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Abstract—To track moving target, keep it at the center of the
camera’s view and overcome the defects of fixed hand-eye visual
servoing system, we proposed an eye-vergence visual servoing
system. In the new system, left and right cameras’ directions
could be rotated to observe and keep the target object to be
seen at the center of camera images to reduce the influence of
aberration of a camera lens. In practical applications among
different indoor environments, lighting conditions may vary
greatly. Therefore, the hue of HSV and model-based matching
method are utilized to detect an object in the eye-vergence system.
In this paper, it is carried out that comparison and analysis
of recognition experiments in different illumination. Through
the interior illumination changing experiment it can be ensured
that the recognition method has a robustness to illumination
changing within a certain range. And in the end, through a 3D
pose tracking experiment, it can be verified that the tracking
is still carried out smoothly even though illumination of object
frequently changes.

I. INTRODUCTION

The visual servoing, a method for controlling a robot using

visual information in the feedback loop, is expected to be

able to allow the robot to adapt to changing or unknown

environments [1]. Some methods have already been proposed

to improve observation abilities by using stereo cameras [1],

i.e., multiple cameras [3] or two cameras. There are two

main configurations with stereo cameras, the first is an eye-

in-hand configuration [2] that all cameras are mounted on

the robot’s end-effector. The second configuration has the

camera(s) fixed in the workspace [4]. These methods obtain

multiple different views to observe an object by increasing the

number of cameras.

As shown in Fig.1, the dual-eye stereo camera system is

used in our eye-vergence visual servoing system [2]. The

camera can rotate by itself. Therefore, the system can track a

target to observe it at the center of camera images to enhance

the tracking ability (trackability). In line with this tactic, the

author has developed an eye-vergence visual servoing control

system to enhance the trackability. About the superior 3D

tracking performance under a single light environment we have

described in detail [5], [6], [7]. And we have researched the

performance of orientation recognition method[5].

There are other methods for identifying moving objects

from a video sequence such as frame difference, background

subtraction and optical flow three methods [8]. In a big

class, there are many subclasses. For example, Lucas Kanade
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Fig. 1. For imitating the motion of human two cameras can rotate to gaze
an object in the eye-vergence visual servoing system. The object is taking
the horizontal reciprocating motion around the white arrow. And the end-
effector is tracking it to keep facing it like (b). But the motion inertia of
the manipulator is too large to track the object. Therefore, it is shown as (a)
and (c), there is a distance between the object and end-effector. But the two
cameras with the light moment of inertia can track the object in time. That
is the merit of the eye-vergence visual servoing system.

pyramid optical flow are also fast enough and perform well in

tacking tasks. However, they all need to compare two frames

to detect an object. Our model-based matching method [9] is

to solve detecting problems from another angle. It just directly

process raw images and only the current ones. There is no need

to compare pictures of different frames.

In this paper, the model construction is optimized and

improved. We will research the indoor light environment

adaptability of the proposed eye-vergence visual servoing

system. Firstly we introduce the modeling method of a known

object in detail. Secondly, as for detecting the object, a model-

based matching method [9] is used. And genetic algorithm is

utilized as an optimization algorithm to detected the object in

real-time. The readers who are interested in modeling method

and exploration method can read chapter II-A in detail.

This paper about eye-vergence visual servoing is basic

research. Interested readers is referred to [10] for details about

the application of the study.

II. 3D POSE TRACKING METHOD

A. Model-Based Recognition Using Real-Time Multi-Step GA

A 3D-ball-object as shown in Fig.5 (d) is used as 3D target

object whose size and color are known.

Figure. 2 (a) shows searching models Σn without sampling

points. The model to detect 3D-ball-object has the same 3D

structure. The part of inner circle is named as Sin, and part

between Sin and outer circle is named Sout. After a projection

of the model to left and right images it will be shown as (b).
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Fig. 2. Definition of a solid model without sampling points (a), left/right
searching models after projection transformation (b) and taking sampling
points in two images (c). When a model completely overlap the object (d),
its fitness function gets the maximum

Then we take the sampling points on the images like (c) and

calculate the fitness F (Eψ
M̂
).

The dotted line block named R in Fig.2 (a) means a

searching space that will be described in detail in IV-B.

Through the projection transformation Sin and Sout are

projected onto the 2D coordinates of left image ΣIL and right

image ΣIR named SL and SR shown in Fig.2 (b).

As shown in Fig. 2 (d), inner portions of a model corre-

sponding to three balls are Sin,R, Sin,G and Sin,B . Similarly

the three outer portions are Sout,R, Sout,G and Sout,B. Each

pair of circle and ring corresponds with a color, and three

pairs of circles and rings are corresponding to red, blue and

green. Each Sin is composed by three concentric circles with

36 sampling points. Each Sout is composed by two concentric

circles with 24 sampling points. On each circle, 12 sampling

points are taken at an equal interval. The sum of sampling

points is

Σs = Σsin+Σsout = 3× (12×3)+3× (12×2) = 180. (1)

Hue information of HSV is used to search for the target object

in the images. As shown of (3), as for a sampling point ri,

its set hue value is Hu, i.e., HR = 0, HG = 120, HB = 240.

When Hu− 20 < 0 it will be replaced with Hu − 20+360 >
0. And the hue value of a pixel overlapped by ri is hu. If

hu is near to Hu, the calculate value of ri is p(ri) = 1.

Otherwise, p(ri) = −1. As shown of (4), the sum of p(ri)
of all the sampling points in a model Σi is defined as fitness

F (Eψ
M̂
). The value of a sampling point is shown as (3). The

higher coincidence degree between a circle (inner portion) and

corresponding color ball is, the higher fitness is. Conversely,

the higher coincidence degree between a ring (outer portion)

and the corresponding color ball is, lower fitness will be. When

the searching model Σ
M̂

completely overlaps to the target

object like (d), then the fitness function gives maximum value

Fmax(
Eψ

M̂
) = Σs/Σsin = 180/108 = 1.67. (2)

When F (CLψ
M̂
) ≤ 0 or F (CRψ

M̂
) ≤ 0, it is set that

F (CLψ
M̂
) = 0 or F (CRψ

M̂
) = 0

p(ri) =

{
1 (hu ∈ [Hu − 20, Hu + 20], u = R,G,B),
−1 (hu /∈ [Hu − 20, Hu + 20], u = R,G,B).

(3)

F (Eψ
M̂
)=





( ∑

IRri∈

SR,in(CRψ
M̂

)

p(IRri)−
∑

IRri∈

SR,out(
CRψ

M̂
)

p(IRri)
)
/nR,in

+
( ∑

ILri∈

SL,in(CLψ
M̂

)

p(ILri)−
∑

ILri∈

SL,out(
CLψ

M̂
)

p(ILri)
)
/nL,in





/2

=
{
F (CRψ

M̂
) + F (CLψ

M̂
)
}
/2 (4)

To determine which solid model is most close to the real

target, a correlation function used fitness function in Genetic

Algorithm (GA) is defined for evaluation. This optimization

problem is solved by GA. The i-th 3D model is represented

by Σi, whose pose is assumed to the defined by chromosome
tx︷ ︸︸ ︷

10 · · · 10︸ ︷︷ ︸
12bit

ty︷ ︸︸ ︷
11 · · ·01︸ ︷︷ ︸

12bit

tz︷ ︸︸ ︷
01 · · · 10︸ ︷︷ ︸

12bit

ε1︷ ︸︸ ︷
11 · · · 10︸ ︷︷ ︸

12bit

ε2︷ ︸︸ ︷
10 · · ·10︸ ︷︷ ︸

12bit

ε3︷ ︸︸ ︷
10 · · · 01︸ ︷︷ ︸

12bit

.

Detail discussion about Real-Time Multi-Step GA (RT-MS

GA) is explained in [9], [10].

B. Orientation Recognition Method Using Quaternion

In our system quaternion representation [11] has been

adopted. The definition of unit quaternion is shown in Fig.3.

On the basis of axis-angle representation, a unit vector k

indicating direction, and an angle θ describing the magnitude

of rotation around the axis. By using k and θ, quaternion set

q = {η, ε}, q is defined as follows,

ε =
[
ε1, ε2, ε3

]T
=

[
kx, ky, kz

]T
= sin

θ

2
k, (5)

η is the scalar part of the quaternion, and ε is the vector part

of the quaternion. They satisfy the following relationship of

unit quaternion:

η2 + εT ε = 1. (6)

III. HAND & EYE VISUAL SERVOING

CONTROLLER

The block diagram of our proposed hand & eye-vergence

visual servoing controller is shown in Fig.4.

The manipulator is 7 links, each joint angle is set to qH =
[q1, ..., q7]. And the end-effector has 6-DOF, so q1 is set as

0 to remove the redundancy of the robot PA 10. The desired

angle of each link is set to qHd. For camera system, qC =
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Fig. 3. Defination of quaternion in the proposed system
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Fig. 4. Block diagram of the hand visual servoing system

[q8, q9, q10], and q8 is tilt angle, q9 and q10 are pan angles.

The desired angle of qC is set to qCd = [q8d, q9d, q10d].

In Fig.4, the hardware control system of the velocity-based

servo system of PA10 is expressed as

τ =KSP (qd − q) +KSD(q̇d − q̇) (7)
whereKSP andKSD are symmetric positive definite matrices

to determine PD gain. The controller of eye-visual servoing is

given by

q̇id = KP (qid − qi) (i = 8, 9, 10) (8)

where KP is spring constant. q̇id is input into pulse motors

for the cameras’ angles control as a pulse array.

IV. EXPERIMENT OF HAND & EYE-VERGENCE

VISUAL SERVOING

A. Experimental System

The utilized manipulator in the system is PA-10 robot

arm manufactured by Mitsubishi Heavy Industries. And two

rotatable cameras mounted on the end-effector are FCB-

1X11A manufactured by Sony Industries. The frame frequency

of stereo cameras is set as 30fps. The image processing

board, CT-3001, receiving the image from the CCD camera

is connected to the host computer (CPU: Intel Core i7-3770 ,

3.40 GHz). The structure of the manipulator and the cameras

are shown in Fig.5.

Fig. 5. Frame structure of manipulator

B. Interior Illumination Changing Experiment

Figure 6 shows the search area of GA that is defined based

on the range of motion of the object. Target position and

orientation relationship between the object and the end-effector

is set as:

EdψM = [0,−100[mm], 545[mm], 0, 0, 0]. (9)

If the range of exploration is too large, this will increase the

difficulty of convergence of GA to tracking objects and the

amount of unnecessary calculations. That is, the time required

for the algorithm becomes longer from the calculation start to

the termination criteria. This is unacceptable for a real-time

tracking system. If the search range is too small, the object

may be outside the search range.

z y

x

z
y

xz y

x

z

y

x

Fig. 6. Search area of GA. The origin of object generated random by GA

is limited to only in the area shown in the figure. The true object is Σ̂M .
A detected position of the target object is Ex

M̂
∈ [−200, 200],Ey

M̂
∈

[−195, 5],Ez
M̂

∈ [350, 750]

According to pre-set tracking conditions of (9) and a number

of tests, as shown in Fig.4and Fig.6, we set the search area of

GA as

Ex
M̂

∈ [−200, 200],Ey
M̂

∈ [−195, 5],Ez
M̂

∈ [350, 750].
(10)

where unit is [mm].
1) Symbol Meaning: M represents the object and M̂ rep-

resents the estimated object. Then
→

ΣM denotes the coordinate

system that moves along with the object.

In the figure
→

Σ represents a coordinate system moving

in the world coordinate system ΣW . The coordinate system
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Fig. 7. Illumination changing and background changing experiment. (a)∼(d) show the results of experiments with different illumination. (a3)∼(d3) show the
left and right images in each experiment. (a1)∼(d1) show the distribution of fitness on each point on Ex−

Ez plane in search area. Exploration interval is
1[mm], i.e. Ex = −100,−99, ...,99, 100;Ez = 350, 351, ...,749, 750. (a2)∼(d2) are the 2D figure of (a1)∼(d1). In each experiment, “vertex” show the
position (Ex

M̂
,Ez

M̂
) with maximum fitness Fmax.

represented by Σ keeps fixed in ΣW . In other words
→

ΣE ,
→

ΣM ,
→

Σ
ĈL

,
→

Σ
ĈR

and
→

Σ
M̂

are all moving in ΣW . On the other hand,

as shown in Fig.8, ΣB keeps fixed in the world coordinate

system ΣW .

As shown in Fig. 6, the position and orientation of the object

ΣM and the end-effector
→

ΣE are unchanged in each group

of experiments. And the relative position of ΣM and
→

ΣE is
ErM = (0,−100, 545). And their orientations are same, i.e.,
W εM = W εE = (0, 0, 0).

Figure 7 shows the results of recognition in different il-

lumination conditions. The images on the right side of each

row are taken by the two cameras in different experimental

conditions. In (a)∼(d), only the illumination is changed, the

object and the arm are not moved.

The left two columns (a1 ∼ d1 and a2 ∼ d2) of Fig. 7

are fitness distributions in Ex − Ez plane under different ex-

perimental conditions. The distribution of the middle column

(a2 ∼ d2) is the 2D display of the leftmost fitness distribution

(a1 ∼ d1).

For example, in the row (b), the two images are taken in

500[lx]. In the case of given true values Eε
M̂

= EεM =

y x

z
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Fig. 8. Distribution of the initial state of each coordinate system and the
angle motion trajectory



0,Ey
M̂

= EyM = −100, the target object is searched on

the Ex − Ez plane. And the fitness distribution is shown

as Fig. 7 (b1). The (b2) is a 2D figure of (b1). There are

two highest points (vertex), i.e., the peak of the mountain

of the distribution. One is Ex
1M̂

,Ez
1M̂

= (4, 540). And

the other is Ex
2M̂

,Ez
2M̂

= (4, 546). That means, according

to the model-based matching method, object is most likely

to be in either (Er
1M̂

,Eε
1M̂

) = (4,−100, 540, 0, 0, 0) or

(Er
2M̂

Eε
2M̂

) = (4,−100, 546, 0, 0, 0) with fitness value

F1 = F2 = Fmax,b = 0.8519. It can be seen that they are

near to the true value. In order to quickly find the vertex of

the mountain (maximum), we use the RT-MS GA described

in II-A. However, it should be noted that the full search on

the Ex−Ez plane of these experiments just detect only the x

and z two variables. In the actual object tracking experiment

it is needed to detect position and orientation 6 variables, i.e.
Eψ

M̂
= (Ex

M̂
,Ey

M̂
,Ez

M̂
,Eε

M̂1
,Eε

M̂2
,Eε

M̂3
).

In (a) the illumination 30[lx] is too low that there are

more black points than (b). Therefore, the Fmax,a > Fmax,b.

(b) ∼ (d) the illumination is gradually increasing. And there

are more and more white points in the images. Therefore,

Fmax,b > Fmax,c > Fmax,d.

C. Arc Swing Motion Tracking Experiment under Different

Light Condition
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Fig. 9. Distribution of the initial state of object and visual-servoing system
in orientation tracing experiment

1) Experiment condition: As shown in Fig.9, in the process

of tracking, always keep the x-y plane in
→

ΣE parallel to the x-

y plane in
→

ΣM . ΣB is the coordinate system of turntable. And

the turntable takes ±20◦ reciprocal uniform rotation movement

around y-axis of ΣB .

At this speed it takes 80s to rotate one cycle, that means the

angular velocity ω = ±2π/T = ±2π/80 = ±0.079[rad/s].

During the experiment we just let object rotate around the

y-axis of ΣB as (12), the orientation εM of object is

[
εM1, εM2, εM3

]T
= sin

θ

2

[
0, 1, 0

]T
=

[
0, sin θ

2
, 0

]T
(11)

shown as the dashed line in the Fig.11. In this light changing

experiment, the illumination condition is divided into 80[lx],

500[lx], 900[lx], and 2200[lx] four cases. Because turntable

takes the reciprocating motion, (12) can be rewritten as peri-

odic function with period Ta = 4×4.44 = 17.76[s]. Therefore,

the equation θ(t) = θ(t+17.76) holds. And in the first period,

the θ(t) is shown as follow.

θ(t) =





−4.5t t ∈ [0, 4.44)s (12a)

4.5t− 40 t ∈ [4.44, 13.32)s (12b)

−4.5t+ 80 t ∈ [13.32, 17.76)s (12c)

2) Experimental Result: As shown in Fig. 11, (a) is fitness

value during the tracking process calculated by (4). It shows

at each time the degree of matching between the object and

the best individual evolved from GA. As described in section

II-A, the maximum of fitness is Fmax = 1.67. The fitness can

be affected by many factors, e.g., the quality of the captured

images, the motion of manipulator or the changing of light.

In Fig. 11 (a) because the fitness takes dramatic fluctuations it

can be seen that changes in light illumination affect the object

recognition.

Fig. 10 shows the experiment situation. The subtitle of each

picture, e.g., 5[s], 36[s], is the photograph time corresponding

to the time in Fig. 11. Left and right images are captured by

the two cameras. And the light point circles are the recognition

result at that time. In Fig. 11 (b), the dashed lines represent the

orientation εM of real target
→

ΣM . Orientation tracking result

of the detected object
→

Σ
M̂

and end-effector
→

ΣE are shown as

the solid line ε
M̂

and dotted line ε
Ê

respectively.

Fig. 11 (c) shows the tracking error of hand ∆εEM2 and

GA ∆ε
MM̂2

. And as shown in Fig. 11 (b), the desired value

of ε2 of hand εE2 and object ε
M̂2

is εM2, i.e., the triangular

wave in dashed line. The quaternion variation of ε
M̂

is more

frequent than that of εE . In Fig. 11 the phases of ε
M̂2

are all

earlier than that of
→

ΣE .

Another point that can be confirmed is that although the

fitness is changed a lot because of the illumination changing,

the recognition result and the motion of manipulator was not

influenced so much. It shows that the system can overcome

some illumination change and keep track the target. Although

at about 32[s], there is a transient error in orientation detection.

But because the time is very short and the system is slow

to respond, the error does not cause much influence to the

tracking motion.

V. CONCLUSION

In order to evaluate the adaptability to the light environment,

it has been designed that the interior illumination changing ex-

periment and arc swing motion tracking experiment. Through

these experiments, it has been verified that the proposed eye-

vergence visual servoing system has the robustness against

the changeable optical environment. Need to be reminded that

the proposed system is developed for the interior illumina-

tion environment. In the sunny outdoor, the illumination has

more than 30,000[lx], this is not within our scope of the

investigation. In addition, a reflectivity of an object itself will

also affect the object recognition. A camera’s auto exposure



(b) 5[s]

Left image Right image

(d) 20[s]

Left image Right image

(c) 50[s]

Left image Right image

(a) 36[s]

Left image Right image

Recognition result

Fig. 10. The experimental status and dual-eye images under different
illuminations. The upper left corner of each picture is marked with the
current illumination. And the subtitle of each picture is the photography time
corresponding to the time in Fig.11

function also affects the quality of the collected images. These

factors have not been explored in this paper. Further research

will be conducted in the relevant aspects in the future.
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(a)Fitness value change in the tracking process
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Fig. 11. Tracking result under different illumination. Actual orientation of
target object εM , actual position of end-effector εE and detected orientation
recognized by GA ε

M̂
. In ε2 direction, tracking error of end-effector (hand)

is ∆εEM2 and recognition error is ∆ε
MM̂2

.
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