Docking Experiment in Dark Environments Using
Active/Lighting Marker and HSV Correlation
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Abstract—Recharging ability with underwater docking func-
tion would be a first primal step conducted to enable the AUV to
operate independently of a surface vessel for extended periods.
Therefore, the role of docking operation came in picture not
only for battery recharging application but also other novel
applications such as sleeping under mother ship, or new mis-
sion up and down loading. Moreover, docking capacity can be
extended to provide navigation for other underwater vehicles on
the way of their mission too. However, there are many challenging
issues in achieving these applications that request high accuracy
and robustness against disturbances that are provided by the
underwater environment. The most challenging and unavoidable
problems in sensing sphere for sea operations are, we think,
turbidity and light changing. Turbidity is defined as cloudiness
in a liquid caused by the presence of suspended particles that
scatter and absorb light. Since underwater battery recharging are
supposed as a first step to realize a full autonomous/intelligent
robot, the deep-sea docking experiments cannot avoid turbidity
and low light environment. In previous studies, we had conducted
sea docking experiments using a passive (not lighting) marker
and image-evaluation function based on only hue information,
limiting its operational environment in lower turbid sea with
sunshine. Whereas in this study, to improve our system removing
above defects, we newly designed an active - light emitting -
3D marker and a fitness function determined by HSV color
components to improve the performance of the system especially
in a more turbid environment. The advantage of using an active
3D marker and HSV-evaluated function is to be thought as
being tolerable and seeable despite clipped whites and scattered
light on the camera images caused by turbidity. Additionally, we
conducted the docking experiments to verify the robustness of the
proposed approach against turbidity and compared recognition
results between the previous method and the improved method.

Index Terms—sea docking, turbid environment, stereo vision,
underwater vehicle

I. INTRODUCTION

Nowadays, autonomous underwater vehicles (AUVs) are
essential in applications such as inspection of underwater
structures (e.g., dams and bridges) and underwater cable
tracking [1]. Underwater battery recharging through Docking
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operation is one of the solutions to extend the persistence time
of an underwater operation of AUVs. There are many studies
on underwater docking [2]- [5]. However, a number of chal-
lenging issues hinder these applications, which require high
accuracy and robustness against disturbances that occur in the
underwalter environment. To achieve these tasks in underwater
vehicles, we have developed a vision-based docking system
using stereo vision.

In an underwater vehicle with a lighting unit installed on it,
especially, dynamic lighting environment addresses challenges
when the own lighting system is dominant in a deep sea or
during a night operation. Additionally, when an underwater
vehicle approaches the sea bottom, water turbidity comes
in picture as disturbance to be considered and solved for
visual servoing. According to the authors’ knowledge, there
are few studies on the 3D pose estimation under turbidity for
underwater vehicles.

In previous works [6]- [8], different experiments to confirm
the robustness of our vision-based system using two cameras
and a known 3D marker were conducted. Sea trial docking
using an ROV as a test bed was conducted in a real sea near
Wakayama city in Japan successfully [10]. In previous studies,
we had conducted sea docking experiments using a passive
(not lighting) marker and image-evaluation function based on
only hue information, limiting its operational environment in
lower turbid sea with sunshine. To overcome this limitation,
in this study, we newly designed an active 3D marker and
developed fitness function that is used for real time pose
estimation using HSV information to improve the performance
of the system especially in turbid and low illumination en-
vironment. We conducted the docking experiments to verify
the robustness of the proposed approach against turbidity and
compared recognition results between the previous method and
the improved method.

The remainder of the paper is organized as follows: Section
IT describes 3D recognition and control. Section III describes
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the proposed method. Docking experiment against dark and
turbid environment for comparing the new method with the
previous method in real sea environment is described in section
IV. The final section concludes the paper.

II. 3D MOVE ON SENSING (3D-Mo0S)

A robotic system, named 3D Move-on Sensing (3D-MoS)
in which 3D perception enabled by dual-eyes visual pose
tracking by using known 3D marker is used in this study
for controlling the underwater vehicle’s relative pose to the
desired one. The 3D-MoS system recognizes a relative pose
between a robotic system (remotely operated vehicle (ROV)
in this study) and a target object by utilizing 3D model-based
recognition using dual-eye camera images with a video frame
rate of 30 (fps). In the proposed approach, visual information
is directly used in feedback control in real-time. Additionally,
developed optimization method named Real-time Multi-step
GA (hereafter, RM-GA) is implemented in accordance with
the concept of optimization of dynamic images for real-time
target tracking.

A. 3D Model-based pose estimation method

Real-time 3D pose estimation using RM-GA was proposed
and introduced in previous work [9]. The explanation of RM-
GA is briefly described in this section for reader’s background.
Knowing the information of the target and predefined relative
pose to the ROV, the solid model of the target is predefined
and projected to 2D images. Comparing the projected solid
model image with the captured 2D images by dual cameras,
the relative pose difference can be calculated.

In the proposed system, we first create a shape and color
attribute of a model based on known 3D target. Then we
define a fitness function that represents the correlation between
multiple models projected onto images of dual eyes and actual
targets appearing in an image of dual eyes. It is possible to
set the model shape, light environment or correlation function
to take the maximum fitness value when the position and
orientation of the 3D model overlaps those of the target. In
such a state, the problem of finding the 3D position and ori-
entation of the target is converted to an optimization problem
for finding a variable that maximizes the correlation function.
Furthermore, by conducting an optimal solution search using
the correlation function, it is possible to effectively search
for the optimal solution even when the distribution of the
correlation function with respect to the position and orientation
becomes dynamic multi peak function that will be provided by
actual sea environment. The combination of designed 3D target
(we called lighting 3D marker in this study) and developed
fitness function for dark and turbid environment is the main
novelty of this study.

B. RM-GA with fitness function

In this method, the genes which represent the different
relative poses of 3D model to the ROV are initiated randomly.
Fitness value which is correlation function of projected model
against the real target in the image is used as the evaluation

GA searching area

400 [mm]

‘4;) [mm]

Target

800 [mm]
800 [mm]

—02<<02(@=123)

Fig. 1. GA searching area and coordinate systems of the robot and the real
target.

parameter of recognition process. According to defined fitness
function, the gene with the highest fitness function value repre-
sents the pose of the real target. Therefore, the searching prob-
lem of real target pose addresses the optimization problem.
Even through there are classical computer vision algorithms
to obtain the relative pose estimation, GA provides recog-
nition performance in terms of effectiveness, simplicity and
repeatable evaluation for real-time performance. Therefore,
GA named as RM-GA (Detail explanation can be seen in [11]
[12] [13]) in this experimental system is capable of real-time
recognition of the moving image effectively and confirmed
in our previous works [14] [15]. Through the steps of GA
(Selection, Cross over and Mutation), a number of genes that
represent different poses are evaluated by the defined fitness
function to get the best gene with the most truthful estimated
pose. This 3D model-based matching process is executed
within 33 (ms) synchronizing with the video rate of dual-
eyes camera. Fig. 1 shows searching area of RM-GA. How
the fitness function is calculated is explained in section III.

C. Underwater robot system

Remotely controlled underwater robot used in this experi-
ment (manufactured by KOWA) is shown in Fig. 2.

Vertical thruster

Fig. 2. Underwater vehicle which we used in the experiment.

As the main sensor that is visual sensor for this robot , the
two fixed forward cameras are used for 3D object recognition



in visual servo. In the thruster system of ROV, 2 horizontal
thrusters with maximum thrust of 9.8 (N), 1 vertical thruster
with maximum thrust of 4.9 (N) and 1 lateral thruster with
4.9 (N) are installed.

ITII. PROPOSED METHOD

To improve the performance of the system against turbid
and low illumination environment, we newly designed lighting
3D marker and fitness function (we named it Union fitness
function) using HSV information. In the section, a lighting 3D
marker and developed fitness function is explained in details.

A. Lighting 3D Marker

We call the target object used in this study “3D marker”. A
conventional 3D marker did not emit light (passive); thus, in
recognition under dark and turbid environments, the robot had
to use the lighting mounted on itself. However, in that case, as
shown in Fig. 3(A), it has been confirmed that the recognition
has failed because the camera image is entirely blurred white.
This is thought to be caused by diffused reflection of light on
the particles in the turbid water. This is a factor that makes
recognition in the dark and turbid environment difficult, which
can be a fatal obstacle to use the system in the actual sea area.
From this point of view, it can be said that it is necessary (o
minimize the amount of light reaching the camera in order to
prevent diffused reflection and accurately recognize the target.
Therefore, we newly propose “lighting 3D marker” which
emits light. By doing so, it can take in only the light necessary
for recognition, even in higher turbid environment (Fig. 3(B)).

Left camera image | Right camera image
(A) Non-lighting marker in 15.3 FTU

Left camera image

Right camera image
(B) Lighting marker in 18.3 FTU

Fig. 3. Comparison of appearances of a lighting marker and a non-lighting
one under dark and turbid environment.

B. Union fitness function using HSV color information

The previous evaluation method used in [7], [9] was based
only on the hue value of the target. However, using this
method, its relative pose cannot be recognized well while using
the lighting 3D marker proposed this time in a dark and turbid
environment. The reason is that as the robot approaches the

marker, the amount of light reaching the cameras increases,
and on the camera image, the strongly emitting part appears
white. When using only hue information for evaluation, there
is a disadvantage that achromatic colors such as white or
black cannot be evaluated correctly. Fig. 4(B) shows the
hues distribution of Fig. 4(A). These hues are predefined in
Equation 2. In order to achieve accurate recognition, it is
necessary that the area of the spheres on the original images is
equal to the colored areas on the hue distribution in terms of
size. However, the distribution of (B) shows that the defined
hue areas are wider than the sphere areas on the original
images. This is thought to be caused by light being diffused
by particles suspended in water. Although edge detection is
performed for estimating a pose of the 3D marker, in this case,
edge detection does not work well, thus accurate recognition
cannot be performed. On the other hand, compared with (B), it
can be seen that the edge of the sphere on 3D marker is clearer
in Fig. 4(C). The distribution in (C) is values. Therefore, edge
detection based on value is more effective than based on hue
under such an environment. Another method newly proposed
in the paper is a composite type object evaluation method
using three color components of HSV. This is in consideration
of the evaluation of “lighting” in addition to the conventional
evaluation using “color.” As shown in Fig. 5, score is evaluated
for each point (pair of points in the case of lighting evaluation)
by using correlation function (Eq. (1), (2) and (3)). Then,
by synthesizing the two fitness values according to Eq. (4),
“union fitness value (Funion(¢§\4))” which we newly defined
is obtained. And finally, Fynion(¢7,) is calculated for the left
and right camera images and determine F'(¢?},) by taking
the average of them (Eq. (5)). Eq. (4) plays the role of
so-called “OR” in which the union fitness value becomes
higher if either of the two fitness values (fitness values of
color evaluation (Fjs,(¢,)) and light emission evaluation
(Fy d(qbgw))) is higher. Therefore, the model of the target has
redundancy. Here, it is assumed that N},q;,s has the same value
as N, in Eq. (4).
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Fig. 4. Original camera images and distributions of each color component in
the images. (A) is original images from dual-eye camera. (B) is a distribution
of hues extracted from (A). The colored area shows the hue defined for each
color and the black and white area shows other hues in (B). (C) is a distribution
of values extracted from (A).
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The fitness function was designed as an evaluation param-
eter in the pose estimation process. It is a defined correlation
between a projected model and a real target in the image. In
Fig. 6, the three solid circles and the three circles outlined
with dotted lines represent the spheres on the real target and
those on the j-th model obtained from 3D-to-2D projection,
respectively. The pose ¢, of the 3D model is an unknown
variable composed of six parameters (z,y, z,€1,£2,€3) and is
determined in the pose estimation process. The 2D projection
of each sphere in the model is divided into two regions, as
shown by the dashed circles in Fig. 5. Instead of evaluating
the positions of all of the points in the model, only select
points are considered, as shown in Fig. 5. When the j-th
model is projected onto the 2D images of the left and right

cameras, the fitness value for that model is calculated. Portions
of the target object that lie inside the inner (S’m(cbfw)) and
outer (Soyut(@%,)) regions of each corresponding sphere of
the projected model proportionally increase and decrease the
fitness value, respectively. In addition, Ty and Tr,,, are po-
sition vectors of the points on the image existing in Sj, (%)
and Sy (¢7,). respectively. Therefore, the fitness function is
maximized when the pose of the model fits that of the target
object depicted in the images of the left and right cameras. The
evaluation parameters of the fitness function were designed
to reduce the effect of noise, which is considered here as
peaks in the fitness function that represent incorrect poses of
the target. The concept of the fitness function in this study
can be said to be extension of the work in [17], in which
different models, including a model with rectangular surface
strips, were evaluated using images from a single camera.

.. \ |Take the difference of
\ | “Value” between pairs of
two points each angle.
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Inner area of the model
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Fig. 5. Projection of the blue sphere of a model with selected sample points.
There are a total of 60 points (36(=N;n,/3) and 24(=Nyy/3) points in the
inner and outer regions, respectively) in the projection, and the diameter of
the inner region is same as that of the actual sphere.
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Fig. 6. Real target (solid circles) and projected 3D model (circles with dashed
outlines) in a 2D image obtained by the right camera.
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Fig. 7. Flowchart of the docking experiments.

IV. DOCKING EXPERIMENT IN THE SEA WITH TURBID
ENVIRONMENT

A. Outline of the experiment

Using the system proposed in this study, we conducted
docking experiments in real sea arcas in a turbid and dark
environment assuming sea floor with turbid water. The sea
we conducted the experiments is Seto-naikai in Japan, and the
turbidity increases due to the influence such as the proliferation
of plankton from summer to autumn [18]. This experiment was
conducted after sunset on September 28, 2017. The turbidity
of this sea is highest in September in the year. The experiment
was conducted to ascertain whether docking can be performed
imitating power supply operation and the target recognition in
such an environment. For comparison, the same experiment
was also conducted using object evaluation method utilizing

only hue information. These experiments were conducted
between 6:59 pm and 7:29 pm during which the turbidity
of the seawater was 13.8 (FTU) to 15.0 (FTU). FTU is an
abbreviation for “Formazin Turbidity Unit”, which is a type
of unit that expresses turbidity. Turbidity of seawater was mea-
sured using a turbidity sensor (model: TD-500 manufactured
by OPTEX).

B. Strategy of Docking Operation

In this subsection, the design of the docking procedure as
shown in Fig. 7 is discussed with the detailed flowchart. The
sea docking strategy is same as the pool test except for the
approaching step and stay step. To perform the continuously
repeated docking experiments, the proposed docking system
includes five steps: (1) Approaching step (approached the
docking station by manually until the 3D marker is in the field



of view of the cameras), (2) visual servoing step (initial state
of the docking), (3) docking step (fitting the docking pole into
the docking hole), (4) stay step (staying in front of the docking
station for data storing without performing visual servoing),
and (5) launching step (go back to the desired position). At
the start of the docking procedure, the ROV approached the
docking station by manually until the 3D marker is in the field
of view of the cameras which are mounted in front of the ROV.
After detecting the 3D marker, the fitness value recognized by
RM-GA was compared with the control threshold of fitness
value. If the recognized fitness value is lower than the control
fitness value which means that the ROV could not detect
the 3D marker, the ROV approached the docking station by
manually again. If the recognized fitness value is higher than
the control fitness value, the proposed system switched from
manual to automatic control of the visual servoing state.

In the visual servoing step, the ROV estimated the relative
pose of the vehicle with respect to the 3D marker. In this state
of visual servoing, the distance between the ROV and the 3D
marker was about 600 (mm). After visual servoing step is
satisfied, docking step and launching step are performed as
shown in Fig. 7. If the ROV is stable within the allowance
error range that is defined experimentally, it switched from
the visual servoing step to the docking step. In the docking
step, the ROV is stable for docking within the allowance error
ranges. In this step, the ROV automatically goes forward to
insert the docking pole into the docking hole by decreasing the
distance between the vehicle and the target. The docking step
was completed with the distance 350 (mm) between the ROV
and the 3D marker. After finished staying for the completion
of docking, the successful docking time was counted. After
counting the docking time, the two docking poles are propelled
to the wall of the rectangle docking hole by applying the
constant input voltage to ROV thrusters for staying in front of
the docking station. And then, the GA-PC stores the data log
in files from memory into the hard disk for further analysis
and the desired docking times were checked. If the desired
docking times are satisfied, the continuously repeated docking
experiment is finished. If the desired docking times are not
satisfied, the stay step is performed.

In the staying step, the fitness value recognized by RM-
GA of the current condition is checked and this fitness value
is compared with the control threshold fitness value. If the
current fitness value is larger than the control fitness value, the
time is started count continuously. If the current fitness value
is lower than the control fitness value, time is resct to zero
and the fitness value is checked again. The time for staying in
front of the docking station took about 5 (s). The data storing
is performing during 5 (s) counting. After finished staying for
5 (s), the final data is stored log in files from memory into the
hard disk. After storing the data, the operation changed to the
launching mode.

In the launching step, the ROV goes back to the desired
position by increasing the distance between the ROV and the
3D marker. When the ROV reached the desired position about
600 (mm), the launching step finished. After finishing the

launching step, the docking step was performed again. How-
ever, if the launching process no longer meet the conditions
of desired position, it returns to the visual servoing step.

C. Experimental Results and Consideration

Figure 8 shows the results of docking experiments when
using the conventional target evaluation methods, and Fig.
9 shows the results of docking experiments when using the
target evaluation method proposed in this study. Since the
fitness of Fig. 8(A) is not normalized, the maximum value
is 1.6. The docking operation is realized by decreasing the
target value in the x-axis direction when the recognition values
of y,z and €3 all arc located within “Error allowance.” By
performing visual servoing from Fig. 8(A)-(D), it can be seen
that the ROV could not be controlled to be stable for docking.
Consequently, docking could not be done. It is considered
that the main reason for this is that the amplitude of the
recognition value of e3 is too large and often not located
within “Error allowance”. Regarding ¢; and &9, pitching and
rolling are neglected in controlling the ROV due to their self-
stability. Figure 8(E) shows the camera image about 104 (s)
after starting the experiment and a model of the target object
drawn with dotted circles generated on the images according
to the recognition value qb]lw = (z,y,2,61,€0,€3) at that
time. From this figure, it can be seen that the model does not
coincide with the target on the image and accurate recognition
is not performed.

On the other hand, in the docking experiment using the
target evaluation method proposed in this paper in Fig. 9,
the recognition value in the z-axis direction decreases more
smoothly, so that the docking can be performed. The recogni-
tion values of y and z are not greatly different from those
when using conventional ones, but it can be seen that the
recognized values for the orientation of the target are greatly
different, and the fluctuation of the values is suppressed. Even
with the camera image of about 50 (s) after the start of
the experiment and the model at that time (Fig. 9(E)), the
target object and the model are approximately coincident and
it means that accurate recognition is possible. According to
experimental results in Fig. 8, Fig. 9, it can be concluded that
newly designed active marker and developed fitness function
are effective for sea docking in turbid and low illumination
environment overcoming the limitation of the previous work.



(A) (E)

1.6 [
1.4 |
o 1.2 |
> .
© 1 [
> .
g 0.8 [
c 0.6
=] .
“- 04 |
0.2 | (E)
0 :
0 25 50 75 100 125 150
(B) Time [s] (F) Visual servoing and Docking
1000 Visual servoing and Docking 0.2 _I
g 900 ; | l % 0.15
> 800 | x 01
& 700 | S 005
x
o 600 g 0
S 500 £ -0.05 |
© . o .
400 . T = -0.1
IS 200 |~ " Desired position ! 2 o1 I
2 —— Estimated position ! (E) < I (E)
2 200 -0.2
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Time [s] Time [s]
(C) Visual servoing and Docking (G) 02 Visual servoing and Docking
g % 0.15 |
P _; 0.1 I
s S 005 |
> o 0 .
Q0 5 |
c .
) 8 -0.05 |
S 100 =+ Desired position £ 01 |
2 150 — Estimated position; (E) é 0.15 I
8 00 4 Error allowance  ; 02
o .
0 25 50 75 100 125 150 0 25 50 75 100 125 150
(D) Time [s] (H) Time [s]
200 Visual servoing and Docking 0.2 Visual servoing and Docking
=3 )
£ 150 I % 0.15
‘Z‘ 100 I _g 0.1
< :
I — S 0.5
. 3 0
QO —
@
S £ -0.05
c -100 = = Desired position % 01 '|-=-"- Desired position ||
:g 150 — Estimated posmoni (E) é -0.15 — Estimated position; (E)
§ 200 Lo Error allowance ; 02 | e Error allowance
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Time [s] Time [s]

Fig. 8. Results of continuous iterative docking experiment using fitness function based on only hue. (A)Fitness value, (B)Position along x-axis, (C)Position
along y-axis, (D)Position along z-axis, (E)Camera images and models in about 104(s), (F)Rotation around x-axis, (G)Rotation around y-axis,and (H)Rotation
around z-axis. Note that rotation around x-, y-, and z-axis are in quaternion.



(4) (E)

1 |
0.9 |
0.8 :
Lo7 |
T 06 |
g 0.5 |
= 0.4 I
0.2 i
| (E)
0 [l
0 10 20 30 40 50 60 70 80
Time [s]
(B) Manual Visual servoing Docking (F) Manual Visual servoing Docking
1000 M 0.2
'g 900 operation and Docking completion g 015 operation and Docking - completion
% 300 : -- Deéired positi?r? S o4 I
‘>.é 700 I — Estimated p05|t|0n'§ 0.05 .
o 600 === i g o |
& 500 ' c -0.05 i
© TR Ko .
= 400 |\ 2 -01 |
o - o .
g 2% | (E) & 0 ' (E)
g 200 ' -0.2 '
e 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time [s] Time [s]
(C) Manual Visual servoing Docking (G) Manual Visual servoing Docking
200 0.2
3 150 operation  and Docking I completion 3 0.15 operation  and Docking I completion
(S ©
= 100 > 01 |
% 50 2 005 i
I >
5 0 g o i
< - k
% -30 I - . Desired position & -0.05 |
-100 : o 201
< | — Estimated position '
5 -150 (E) |- Errorallowance & “0-15 [ (E)
8 -200 4 -0.2 .
a 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time [s] Time [s]
(D) Manual Visual servoing Docking (H) Manual Visual servoing Docking
200 0.2
E 150 operation and Docking | completion £ 0.15 | operation and Docking | completion
= ©
" A 01
2 -
g § 0.05
2 s 0 !
o c -0.05 [
© . L ! Re] ]
< -100 = = Desired position I = 01 | I
o — Fcti [ITp + = Desired position ]
= -150 Estimated posmonI (E) 2 -0.15 — Estimated position | (E)
2 .200 - Error allowance 0.2 «.«« Error allowance ]
& 0 10 20 30 40 50 60 70 &0 0 10 20 30 40 50 60 70 &0
Time [s] Time [s]

Fig. 9. Results of continuous iterative docking experiment using fitness function based on HSV; (A)Fitness value, (B)Position along x-axis, (C)Position along
y-axis, (D)Position along z-axis, (E)Camera images and models in about 50(s), (F)Rotation around x-axis, (G)Rotation around y-axis,and (H)Rotation around
z-axis. Note that rotation around x-, y-, and z-axis are in quaternion.



V. CONCLUSION

In this paper, we proposed new method on the measurement
of the position and orientation of the target under the dark
and turbid environment and conducted docking experiments
to compare the conventional method with new one at a real
sea arca with turbid water in Japan and demonstrate its utility.
It was able to realize recognition and docking operation in
turbid water (15.0 (FTU)). We conducted a docking operation
from 600 (mm) distance between the robot and the target in
this study. By improving the system, the operation from farer
distance over 600 (mm) under dark and turbid environment
will be conducted in the future work.
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