventional GMVC. This means
that the feedback signal of closed-loop system becomes
zero in the steady state by choosing U(1) as Eq. (28). That
is, on-demand type feedback controller can be obtained.

In the next step, GMVC based on on-demand type feed-
back controller is designed under the assumption that the
controlled plant is stable and the unknown plant param-
eters converge on true values. In the case that P[z−1]
and Q[z−1] in generalized output Φ(t +km) are chosen for
T [z−1] to be stable, comparing transfer function (Eq. (17))
to Eq. (15), N(z−1) and D(z−1) can be chosen as follows;

N(z−1) =
z−kmB[z−1]

T [z−1]
. . . . . . . . . (30)

D(z−1) =
A[z−1]
T [z−1]

. . . . . . . . . . (31)

Substituting Eqs. (30) and (31) into Bezout equation
(Eq. (18)) and comparing it to Diophantine equation
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(Eq. (5)), the solutions X(z−1) and Y (z−1) of Bezout
equation are given.

X(z−1) =
F [z−1]
C[z−1]

. . . . . . . . . . . (32)

Y (z−1) =
G[z−1]
C[z−1]

. . . . . . . . . . . (33)

From Eqs. (19), (20) and (21), the control law (Eq. (14))
can be expressed by selecting the free parameters as fol-
lows.

K(z−1) = R[z−1] . . . . . . . . . . . (34)

U(z−1) = 0 . . . . . . . . . . . . . (35)

To extend the controller (Eq. (14)), instead of choosing
U(z−1) as 0, on-demand type feedback controller uses
U(1) = −D−1(1)X(1) as given in Eq. (28). Then the ex-
tended controller through U(1) is obtained as follows.(

G[z−1]T [z−1]−U(1)z−kmB[z−1]C[z−1]
)

u(t)

= C[z−1]T [z−1]R[z−1]w(t)

−(
F [z−1]T [z−1]+U(1)A[z−1]C[z−1]

)
y(t) (36)

To calculate this control law, the polynomial operating on
u(t) in the left-hand side of Eq. (36) is divided by the lead-
ing term g0 and the remaining term.

G[z−1]T [z−1]−U(1)z−kmB[z−1]C[z−1]

= g0 + z−1G′[z−1] . . . . . . . . . . (37)

Then the control law (Eq. (36)) is calculated by

u(t) =
1
g0

{
C[z−1]T [z−1]R[z−1]w(t)

− (F[z−1]T [z−1]+U(1)A[z−1]C[z−1])y(t)

−G′[z−1]u(t −1)
}

. . . . . . . (38)

From Eq. (23) it is noticed that the closed-loop transfer
function from reference signal to output is independent
of U(z−1). And the controller poles can be given by the
following equation.

G[z−1]T [z−1]−U(1)z−kmB[z−1]C[z−1] = 0 . . (39)

3.3. Self-Tuning Controller
In the case that the plant parameters are unknown,

GMVC based on on-demand type feedback controller
should be designed as self-tuning controller, by apply-
ing the parameter identification law. That is, conven-
tional GMVC is designed by using the nominal values
of plant parameters so that the closed-loop character-
istic becomes the desired characteristic T [z−1] through
P[z−1], Q[z−1] and R[z−1]. Moreover on-demand type
feedback controller can be designed by coprime factor-
ization and using U(1) in the previous subsection. It is
noticed that the proposed controller can maintain the con-
ventional GMVC’s closed-loop characteristic because of
y(t) = N(z−1)K(z−1)w(t), when the identified parame-
ters converge on true values. In this paper the follow-
ing parameter identification law is used. In order to make

identified parameters converge on true values, persistently
exciting (PE) signal should be added to the control sys-
tem [17, 18].

θ̂ (t) = θ̂(t −1)

+
Γ(t −1)ψ(t −1)

1+ψT (t −1)Γ(t −1)ψ(t −1)
ε(t) (40)

Γ(t) = Γ(t −1)

−Γ(t −1)ψ(t −1)ψT (t −1)Γ(t −1)
1+ψT (t −1)Γ(t −1)ψ(t −1)

(41)

Γ(0) > αI, 0 < α < ∞

ε(t) = y(t)− θ̂T
(t −1)ψ(t −1) . . . . . (42)

θ̂ (t) =
[
â1(t), . . . , ân(t), b̂0(t), . . . , b̂m(t)

]
ψ(t −1) = [−y(t −1), . . . ,−y(t −n),u(t − km),

. . . ,u(t − km −m)]

â1(t), . . . , b̂m(t) are the identified parameters, Γ(t) is error
covariance matrix, ε(t) is identification error, α is initial
factor of Γ(t).

4. Numerical Example

In this section, the numerical example is shown to
check the behavior of the proposed controller. The fol-
lowing controlled system described in Eq. (1) is given.

A[z−1] = 1+0.6z−1 +0.7z−2

B[z−1] = 0.5−1.5z−1

C[z−1] = 1, km = 1

Simulation steps are 200, the initial values of output and
input are assumed to be zero. The variance of white Gaus-
sian noise ξ (t) is σ2 = 0.04. In order to design the closed-
loop characteristic to be stable, the generalized output is
given so as to make the controlled output y(t) follow the
reference signal w(t).

Φ(t +1) = y(t +1)+0.8u(t)−0.84z−2w(t)

The reference signal w(t) is rectangular wave with the am-
plitude 1 and the period of 80 steps. When the identified
parameters converge on true values, the closed-loop poles
are 0.3923 ± 0.5262i and its absolute value is 0.6563.
Therefore the derived closed-loop system for true values
of plant parameters is designed to be stable. In this case,
the new design parameter U(1) = −D−1(1)X(1) is calcu-
lated to 0.4748. The controller’s poles are 0.7736±0.58i
and 0.5317 and their absolute values are 0.9669 and
0.5317. That is, the strong stability system can be ob-
tained. If the parameter is selected as U(1) = 0, the
controller becomes the conventional GMVC in Eq. (14).
Then the absolute value of controller’s pole is 1.1538.
On the other hand, the closed-loop poles are equal to the
proposed ones. It means that the conventional GMVC
for this example does not make strong stability system.
Therefore it finds that the new design parameter U(1) =
−D−1(1)X(1) has the characteristic to construct a strong
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Fig. 1. Block diagram of the proposed system.
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Fig. 2. Conventional method (output response).
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Fig. 3. Proposed method (output response).

stability system. But it is noticed that the new design pa-
rameter does not always supply strong stability system be-
cause it depends on the given system in Eq. (1) and the
conventional controller. Fig. 1 shows the block diagram
of the proposed system. P, C1 and C2 mean controlled
plant, feedforward and feedback part of the proposed con-
troller in Eq. (19).

The nominal values of plant parameters and the param-
eter identification law’s parameter α are set to be 0.9×true
values and 1. Figs. 2 and 3 show the output responses by
the conventional method and the proposed method respec-
tively. The dashed lines of their figures mean the reference
signals w(t) and the solid lines of them show the output re-
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Fig. 4. Conventional method (control input).
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Fig. 5. Proposed method (control input).

sponses y(t). From these figures it can find that their out-
puts are almost the same (the difference comes from the
noise), although their controllers are different (Eqs. (14)
and (36)). Moreover, Figs. 4 and 5 show the control inputs
u(t) (upper part), the feedforward signals (middle one),
which are expressed as C1(z−1)w(t) described in Eq. (19),
and the feedback signals C2(z−1)y(t) (lower one). These
figures show that the control inputs are almost the same.
On the other hand, it can find that the feedforward and
the feedback signals are different. In Fig. 5, the proposed
controller shows that the feedback signal emerges in or-
der to follow the reference signal and tries to become zero
when the output tries to become equal to the reference sig-
nal. When the reference signal is switched from 1 to −1,
the feedback signal emerges again, in order to follow new
reference signal. And it tries to become zero again when
the control objective is achieved. If there is no disturbance
and the control objective is achieved, the feedback signal
becomes equal to zero in the case that the plant param-
eters are true values [15]. Therefore it can find that the
proposed controller has a characteristic whose feedback
signal emerges based on demand of achieving the control
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Fig. 6. Identified parameters (conventional method).
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Fig. 7. Identified parameters (proposed method).

objective and tries to become zero when the control objec-
tive is achieved. This means that the proposed controller
is on-demand type feedback controller. Figs. 6 and 7 show
the results of identified parameters. In these figures the
dashed lines mean the true values of plant parameters and
the solid lines mean the identified parameters. From each
figure, it can find that the identified parameters are going
to converge on true values.

5. Conclusion

This paper proposed a design method of self-tuning
GMVC based on on-demand type feedback controller
using coprime factorization. The numerical example
showed the behavior of the proposed controller, whose
feedback signal emerges based on demand to have con-
trolled output follow the reference signal and tries to be-
come zero if controlled output tries to become equal to the
reference signal in a noisy environment. As future works,
there is an extension to multi-input multi-output systems
using the proposed method.
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