
Pose Estimation by Optimizing Real-time Multi-step GA’s Parameters
Khin Nwe Lwin1, Myo Myint1, Naoki Mukada1 Daiki Yamada1, Takayki Matsuno1 and Mamoru Minami1

1Graduate School of Natural Science and Technology, Okayama University, Japan
(Tel: 81-86-251-8233, Fax: 81-86-251-8233)

1pdoj8yez@s.okayama-u.ac.jp

Abstract: 3D pose estimation using dynamic images input by video rate should be conducted in short time when the estimated
pose would be used for real-time feedback control. Controlling with 3D pose estimated through single camera images has been
studied so far ardently, but it has been confirmed that estimated position accuracy in camera depth direction is not enough.
The authors have proposed a new 3D position and orientation (pose) estimation method with dual-eye cameras that exploits the
parallactic nature that enables reliable 3D pose estimation in real-time, named as “Real-time Multi-step Genetic Algorithm (RM-
GA).” This paper focuses on improving dynamic performance of dual-eye real-time pose tracking by tuning parameters used in
RM-GA, having confirmed that the dynamical performance in time domain to estimate target marker’s pose in real-time has been
optimized.
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1 INTRODUCTION

The studies on visual-servoing-based underwater vehicle
have been conducted all over the world in recent years. Most
of them have used a single camera to estimate the pose of the
target object [1], [2]. A binocular vision was used in some
of these studies in order to detect the target position of the
vehicle [3], [4]. Even though two cameras were used in [3],
one was facing downward for shooting the sea-floor images
and the second camera was pointed forward for the purpose
of obstacle avoidance. In another study [4], the vehicle’s po-
sition was estimated using two cameras and a sonar system.
In that approach, the position of the vehicle was calculated
by combining data from a Doppler sonar and CCD cameras,
where the constructed system does not deal with the orienta-
tion for controlling the vehicle. This means that 3D pose es-
timation using parallactic character of dual-cameras has not
been realized.

We also developed a visual-servoing type underwater ve-
hicle using dual-eye cameras and a 3D marker for real-time
pose tracking by means of visual servoing as shown in Fig. 1.
Visual servoing using stereo vision and parallactic character
for the underwater vehicle utilizing 3D model-based recogni-
tion and Real-time Multi-step Genetic Algorithm (RM-GA)
has been initiated by our research group, and have confirmed
the effectiveness [5]-[10].

Researchers have discussed optimization of parameters
in GA for specific problems [11]-[13]. Avni Rexhepi [11]
applied genetic algorithm for travelling salesman problem
(TSP) for Kosovo municipalities, with different settings for
the parameters of the genetic algorithm. In that approach,
they studied the reasonable amount of time for the TSP by
analysing the GA parameters based on number of generation.

Fig. 1. Underwater vehicle and 3D marker.
Boyabatli, O. [12] analyzes the effect of numerical parameter
of GA on its performance and reported that the effect of high
mutation rates give better performance. Tabassum, M. [13]
utilized the GA for image optimization and the capability of
solving the knapsack problem is demonstrated. They studied
on how GA parameters affect the reproduction of the original
images.

These discussions have been based on iteration number
concerning stationary fitness distribution, not on time length
used for the optimization. The relative pose estimation in
dynamic images of underwater vehicle should be solved op-
timization problem against time-changing multi-peak fitness
distribution as fast as possible for the closed loop stability.
Since the quickness of the estimation is related to the time
used for the optimization calculation, not the iteration num-
ber, the optimization performances should be evaluated on
the convergence response measured in time domain. How-
ever, most of optimization methodologies have focused on
accuracy and iteration number rather than the time used. As
discussed above, apart from other approaches that are based
on static fitness distribution, pose estimation of moving vehi-
cle should be conducted in time-changing fitness distribution

The Twenty-Third International Symposium on Artificial Life and Robotics 2018 (AROB 23rd 2018), 
The Third International Symposium on BioComplexity 2018 (ISBC 3rd 2018), 
B-Con Plaza, Beppu, Japan, January 18-20, 2018

©ISAROB 715



for real time feedback control. To the best of the authors’
knowledge, there is no study in the literature analyzing the
GA parameters based on real-time performance.

In this context, the contribution of this paper is that the rel-
ative pose estimation performance has been confirmed to be
improved by optimizing GA’s parameters through real time
pose estimation experiments. This optimization improves
time response performance of the RM-GA to track the mov-
ing target 3D marker relative to the vehicle —even though
the marker is stationary in space, the pose measured based
on the vehicle coordinates dynamically moves—, bringing
about the improved stability of the vehicle with the feedback
control. This effect of optimization of GA’s parameters has
significant meaning on stability improvement.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the method of pose estimation. Experiment
results are reported in section 3 with discussion and conclude
in section 4.

2 POSE ESTIMATION METHOD

2.1 3D Model-based Matching Method Using Dual-eyes

Vision System
The detailed explanation of the 3D pose estimation

method using dual-eye cameras and 3D marker are already
introduced and explained in previous work [14]. We would
like to discuss about 3D pose estimation method briefly for
reader convenience in this section. In some approach, epipo-
lar constraints were used to search for corresponding points
from a pair of cameras in order to measure the pose of the
3D objects, which uses 2D-to-3D inverse projection. The
inverse projection based on 2D-to-3D can cause the wrong
mapping point in images. To avoid the effects of incorrect
mapping points in images, a three-dimensional model-based
pose estimation approach is used in the proposed system with
dual-eye cameras based on 3D-to-2D forward projection.

3D model-based pose estimation using dual-eye vision
system is shown in Fig. 2.

∑
CR and

∑
CL are the reference

frames of the left and right cameras which are mounted in
front of the vehicle respectively.

∑
H is the reference frame

of the ROV as shown in Fig. 2 and 3.
∑

M is the reference
frame of the real target object. The search space of the vision
system is already defined as shown in Fig. 3. A model of the
three-dimensional marker contains three-dimensional shape
and color information, which are predefined in a computer
system. A 3D marker which is composed of three spheres
whose color are red, green and blue is used as a target ob-
ject. There are many 3D models that have the same 3D in-
formation such as shape, color, and size with different poses
allocated randomly in the search area. The real target ob-
ject in space is captured by dual-eye camera and the poses
of the dotted-line model, which are given by one of RM-GA
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Fig. 2. 3D Model-based matching method using dual-eye
vision system.
genes, are projected to 2D image. The matching degree be-
tween the projected solid model and the dotted line model
is evaluated in 3D space through left and right projected 2D
images. The different relative pose is calculated by compar-
ing the projected 2D image and the solid model captured by
the dual-eye cameras. Finally, the best model of the target
object that represents the true pose can be obtained based on
its highest fitness value.
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Fig. 3. GA search space.

2.2 Fitness Function
The fitness function has been used to measure how much

the degree of matching between the captured image and its
projected model with its pose. In other words, the fitness
function is the correlation function of 3D pose of individual
model with the real 3D target in 3D space. The good fitness
functions affect GA to explore the search space and conver-
gence speed more effectively and efficiently. In this system,
only hue value is used for recognition of 3D marker because
of less sensitive to the environment. Figure. 4 shows the
real 3D maker and a model of the target 3D marker. The 3D
marker is constructed using red, green, and blue spheres (di-
ameter: 40 mm). Each model consists of three spherical balls
(red, green, and blue). The dimensions of the real marker are
shown in Fig. 4(a), the model of each sphere is shown in Fig.
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4(b) and Fig. 4(c) is the enlarged view of the blue ball model.
Each model consists of two portions, the first portion is the

inner area which is the same size as the target and the second
portion is the background area. The captured image (pixel)
is detected in a 2D image as (green or blue or red) in hue
space. If the captured image (on a blue ball of a 3D marker
model) situated in the inner portion, the fitness value will in-
crease and the captured image (on a blue ball of a 3D marker
model) is situated in the outer portion, the fitness value will
decrease. Similarly, the green ball and the red ball are eval-
uated in the same way. Therefore, the fitness value will be
maximum when the model and the real target exactly coin-
cide. The true pose of the real target 3D marker is obtained
with maximum fitness value. A concept of the fitness func-
tion can be found in our previous study [15].
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Fig. 4. Real 3D marker and model: (a) real 3D marker, (b)
model, (c) enlarged view of the blue ball model, where the
inner area is the same size as the real target object (blue ball)
and the outer area is the background area. The dots in (c)
mean points to calculate the correlation degree on how much
the inner area overlaps the blue ball and the outer area does
not overlap the blue ball.

2.3 Real-time Multi-step GA Evolution
The reason for choosing RM-GA and how RM-GA works

is explained in detail in [14]. Figure 5 represents the
flowchart of real-time multi-step GA recognition process and
Fig. 3 shows the GA search area. In the flowchart, the recog-
nition process of the target pose is evaluated in 2D and con-
vergence occurs in 3D as shown in Fig. 5(a). The flowchart
of the RM-GA is shown in Fig. 5(b). The best pose of the
target object is evaluated within 33 ms through the GA pro-
cess. A population of genes is first generated in random, and
a new pair of left and right images is input. The RM-GA
procedure is performed within 33 ms. Convergence of the
genes to the maximum peak of the fitness distribution, which
moves as the input image changes, can be achieved through
the RM-GA procedure. The gene information is transferred
to the next generation in order to optimize the genes over suc-
cessively input images. In the evolution, elitism strategy and
two-point crossover are used in the genetic algorithm. An
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Fig. 5. Flowchart of the real-time multi-step GA: (a) the
recognition process of the target pose is evaluated in 2D, con-
vergence occurs in 3D (b) the flowchart of the RM-GA, the
best solution is evaluated within 33 ms through the GA pro-
cess.

elitism preservation strategy of GA, which preserves a small
portion of the fittest chromosomes is copied without chang-
ing into the next generation. Finally, the best pose of the
individual can be made to present the real target’s pose.

An individual of GA populations is presented by six pa-
rameters (x, y, z, ε1, ε2, ε3) as the pose of the target object as
shown in Fig. 6. The former 36 bits (12 bits for each x, y,
z) represents the position coordinate of the three-dimensional
model of the gene. The remaining 36 bits (12 bits for each
ε1, ε2, ε3) describes the orientation defined by a quaternion.
For the next input, a new video image is used. Selection of
evolution time, population size, the probability of selection
rate and the probability of mutation rate will be discussed in
the next section. The effectiveness of the GA was demon-
strated in a previous study on visual servoing for catching
fish using a GA search [16].

3 RESULTS AND DISCUSSION

3.1 Experiment Environment
The static environment is defined as the environment

which doesn’t contain any moving objects while the dynamic
is the environment which has dynamic moving objects (i.e.,
moving target object and moving robots). In dynamic envi-
ronment, square and fair comparisons are very difficult for
convergence time because the vehicle motion or marker mo-
tion can disturb the performance of GA convergence. There-
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Fig. 6. An individual of GA population: 12 bits for each x, y,
z represents the position coordinate of the three dimensional
model of the gene and 12 bits for each ε1, ε2, ε3 describes the
orientation defined by a quaternion.
fore, the performance of GA convergence is analyzed in static
environment which is the vehicle and the marker is fixed in
position.

The layout of the experiment environment is shown in Fig.
7. The frame is designed to set up firmly the experimental
devices. The two cameras (imaging element CCD, 380,000
pixels, signal system NTSC, minimum Illumination 0.8[1X],
without zoom) were aligned horizontally and vertically on
the frame and these are used to perform a three-dimensional
object recognition. A pool ( length 2870 mm × width 2010
mm × height 1000 mm) is used as an experimental tank
which was filled with clear water. The horizontal distance
between two cameras is 178 mm which is the same length of
the ROV’s camera distance. According to the search area, as
shown in Fig. 3, the distance between the 3D marker and the
two cameras was prepared for a fixed setting 415 mm. The
distance between center of the 3D marker and the bottom of
the tank is 120 mm. The distance between from the center
of the camera to the bottom of the tank is 130 mm. Power
supply and transmission of the control signal from the PC is
made through a tether cable. In this experiment, the dynamic
image is used in the static environment. The specifications of
the PC used for 3D pose estimation are Intel Core(TM) i7-
3517UE CPU @ 1.70GHz, RAM 4096 MB, system type 64
bits. Two interfacing boards, PCI 5523, are installed in the
PC to receive images from the two cameras.

3D marker Left and right cameras
415 mm

3D marker
Right camera

415 mm

X

y

z

120 mm

Left camera

Fig. 7. Layout of the experimental devices using 3D marker
and the two cameras.
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Fig. 8. Number of evolution times of RM-GA within 33 ms
based on population size of chromosome.

3.2 Number of Evolution Times based on Population

Sizes of Chromosome
Firstly, how many evolution times will be generated

within 33 ms based on different population sizes of chromo-
some were analyzed. Figure 8 shows the number of evolu-
tion times based on different population sizes of chromosome
from 10 to 500. The horizontal axis is the population sizes of
chromosome and the vertical axis is the number of evolution
times within 33 ms . The use of correct population size is an
important factor for successful GA applications. According
to the graph, the more the population sizes , the less the num-
ber of evolution times within 33 ms. The maximum number
of evolution times are 37 within 33 ms for population size 10
and the minimum evolution time is 1 for population sizes of
chromosome from 360 to 500 for real-time performance. In
this case, we have to chose the optimum number of popula-
tion size with a reasonable evolution times within 33 ms for
real-time performance. Based on the experimental results of
the number of evolution times, the convergence performance
of real-time multi-step GA was analyzed by using dynamic
image in the next section.

3.3 Convergence Performance of RM-GA Using Dy-

namic Images
The convergence performance of RM-GA was analyzed

with different population sizes of chromosome, the proba-
bility of selection and the probability of mutation using the
dynamic images. The GA recognition process for the dy-
namic images is that the GA is applied with respect to the
number of evolution times within 33 ms to the new images.
Genetic parameters namely as selection, crossover, mutation
and population size are the key factors to obtain the optimum
accuracy of the system. These parameters are considered as
primary parameters. In every generation of GA process, se-
lection, crossover and mutation operators are conducted to
evolve the best individual towards the true pose of the target
object (x, y, z, ε1, ε2, ε3) within 33 ms.

The convergence performance of RM-GA was analyzed
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based on the time for convergence of the fitness value of 0.6
for the cases where the different population sizes (10, 20,
40, 60, 80) and for each of these populations, the selection
rate of (0.2, 0.4, 0.6 and 0.8) and mutation rate of (0.05, 0.1,
0.15). Therefore, totally 60 combinations of GA parameters
were conducted. In this experiment, our criteria is to have
the fitness value have 0.6 or more for good recognition per-
formance of GA. This threshold fitness value 0.6 was defined
experimentally. The different evolution times are used with
respect to the population sizes as shown in Fig. 8. We did not
described the detailed experiment figures of 60 combinations
in this paper. The best convergence time for each population
sizes was chosen from 60 combinations of GA parameters as
shown in Fig. 9. These time are indicated with “A”-“E” for
each population size with different selection rates and muta-
tion rates. The vertical axis is the time domain in seconds
and the horizontal axis is the different population sizes. The
summary results of the best parameters and convergence time
from 60 combinations of GA parameters that indicated with
“A”-“E” are shown in Table 1.

There are three different lines in Fig. 9 such as 1©, 2©,and
3© which have different selection rates and mutation rates.

In the first line 1©, the population size 60, the selection rates
0.4 and mutation rate 0.1 has the slowest convergence time, it
can converge to the real solution above 0.5 s as shown in Fig.
9. Among the different population sizes in line 1©, the con-
vergence time “B” for the population sizes 20 with selection
rate 0.4 and mutation rate 0.1 can convergence to the solution
within 0.156 s. In line 2©, the selection rates and the muta-
tion rates of “C”, “D” and “E” are same but the population
size is different. Among them, the fastest convergence time
can be seen in population size 40, selection rate 0.6 and mu-
tation rate 0.1 (see “C”). In a pare of selection rate 0.8 and
mutation rate 0.15 3©, the convergence time is nearly same
in different population sizes. But, the population size 10 can
converge to the solution faster than the other population sizes
within 0.187 s.

According to the results, there is a different times for con-
vergence for fitness value of 0.6 in the case of different popu-
lation sizes 20, 40, 60, and 80, selection rates 0.2,0.4, 0.6, 0.8
and mutation rates 0.05, 0.1, 0.15. Among them, the fastest
time for convergence of GA recognition can be seen in pop-
ulation size 40, selection rate 0.6 and mutation rate 0.1, GA
can converge to the solution within 0.125 s than the other
selection rates and mutation rates as shown in Fig. 9.

Considering the effect of changing the selection and mu-
tation rate for population size 10, 20, 40, 60 and 80, the ef-
fect of the mutation is important because it supports to im-
prove new generation in the solution space. The effect of
the mutation is noticed in the case of mutation rate 0.05 in
different population sizes, there was no enough fitness value
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Fig. 9. Comparison of convergence time for the fitness value
of 0.6 with parameters variation : population size= 10, 20, 40,
60, 80, selection rate= 0.4, 0.6, 0.8, mutation rate= 0.1,0.15.

to converge to the solution during the short time. It means
that there is a slow convergence time for solutions and the
small mutation rate does not bring many new and better so-
lutions. It is obvious that the probability of mutation 0.1 is
better mutation rate in most of the population size to be close
to the optimal solution than the probability of mutation rate
0.15. Even though the fitness value of the different popula-
tion sizes are maintained above 0.6, the time for convergence
of population size 40, selection rate 0.6, mutation rate 0.1
can converge rapidly to the solution within 0.125 s in GA
evolution process for real-time performance. The optimum
parameters of RM-GA to perform the real-time pose estima-
tion are shown in Table2.

Table 1. Summary results of the best parameters and conver-
gence time in each population from 60 combination of GA
parameters.

No. Population
size

Selection
rate(%)

Mutation
rate(%)

Convergen
-ce time
[s]

A 10 0.8 0.15 0.187
B 20 0.4 0.1 0.156
C 40 0.6 0.1 0.125
D 60 0.6 0.1 0.203
E 80 0.6 0.1 0.172

4 CONCLUSION
In the present paper, performance analyses and optimiza-

tion in real-time pose estimation for the underwater vehicle

The Twenty-Third International Symposium on Artificial Life and Robotics 2018 (AROB 23rd 2018), 
The Third International Symposium on BioComplexity 2018 (ISBC 3rd 2018), 
B-Con Plaza, Beppu, Japan, January 18-20, 2018

©ISAROB 719



Table 2. Best parameters for GA.
Number of genes 40
Search area [mm] [x, y, z] = ±400 ± 200 ±

400
Selection rate [%] 60
crossover probability Two points
Mutation rate [%] 10
Number of gene
evolutions [times/33 ms] 9
Control Period [ms] 33
Evolution strategy Elitism preservation

by using a 3D marker and dual-eye cameras is presented. The
optimum parameters of RM-GA were selected for real-time
pose estimation based on the time for convergence of RM-
GA using dynamic images with static environment. It can be
confirmed that the proposed system can converge to the real
solution in RM-GA evolution process using dynamic images.
The real battery recharging experiment was conducted in the
sea by using the real-time 3D pose tracking system in the
future.

REFERENCES
[1] Eustice, R.M., Pizarro, O. and Singh, H.,“ Visually

augmented navigation for autonomous underwater ve-
hicles,” IEEE Journal of Oceanic Engineering, 33(2),
pp.103-122, 2008.

[2] Ghosh, S., Ray, R., Vadali, SR., Shome, SN., Nandy,
S,“ Reliable pose estimation of underwater dock using
single camera: a scene invariant approach,” Machine
Vision and Applications, 27(2), pp.221-36, 2016.

[3] Kume, A., Maki, T., Sakamaki, T. and Ura, T.,“A
method for obtaining high-coverage 3D images of
rough seafloor using AUV-real-time quality evaluation
and path-planning,” Journal of Robotics and Mecha-
tronics, 25(2), pp.364-374, 2013.

[4] Guo, J.,“Mooring cable tracking using active vision for
a biomimetic autonomous underwater vehicle,” Journal
of marine science and technology, 13(2), pp.147-15,
2008.

[5] Myint, M., Yonemori, K., Yanou, A., Minami, M. and
Ishiyama, S.,“Visual-servo-based autonomous docking
system for underwater vehicle using dual-eyes camera
3D-pose tracking,” In 2015 IEEE/SICE International
Symposium on System Integration(SII),pp. 989-994,
2015.

[6] Myint, M., Yonemori, K., Yanou, A., Lwin, K.N.,
Minami, M. and Ishiyama, S.,“Visual-based deep sea

docking simulation of underwater vehicle using dual-
eyes cameras with lighting adaptation,” Proceedings of
OCEAN 2016-Shanghai, pp.1-8, 2016.

[7] Myint, M., Yonemori, K., Yanou, A., Lwin, K.N.,
Mukada, N. and Minami, M.,“Dual-eyes visual-based
sea docking for sea Bottom battery recharging,”
OCEAN, 2016.

[8] Lwin, K.N., Yonemori, K., Myint, M., Yanou, A.
and Minami, M.,“Autonomous docking experiment in
the sea for visual-servo type underwater vehicle using
three-dimensional marker and dual-eyes cameras,” In
Society of Instrument and Control Engineers of Japan
(SICE), 2016 55th Annual Conference ,pp 1359-1365,
IEEE ,2016.

[9] Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Mi-
nami, M. and Ishiyama, S.,“ Visual servoing for un-
derwater vehicle using dual-eyes evolutionary real-time
pose tracking,” Journal of Robotics and Mechatronics,
28(4), pp.543-558, 2016.

[10] Lwin, K.N., Yonemori, K., Myint, M., Mukada, N.,
Minami, M., Yanou, A. and Matsuno, T.,“Performance
analyses and optimization of real-time multi-step GA
for visual-servoing based underwater vehicle,” Techno-
Ocean 2016, IEEE 2016.

[11] Rexhepi, A., Maxhuni, A. and Dika, A., “Analysis of
the impact of parameters values on the Genetic Algo-
rithm for TSP,” International Journal of Computer Sci-
ence Issues, 10(1), pp.158-164, 2013.

[12] Boyabatli, O. and Sabuncuoglu, I.,“Parameter selection
in genetic algorithms,” Journal of Systemics, Cybernet-
ics and Informatics, 4(2), p.78, 2004.

[13] Tabassum, M. and Mathew, K.,“A genetic algorithm
analysis towards optimization solutions,” International
Journal of Digital Information and Wireless Communi-
cations (IJDIWC), 4(1), pp.124-142, 2014.”

[14] Myint, M., Yonemori, K., Lwin, K N., Yanou,
A., Minami, M., J Intell Robot Syst (2017), DOI
10.1007/s10846-017-0703-6.

[15] Minami, M., Agbanhan, J. and Asakura, T., In Soft
Computing in Measurement and Information Acquisi-
tion, Evolutionary scene recognition and simultaneous
position/orientation detection, pp.178-207. Springer
Berlin Heidelberg, 2003.

[16] Suzuki, H. and Minami, M., “Visual servoing to catch
fish using global/local GA search,” IEEE/ASME Trans-
actions on Mechatronics, 10(3), pp.352-357, 2005.

The Twenty-Third International Symposium on Artificial Life and Robotics 2018 (AROB 23rd 2018), 
The Third International Symposium on BioComplexity 2018 (ISBC 3rd 2018), 
B-Con Plaza, Beppu, Japan, January 18-20, 2018

©ISAROB 720




