ヤコビ行列を用いた水中ロボットの軌道追従制御実験

向田直樹 (岡山大学) 米森健太 (岡山大学) 菊池章 (東京大学) Myo Myint(岡山大学) Khin Nwe Lwin(岡山大学) 見浪護 (岡山大学) 矢納陽 (川崎医療短期大学) 阪幸宏 (広和株式会社) 藤本勝樹 (広和株式会社)

1. 緒言

今日,海底探索等様々な水中作業のために多くのロ ボットが研究・開発されている.海底探索の目的はメ タンハイドレードなどの海底資源の発見である.海底 資源は海底火山など地形の特異点に存在しているため ロボットを用いて海底の地形をマッピングし埋蔵地の 特定を行っている.マッピングを効率的に行うために はロボットが水中で長時間活動できることが必要不可 欠である.

現在,水中ロボットの電力供給方法には有線での供 給とバッテリー方式が存在するがそれぞれ問題点が存 在する.有線の場合ケーブルが波などで消耗しやすく, また深海に潜るためケーブル自体がかなりの長さにな り取り回しに苦労する.一方バッテリーの場合,海中 での活動時間が制限され,充電のため船舶と海底を往 復しなければならない.さらに,作業場所と母船の往 復により作業効率が大幅に減少することも十分に有り 得る.これらの問題を解決し水中での活動時間を延ば すために、水中に給電設備を設置しバッテリー容量が 少なくなるとロボットが自動で帰還・充電するといっ たシステムの提案が行われている.これを実現するた めには離れた作業場所から給電設備へ自動で帰還する システム,さらに水中の給電設備への嵌合が要求され る.石井ら [1] は超音波および単眼カメラによる,水中 給電へ向けたドッキング制御を±100[mm]の距離誤差 で実現している.著者らも実験プールでの実験[2]だけ でなく,和歌山県の海においても嵌合実験を成功させ ている [3].

しかし水中ロボットの海中での運用においては,海 底に様々な障害物が存在しうることから,水中ロボッ トは給電設備へ向かう際,その障害物を回避しつつ接 近する動作が必要となる.水中給電設備を海中障害物 のないエリアに設置して障害物を予め避ける方法も現 実的な選択である.しかし,今後探索対象物を自然環 境の岩や改装に広げて研究を進めるとき,やはり障害 物を回避しつつ目的の対象物に自動的に接近する技術 は必要となる.そこで本報では,水中ロボットの推力 指示電圧と水中ロボットに誘起される速度の関係を示 すヤコビ行列を計測し,その逆行列を用いて目標軌道 に追従させる制御方法を提案し,その性能を報告する.

2. 水中ロボット ROV

水中実験で使用した遠隔操作型水中ロボット ROV(Remotely Operated Vehicle)(広和(株)製,最 大水深 50m)を図1に示す.本 ROVの各寸法は幅 280mm,長さ 380mm,高さ 310mm であり,制御用

図1 ROV の外観

双眼視覚センサとして前方に 2 台のカメラ(撮像素子 CCD,画素数 38 万画素,信号方式 NTSC,最低被写 体照度 0.8lx,ズームなし)を搭載している.本実験 では ROV の位置・姿勢制御を行う際に対象物の立体 認識を行うため,この 2 台のカメラを使用した.図 2 に本実験に使用する座標系および ROV のスラスタの 配置を示す.x軸方向移動用に水平スラスタ 2 基(推 力 9.8N),z軸方向移動用に垂直スラスタ 1 基(推力 4.9N),y軸移動用に横スラスタ 1 基(推力 4.9N)を 搭載しており,前進時の最大推力は 9.8N である.ま た,照度確保のため LED ライト(5.8W)を 2 基搭載 している.

3. 3次元位置·姿勢認識法

ROV の制御を行う際, ROV の前方に取り付けられ た2台のカメラからの画像を使用する.カメラから取得 した画像を PC に転送し, Multi-step GA[4] と Modelbased Matching 法 [5] を組み合わせることにより,対 象物との相対的位置・姿勢を認識している . Multi-step GAとは,入力された画像に対し,次の画像が入力され るまでの間 GA 遺伝子を進化させ,その時点の最大適 合度を得る遺伝子情報を対象物の位置・姿勢として出 力する方法である.この Multi-step GA を含む制御動 作をビデオレート (33ms) 以内で繰り返し行うことで, 実時間での認識・制御を可能としている.また,この とき遺伝子情報から得た位置・姿勢の評価に用いる適 合度は Model-based Matching 法によって得られる値 で,対象物と探索モデルとの一致度合いを示す適合度 関数を用いて計算される.これにより,本実験で用い た認識法は対象物の位置・姿勢の実時間認識を可能と している.

図 2 ROV と対象物の座標系および ROV のスラスタの 配置

4. 軌道追従制御法

図 2 に示す対象物に設置した座標系 \sum_{M} で表した速度を $\dot{r}(=[\dot{x} \text{ m/s}, \dot{y} \text{ m/s}, \dot{z} \text{ m/s}, \dot{\epsilon}_{3} 1/\text{s}])(\varepsilon_{3} \text{ t} z 軸周)の回転を表す),推力モータのアンプへの入力電圧を <math>v \text{ V} \mathcal{E}, \dot{r}$ に対する v の関係はヤコビ行列 J を用いて式 (1) のように表すことができる.

$$\dot{\boldsymbol{r}} = \boldsymbol{J} \boldsymbol{v}$$
 (1)

ここで,比例ゲインを K_P 1/s,目標位置を r_d m,目標速度を \dot{r}_d m/s,現在の位置を r m と定義することで,式 (1)を用いた制御則を次式のように与えることとする.

$$\begin{aligned} \boldsymbol{v} &= \boldsymbol{J}^{-1} \dot{\boldsymbol{r}}_d \\ &= \boldsymbol{J}^{-1} K_P(\boldsymbol{r}_d - \boldsymbol{r}) \end{aligned} \tag{2}$$

しかし,フィードバック制御だけでは偏差を生じて 初めて電圧が入力されるため,目標軌道に対して遅れ が生じる.そこで,フィードフォワードおよびフィード バック入力を組み合わせた軌道追従制御法を導入する. フィードフォワード入力によって,目標軌道の速度に対 する入力電圧を設定することが可能になる.その入力 電圧に従い追従を行って生じた偏差に対しは,フィー ドバック入力が機能する,という構成の軌道追従制御 法である.フィードフォワード入力に対するゲインを K_D と定義すると,式(2) はフィードバック入力および フィードフォワード入力によって,式(3) に改める.さ らに位置・姿勢 r は,Multi-step GA を用いて計測し た推定値であるため \hat{r} と記す.これらを用いて以下の 式を導出した.

$$\boldsymbol{v} = \boldsymbol{J}^{-1}(K_P(\boldsymbol{r}_d - \hat{\boldsymbol{r}}) + K_D \dot{\boldsymbol{r}}_d)$$
(3)

図3に式(3)に示す制御則にROVを含めたブロック 線図を示す.左側点線内にコントローラ,右側破線内に ROVを示している.上述した制御式に基づき,計算さ れた指令電圧はROV内のアンプへと入力されモータが 回転し,推力を得る.この推力によって生じたROVの 対象物に対する相対的移動量をMulti-step GAによっ て推定する.

		電圧入力軸				
		x	y	z	ε_3	
	x[cm]	100	5	0	0	
各軸方向	y[cm]	10	50	0	35	
移動量	z[cm]	0	0	-30	0	
	$\varepsilon_3[^\circ]$	0	2	5	90	
時間	[s]	4.65	9.43	3	5.28	

5. ROV の動作解析

本手法ではx, y, z方向と ε_3 の回転を目標軌道とし て与えているが,スラスタの配置と ROV の重心位置 によりアクチュエータと発生速度の直交化はできない. そこでスラスタ出力と速度の関係を行列表現する.各 軸方向の移動に用いるスラスタに電圧を入力し,最大 速度となった時から移動距離と時間を測定し,速度を 算出した.例えばy軸方向の測定を行う場合,y軸方向 の移動へ用いているスラスタにのみ電圧を入力し,各 軸成分の速度を計算する.これにより,その軸のスラ スタによる運動が各軸へどのように影響してるかが解 析できる.

各軸移動量の測定結果を表1に示す.各軸とも,他 の軸方向への速度に関する影響が生じていることを確 認できた.この値を用いてヤコビ行列の作成を行った.

表1を用いて得られたヤコビ行列を式 (4) に示す.x, y, z 軸方向に対応する値の単位は m/s となっており, ε_3 に対応する単位は rad/s である.このヤコビ行列を 式 (3) に適用し軌道追従制御実験を行う.

	0.1483	0.0030	0	0]	
J =	0.0148	0.0303	0	0.0442	(4)
	0	0	-0.0690	0	(4
	0	0	0.0002	0.0020	

6. 円軌道追従制御実験

図 4 に示すように,式(5)の位置を ROV の初期位 置とし,円軌道追従実験を行った.また,この初期位 置における ROV の座標系を \sum_{C} と定義し,この座標 を用いて目標軌道を式(6),目標速度を式(7)のように ROV に与えた.式(6),(7)中の T s は周期を表してお り,本実験では 23s,47s,70sの三通りで行い,回転用 のフィードバックゲインゲインは $K_{P\varepsilon3} = 5.0 \times 10^{-6}$ 1/s とし,移動用のフィードバックゲインをそれぞれ の周期において [K_{Px} 1/s, K_{Py} 1/s, K_{Pz} 1/s]=[0.15, 0.15,0.05],[0.3,0.3,0.1],[0.6,0.6,0.2]の三通り に変更し,計9回の実験を行った.

$$\begin{cases} x = {}^{H}x_{M} = 400 \\ y = {}^{H}y_{M} = 0 \\ z = {}^{H}z_{M} = -40 \\ \varepsilon_{3} = {}^{H}\varepsilon_{3M} = 0 \end{cases}$$
(5)

RSJ2016AC3B2-05

図 3 ブロック線図

図4 実験環境

$$\begin{cases} {}^{C}x(t) = -200\cos\left(\frac{2\pi}{T}t\right) + 400\\ {}^{C}y(t) = 200\sin\left(\frac{2\pi}{T}t\right) \end{cases}$$
(6)

$$\begin{cases} C\dot{x}(t) = \frac{400\pi}{T} \sin\left(\frac{2\pi}{T}t\right) \\ C\dot{y}(t) = \frac{400\pi}{T} \cos\left(\frac{2\pi}{T}t\right) \end{cases}$$
(7)

7. 軌道追従制御結果

実験結果を y, x 軸方向の時間変化量で示したもの を図 5 に示す.軌道追従制御開始時間を 0 としており, 周期 23 の条件における y, x 軸方向の移動量をそれぞ れ (a), (b) に示し,同様に周期 47 の条件における y, x 軸方向の移動量を (c), (d),周期 70 の条件における y, x 軸方向の移動量を (e), (f) に示す.x 軸方向の移 動量について考えた場合,どの周期においても,目標 軌道に対し位相は誤差があるものの,おおよそ追従し ていることがわかる.また,軌道追従性の高かった周 期 70 s の ROV の動作を図 6 に示す.しかし, y 軸方 向の移動量について考えると,一番周期が短い 23 の時 大きな誤差が生じている.特に最小のゲインを用いた 場合, y 軸方向の実際の軌道は目標軌道に対して逆位 相のものであり,制御結果が不安定になっている.

x, y軸方向の制御性能に差が生じる原因として, x 軸方向に用いているスラスタは2基用いているのに対 し, y 軸方向には1基しか用いていないためだと考えられる.現在の仕様では,ゲインの調整によって改善は可能と考えられるが,確認できた軌道追従性能は,作成したヤコビ行列の精度にも大きく依存しているため, ヤコビ行列の計算方法を改良する必要がある.

8. 結言

障害物への回避行動やスムーズな給電箇所への移動 のために,軌道追従制御を実装した ROV の研究開発を 進めている.本研究では電圧と速度の関係を表すヤコ ビ行列を用いて,円軌道に対する軌道追従制御実験を 行い,その結果,ヤコビ行列を用いて,円軌道追従制 御によって同時に二つの方向への制御を行う場合,姿 勢を保持しつつ各軸方向への軌道追従制御を行えるこ とが確認できた.

本報の結果をもとに,今後は軌道追従制御性能のさ らなる向上を目指す.

謝辞

本研究では広和株式会社マリンシステム部の協力を 得ました.ここに謝意を表します.

参考文献

- [1] 石井和男,園田隆,中西亮汰,河島晋,日高翔太,"自立型水中ロボットのドッキング制御に関する研究",ロボティクス・メカトロニクス講演会 2015.
- [2] 矢納 陽,大西 祥太,石山 新太郎,見浪 護,"水中自動充 電を目指したビジュアルサーボ型水中ロボットの自動嵌 合制御",日本機械学会論文集,Vol.81 (2015), No.832, pp. 15-00391, DOI:10.1299/transjsme.15-00391
- [3] 日本経済新聞, "水中用ロボット自立制御に成功", (2016 年2月8日)
- [4] Myo Myint, Kenta Yonemori, Akira Yanou, Khin Nwe Lwin, Mamoru Minami and Shintaro Ishiyama, "Visual-based Deep Sea Docking Simulation of Underwater Vehicle Using Dual-eyes Cameras with Lighting Adaptation", MTS/IEEE OCEANS, Shanghai International Convention Center, April 10-13, 2016.
- [5] Myo Myint, Kenta YONEMORI, Akira YANOU, Shintaro ISHIYAMA and Mamoru MINAMI, "Robustness of Visual-Servo against Air Bubble Disturbance of Underwater Vehicle System Using Three-Dimensional Marker and Dual-Eye Cameras", MTS/IEEE OCEANS, Whashington, 18.Oct - 22.Oct, 2015.

RSJ2016AC3B2-05

(b) 10秒

(c) 20秒

(e) 40秒

図 6 周期 70 秒ゲイン [K_{Px}, K_{Py}, K_{Pz}]=[0.6, 0.6, 0.2] 時における軌道

(f) 50秒

(a) 0秒

(h) 70秒

(g) 60秒