Robustness of 3D Pose Estimation against Turbidity
Using Dual-eye Cameras And Active/Lighting 3D
Marker for Visual-servoing Based AUV
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Abstract—This paper presents the 3D pose estimation against
turbidity under dark environment by using dual-eye cameras
and an active —meaning light emitting— 3D marker for visual-
servoing based underwater vehicle. The authors have proposed a
3D-perception based move on sensing (3D-MoS) system using a
3D position and orientation (pose) estimation method with dual-
eye cameras that exploits the parallactic nature that enables
reliable 3D pose estimation in real-time, named as “Real-time
Multi-step Genetic Algorithm (RM-GA).” The active/lighting 3D
marker was designed and constructed to improve the 3D pose
estimation especially in turbidity and low illumination. In real-
time pose estimation, not only recognition but also robustness
are important. This paper focus on the robustness of 3D pose
recognition performance using dual-eye cameras and 3D marker
against turbidity. The experimental results have confirmed that
the effectiveness and robustness of the proposed system for the
real-time 3D pose estimation under turbidity and night condition.

Index Terms—Turbidity, Real-time Multi-step GA, Active 3D
marker, 3D pose estimation, Dual-eye cameras

I. INTRODUCTION

Visual servoing based underwater vehicle has become es-
sential for sea exploration and exploitation such as inspection,
repair oil and gas, pipeline tracking, docking task, scientific
studies of the deep ocean, etc [1], [2]. Some references are
based on single camera to estimate the pose of the target
object [3]- [5]. A binocular vision was used in some of these
studies in order to estimate the relative pose of the target object
in [6], [7]. Even though two cameras were used in [6], one
was facing downward for shooting the sea-floor images and
the second camera was pointed forward for the purpose of
obstacle avoidance. In [7], Girona 500 AVU was developed
for inspection and intervention tasks for the seafloor survey.
In that work, several sensors and two video cameras are used
to localize an object. But the two cameras look at difference
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Fig. 1. experimental setup of the ROV and an active marker under dark
environment: (a) an underwater vehicle and an active 3D Marker in a simulated
pool. (b) left and right camera images of the ROV. The dotted circle in left
and right cameras images is the estimated pose by real-time multi-step genetic
algorithm (RM-GA).

targets, then these approaches do not materialize parallactic
nature.

In the actual sea environment, it is difficult to observe
underwater environment using the cameras because of the
disturbances such as lighting effect, water current disturbance,
turbidity and refraction effect, etc. The common disturbances
for the vision-based underwater vehicle is the turbidity and
low illumination when the vehicle are used to explore the deep
sea environment. The role of turbidity should be considered in
the underwater environment because it can degrade the visual
quality of the camera images. Especially how to recognize
the target objects by the camera in high turbidity condition,
it is an important fact to considered to expand the possibility
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of utilization of underwater vehicle in the exploration of the
underwater environment. In [8], [9], two cameras and three
cameras are used to increase the image recognition robustness
by analysing degradation factors in turbid water. But the dis-
cussion about turbidity is not enough in these references. They
evaluated the multiple features of detectors and compared the
performance of detectors on images degraded by turbidity.
They did not perform the pose estimation.

The authors have proposed a new 3D pose estimation
method with dual-eye cameras that exploits the parallactic
nature that enables reliable 3D pose estimation in real-time
as shown in Fig. 1. Visual servoing using stereo vision
and parallactic character for the underwater vehicle utilizing
3D model-based recognition and Realtime Multi-step Genetic
Algorithm (RM-GA) has been initiated by our research group.
The dual-eye cameras based on perception means solving the
corresponding points problem. If the corresponding points in
the real object are not connected with the corresponding points
in images during 2D-to-3D reconstruction, the true 3D object
cannot be represented because of the wrong reconstructed 3D
points. Based on this point, 3D model-based recognition is
implemented. Furthermore, solid object that is represented a
group of points on the sphere of the 3D marker is projected
rather than the individual pixel.

To the best of authors’ knowledge, there are no related
works in which the real-time pose estimation using stereo-
vision based real-time performance against turbidity and night
condition. In previous works [10]- [12], the robustness of the
proposed system was confirmed by conducting the different
experiments. However, the robustness of the proposed system
against turbidity had not been done previously. This present
paper is intended to explain how the proposed system performs
real-time pose estimation robustly against turbidity on the
image, aiming at confirming the system can keep recognizing
the pose of 3D marker despite in the dark environment.

The remainder of the paper is organized as follows: Section
IT describes the method of real-time 3D pose estimation.
Experiment results are reported in section III with discussion
and conclude in section IV.

II. REAL-TIME 3D POSE ESTIMATION METHOD
A. Model-based Matching Method

In this section, dual-eye based 3D MoS for underwater
docking especially 3D pose estimation method is briefly dis-
cussed for reader convenience. In proposed system, the model-
based matching method is used to estimate the matching
degree between the projected model and the captured images.
In other conventional methods, the pose estimation method is
implemented using feature-based recognition based on 2D-to-
3D reconstruction. In that approach, the set of image points in
different images is used to determine the information of the
target object. The main drawback is complex for searching
the corresponding points and time taken. Apart from this,
the model-based pose estimation approach based on 3D to
2D projection is applied in this work avoiding the effects
of wrong mapping points in images using dual-eye cameras.
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Fig. 2. Model-based matching method using dual-eye cameras and 3D marker
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Figure 2 shows the model-based matching method using dual-
eye cameras for 3D pose estimation. In Fig. 2, ¥;r and X,
are the reference coordinate frames of the right camera image
and the left camera image. Y is the reference frame of the
ROV. %,/ is the reference frame of the real target object.
The solid model of the real target object in space is projected
naturally to the dual-eyes cameras images and the dotted 3D
marker model where pose is given by one of GA’s genes
is projected from 3D-to -2D. The different relative pose is
calculated by comparing the projected model and the captured
images by the dual-eye cameras. Finally, the best model of
the target object that represents the true pose can be obtained
based on its highest fitness value. Please refer to [13] for
detailed explanation. There are some works done on visual-
servoing experiments concerning hand eye manipulator in the
air using 3D model-based matching method utilizing genetic
algorithms and dual-eyes camera [14], [15], which are used as
fundamental knowledge for this research.

B. Fitness Function

The fitness function is constructed to evaluate the matching
degree between the projected model and the captured image.
The intention of the designed fitness function is to have a
dominant peak at the true pose of the target. The construction
of the fitness function affects the optimum search performance
and directly influences the RM-GA'’s convergence speed [16].
Figure 3(a) shows the real 3D active marker and Fig. 3(b)
shows model with enlarged view of the blue ball model, where
the inner area is the same size as the real target object (blue
ball) and the outer area is the background area. Each model
consists of three spherical ball (red, green and blue). Each
spherical ball consists of two portions, where the inner portion
is the same size as the real target object and the outer area
is the background area. The dots in each ball mean points to
calculate the correlation degree on how much the inner area
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Fig. 3. Real 3D marker and model: (a) active/lighting marker, (b) model with
enlarged view of the blue ball model, where the inner area is the same size
as the real target object (blue ball) and the outer area is the background area.
The dots in enlarged view of blue ball mean points to calculate the correlation
degree on how much the inner area overlaps the blue ball and the outer area
does not overlap the blue ball.

overlaps the target object and the outer area does not overlap
the target object. Only hue value is used for recognition of
3D marker because of less sensitive to the environment. The
captured image (pixel) is detected in 2D image as (green or
blue or red) in hue space. If the captured image (pixel) situated
in inner portion, the fitness value increases and the capture
image (pixel) is situated in outer portion, the fitness value
decreases. Therefore, the fitness value will be maximum when
the model and the real target are identical. Finally, the pose of
the model with the maximum fitness value is to represent the
pose of the real target 3D marker. Detailed explanation about
the fitness function is referred to our previous paper [17].

C. Real-time Multi-step GA (RM-GA)

The genetic algorithm is used as a search and an optimiza-
tion method to estimate the relative pose between the ROV and
3D marker. Even though there are many powerful optimization
methods, GA was selected and modified as Real-time Multi-
step GA (RM-GA) because of its simplicity and especially
effectiveness in real-time performance. Real-time multi-step
GA is means the capable of real time recognition of the
true pose of the target object within 33 ms. Figure 4 shows
an individual of GA population. Position and orientation of
the three-dimensional model is represented as 72 bits string
of length as shown in Fig. 4. The former 36 bits represent
the position of the 3D marker and the later 36 bits describe
the orientation defined by a quaternion. Figure 5(a) shows
the flowchart of the RM-GA and Fig. 5(b) illustrates the
behavior of GA convergence from the first generation to the
final generation. Please not that although the pose of the target
object is evaluated in 2D, convergence occurs in 3D.

Firstly, a random population of model is generated. A
new pair of left and right images that was captured by
ROV’s cameras is input. The fitness value of each model
was evaluated by using the fitness function. Each model is
sorted based on the fitness value and selected the better model
from the current generation to reproduce the new generation.
Then, again new generations are formed from the two-point
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Fig. 4. An individual of GA population: 12 bits for each x, y, z represents
the position coordinate of the three dimensional model of the gene and 12
bits for each ¢q, €g, €3 describes the orientation defined by a quaternion.

crossover and mutation operation of GA. The real-time multi-
step GA evolves the models with as many generations as
possible within the video frame rate for each image. In the
present study, the number of evolution times of the RM-
GA was chosen to be nine, which is a maximum that the
computer used in the present study could calculate within
33 ms (determined by the video frame rate) during the GA
evolution process. The RM-GA find repeatedly the solutions
to get the optimum value that indicates the best pose of the
target object. For the next input, a new video image is used.
The convergence performance to an optimum value of the GA’s
evolution function used as fitness function has been proved
mathematically by a Lyapunov analysis in a previous work
[18]. The effectiveness of the GA was demonstrated in a
previous study on visual servoing for catching fish using a
GA search [19].

D. Active/Lighting Marker

In our previous works, the passive marker was used to
conduct the experiments. In the present study, the active
marker was designed and newly constructed to improve the
pose estimation at high turbidity and low illumination. Figurc
6(a) shows the appearance of the active marker and Fig. 6(b)
shows the internal circuit diagram. The circuit was created by
combining the variable resistors, resistors, and light emitting
diodes such as red, green, and blue. The resistance value of
the variable resistors, and the number of resistors determined
by trial and error. The value of each variable resistors and
resistors are shown in Fig. 6. The 3D marker was constructed
from a water proof fiber box (100 mm x 100 mm x 100 mm)
and white spheres (diameter: 40 mm). The red, green and blue
LED were installed into the white spherical ball and covered
by color balloon as shown in Fig. 6(a). The pose estimation has
improved by emitting the light of LED, especially in the night
time. The effectiveness of the active marker will be discussed
in the next section.

ITII. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment Environment

Figure 1 shows the experimental layout in an indoor pool
(length 750 mmx width 570 mm X height 490 mm) which
was filled 800 litres with fresh water. The ROV manufactured
by KOWA cooperation is used as a test bed in this study. As
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Fig. 5. Flowchart of the real-time multi-step GA: (a) the flowchart of the RM-
GA, the true pose of the target object is evaluated within 33 ms through the
GA process (b) the convergence behavior of RM-GA from the first generation
to the final generation to represent the true pose of the target object in which
evaluation is performed in 2D and convergence occurs in 3D.
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Fig. 6. Active 3D marker and its internal circuit.

an image captured device, an imaging element CCD, signal
system NTSC with a resolution 380,000 pixels was used. The
ROV and active 3D marker were fixed in position. The amount
of turbidity was controlled by adding whole milk and mud
in water in the tank. The milk was chosen because milk is

a highly scattering liquid than the other [20]. The mud was
chosen to simulate as the natural condition. It was carried
from near the sea environment. The turbidity level(Formazin
Turbidity Unit, FTU) was measured by using portable turbidity
monitoring sensor TD-M500 (manufactured by OPTEX). The
illumination condition was 9 Ix that was measured by using
using a lux sensor (model: LX-1010B, manufactured by Mil-
waukee) when the experiment was conducted. The turbidity
level is gradually increased until the ROV cannot recognize
the 3D marker.

B. 3D Pose Estimation in Turbid Water Under Dark Environ-
ment

The ROV performed the visual servoing at about 600 mm
in docking operation [12], meaning waiting and stabilizing for
docking operation to recognize the target object. Therefore,
we choose 600 mm distance for recognition performance in
this section. Figures 7 and 8 show the fitness value in different
turbidity levels in the case of milk and mud at the distance 600
mm between the ROV and 3D marker under dark environment.
The horizontal axis is described by milk and mud amount in
ml/ m3, the left vertical axis is expressed in terms of fitness
value and the right vertical axis is described in terms of FTU
by using turbidity sensor.

According to the graphical results in the case of milk, the
fitness value decreased from 0.6 to 0.1 when the milk amount
is gradually increased from 0 mi/m?® (0 FTU) to 169.75
ml/m3 (20.9 FTU). The FTU value linearly increased from 0
FTU to 20.9 FTU when the milk amount was increased. The
control threshold fitness value can be adjusted depending on
FTU level. For example, the control threshold fitness value can
be adjusted 0.4 when the FTU level was 11 FTU. But, when
the FTU level was above 20 FTU, the ROV cannot recognize
the 3D marker well. At that time, the fitness value was about
0.01.

In the case of mud, the fitness value decreased from 0.6 to
0.1 when the turbidity was gradually increased from 0 ml/m?
(0 FTU) to 375.875 ml/ m3 (50.2 FTU) . In the case of mud,
the FTU level rapidly increased in some amount of mud when
we added. The ROV cannot recognize the 3D marker when
the FTU level reached to 375.875 ml/ m?3 (50.2 FTU). At that
time, the fitness value was 0.02. The performance of 3D pose
estimation under different turbidity levels are analyzed and
the maximum turbidity level can be determined according to
the defined threshold of fitness value. The fitness distribution
was analysed at the points of “A”-“E” that was choose among
different turbidity levels as shown in Figs. 7 and 8. The fitness
distribution of these points are discussed in the next section.

C. Robustness in 3D Pose Estimation

Figures 9 and 10 show the fitness distribution between X, y
plane against different turbidity levels for the case of milk
and mud in the night condition. Figures 9 and 10 “(A)”-
“(E)” correspond to the points denoted by dotted lines “A”-
“E” in Figs. 7 and 8. In figs. 9 and 10, (I) 3D graph of
fitness distribution, (II) 2D graph of fitness distribution and



A B C D E
14 | | | | 35
| | 1 1
12! ! ! - . 30
! 1 ! ! !
g 1! ! ! ' rfru ! 25
E; | ! Fitness val eI : \ !
N | - Fitness value- i P
2 08 | !(nighy ! : ol 20
@ | 1 ! ! !
Z 061 i / i ; ! 15
| ! ! !
0.4 | i . | 10
1 | 1
02 - e ; 5
I -
0 J : 0
0 50 100 150 200
Milk [ml/m3]

Fig. 7. Turbidity tolerance under night condition in the case of milk at the
distance 600 mm between the ROV and the active 3D marker.
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Fig. 8. Turbidity tolerance under night condition in the case of mud at the
distance 600 mm between the ROV and the active 3D marker.

(IIT) left and right cameras images are described, respectively.
The pose estimated using full search method indicated in the
fitness value distribution for each of the turbidity levels. The
full search method is the scanning of points in all planes (x,y,
and z) of the images and the fitness value of every points which
are 1 [mm] apart in the entire searching area were calculated.
The true pose of the target object is represented by the peak
of the mountain shape as shown in Figs. 9 and 10(A)-(E).
The presence of a peak of the fitness distribution indicates the
robustness of the recognition method against turbidity.

According to the experimental results, the position of the
peak corresponding to the truc pose of the target was main-
tained even though the height of the mountain shape of fitness
values gradually reduces when the turbidity level is increased,
but the estimated pose represented by the peak is maintained
as shown in Figs. 9 and 10(A)-(E)(I). In figs. 9 and 10(A)-
(BE)D), it can be seen the intersection shape of “X” type
in x-y plane, the peak of the mountain shape occurs at the
intersection point. This is because of the dual-eye cameras that
exploits the parallactic nature that enables reliable 3D pose
estimation in real-time. The appearance of turbidity can be
seen in related two camera images Figs. 9 and 10(A)-(E)(III).

FTU

In two camera images, the dotted circle means the pose of
the 3D marker recognized by RM-GA. It can be clearly seen
that the dotted circle and the real target exactly coincide at
0 FTU. At that time, the fitness value is maximum. When
the turbidity level is gradually increased, the fitness value
of the true pose of the mountain shape is also reduced but
the position of the mountain shape still remained at different
turbidity levels in both cases of milk and mud. The problem
conversion from pose estimation into optimization problem has
merit to make the visual servoing feedback system to be robust
against turbidity. This is brought from the fact that the problem
conversion does not care about the height of fitness distribution
as shown in Figs. 9 and 10. In other words, the robustness
of the proposed system using the RM-GA can recognize the
position and orientation of the 3D marker in real time.

()
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>

(1)

y [mm]
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Fig. 9. Fitness value distributions confirming the robustness of the proposed
system at a distance 600 mm between the ROV and the active 3D marker
against different turbidity levels under night condition in the case of milk: (I)
fitness distribution in 3D graph, (II) fitness distribution in 2D graph, and (III)
left and right cameras images.

IV. CONCLUSION

In the present paper, visual-servo-based 3D pose estimation
system against turbidity for underwater vehicle in the dark
environment was proposed. A real-time pose detection scheme
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Fig. 10. Fitness value distributions confirming the robustness of the proposed
system at a distance 600 mm between the ROV and the active 3D marker
against different turbidity levels under night condition in the case of mud: (I)
fitness distribution in 3D graph, (IT) fitness distribution in 2D graph, and (IIT)
left and right cameras images.

was implemented by means of 3D model-based recognition
and real-time multi-step GA (RM-GA) using stereo vision
and 3D marker as the active target. The robustness of the
proposed system against turbidity under dark environment was
confirmed experimentally in the simulated pool. Results show
that the proposed system can recognize the relative pose of a
3D marker robustly even though the turbid environment that
can degrade the images.
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