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Abstract: Nowadays, Autonomous Underwater Vehicle (AUV) is playing an important role for human society in different
applications such as inspection of underwater structures (dams, bridges). We have developed a stereo-vison based docking ap-
proach for underwater battery recharging to enable the AUV to operate for extended periods without returning surface vehicle for
recharging. Since underwater battery recharging units are supposed to be installed in deep sea, the deep-sea docking experiments
cannot avoid turbidity and low light environment. In this study, the proposed system with a newly designed an active 3D marker
have been developed to improve the performance of the proposed system especially in turbid water. We conducted experiments
to verify the robustness of the proposed docking approach in a simulated pool where lighting changes from day to night and the
water is turbid. The experimental results have confirmed the robustness of the proposed docking system against turbidity and
illumination variation.
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1 INTRODUCTION

Japan has many areas of sea from which future resources
can be taken out using advanced technologies. Autonomous
Underwater Vehicle (AUV) plays an important role in deep
sea works such as oil pipe inspection, survey of sea floor,
searching expensive metal, etc [1]-[4]. Japan government
is now seriously considering searching methane hydrate as
future energy solution. To do such novel works that takes
long period in deep sea, one of the main limitation of AUVs
is limited power capacity. To solve this problem, underwa-
ter battery recharging unit with a docking function is one of
the solutions to extend the operation time of AUVs. Sev-
eral approaches using different sensors have been conducted
worldwide for underwater docking operation [5]-[6]. Nor-
mally, long navigation is performed using acoustic sensors
and camera vision is used for final step of docking process.
Vision-based navigation is one of the dominant positioning
units especially high accuracy is essential. Vision based sys-
tem can be integrated with other sensor units.

Most of the studies related to vision based navigation for
underwater vehicle are based on single camera [7]-[9]. Apart
from them, we have developed a stereo-vison based docking
approach for AUV [10]-[13]. In our approach, the relative
pose between the underwater vehicle and a known 3D marker
is estimated using Real-time Multi-step GA (RM-GA) that
is real-time 3D pose estimation method. Avoiding the dis-
advantages of features based recognition methods that are
based on 2D to 3D reconstruction, 3D model based matching
method is used that is based on 3D to 2D projection method
in our approach. One of the main drawbacks of 2D-to-3D re-

construction is incorrectly mapping between corresponding
points in images.

Since underwater environment is more complex than
space and ground, there are many disturbances for vision-
based underwater vehicles. Therefore, it is important to con-
sider the possible disturbances before testing the proposed
approach in the sea. The common disturbances for vision-
based underwater vehicle are light environment and turbidity.
Since underwater battery recharging units are supposed to be
installed in deep sea to save the time consuming and work
done from human beings in the case of returning surface ve-
hicle for recharging, the deep-sea docking experiments can-
not avoid turbidity and low light environment. According to
the authors’ knowledge, there is no study on docking system
using stereo-vision based real-time visual servoing with per-
formance tolerance of illumination and turbidity.

In this study, we newly designed an active 3D marker and
used to improve the performance of the system especially
in high turbidity. We conducted experiments to verify the
robustness of the proposed docking approach in simulated
pool where lighting changes from day to night and the tur-
bidity of the water is high. The experimental results have
confirmed the robustness of the docking system using stereo-
vision based 3D pose estimation against turbidity and light
changing.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the method of 3D pose estimation. Exper-
iment results are reported in section 3 with discussion and
conclude in section 4.
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2 REMOTELY OPERATED VEHICLE
Hovering type underwater vehicle (manufactured by

Kowa cooperation) is used as a test bed as shown in Fig.1.
Two fixed cameras installed at the front of the vehicle are
used for real time pose tracking. In thruster unit, four
thrusters with maximum thrust force of 4.9[N] each are con-
trolled to move the vehicle along desired path. The vehicle
can dive up to 50 [m] and two LED light sources are also
installed on the vehicle.

Fig. 1. Photograph of ROV (a) front view showing two cam-
eras, (b) side view showing traverse thruster, (c) back view
showing horizontal thrusters , and (d) top view showing ver-
tical thruster.

3 3D MOVING ON SENSING (MOS) USING

REAL-TIME MULTI-STEP GA
In previous study [10], we introduced 3D MoS that uses

three dimensional measurement with solid object recognition
based on visual servoing technology. In this system, RM-
GA is used to estimate the relative pose between the vehicle
and a known 3D marker. Here, we will discuss on 3D pose
estimation using RM-GA briefly for background of readers.

Figure 2 shows the model-based matching method using
dual-eye cameras for 3D pose estimation. In Fig. 2, ΣCR and
ΣCL are the reference coordinate frame of the right camera
and the left camera. ΣH is the reference frame of the ROV.
ΣM is the reference frame of the real target object. The solid
model of the real target object in space is projected naturally
to the dual-eyes cameras images and the dotted 3D marker
model, where the pose is given by one of GA’s genes, is
projected from 3D to 2D. The different relative pose is cal-
culated by comparing the projected 2D image and the solid
model captured by the dualeye cameras. Finally, the best
model of the target object that represents the true pose can be
obtained based on its highest fitness value. The fitness func-
tion is constructed to evaluate the matching degree between
the projected model and the captured image. Detailed expla-
nation about the fitness function is referred to our previous
paper [14].
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Fig. 2. Model-based matching method using dual-eye cam-
eras and 3D marker. A solid object in 3D space is real target
and dotted ones in 3D and 2D space are models that are pre-
defined in 3D space and projected to 2D left and right images.
3.1 Real-time Multi-step GA

In the proposed 3D model-based recognition method,
searching for all possible models is time consuming for
real-time recognition. Therefore, the problem of find-
ing/recognizing the 3D marker and detecting its pose is con-
verted into an optimization problem with a multi-peak dis-
tribution. The genetic algorithm is used and utilized as RM-
GA to estimate the relative pose between the ROV and 3D
marker. Figure. 3 shows the flowchart of the RM-GA. Posi-
tion and orientation of the three-dimensional model are rep-
resented as individual of the chromosome. The former 36
bits represent the position of the 3D marker and the later 36
bits describe the orientation defined by a quaternion.

Firstly, a random population of the chromosome is gen-
erated. A new pair of left and right images is input. The
RM-GA procedure is performed within 33 ms. The RM-GA
find repeatedly the solutions to get the best pose of the target
object within the video frame rate to deal with time varying
distribution for newly input images. The fitness function is
designed to get the maximum value when the model and the
real target exactly coincide. The true pose of the target object
is expressed with the peak of the mountain shape in the fit-
ness distribution. Finally, the best pose of the individual can
be made to approach the real target’s pose. Although the pose
of the target object is evaluated in 2D, convergence occurs in
3D. For the next input, a new video image is used.

3.2 Controller
The proportional controller is used to control the vehicle.

The four thrusters that are mounted on the underwater robot
are controlled by sending the command voltage based on the
feedback relative pose between the underwater robot and the
object (xd[mm], yd[mm], zd[mm]). The block diagram of
the control system is shown in Fig. 4. The control voltage of
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Fig. 3. Flowchart of the real-time multi-step GA: (a) the
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vergence occurs in 3D (b) the flowchart of the RM-GA, the
best solution is evaluated within 33 ms through the GA pro-
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Fig. 4. Block Diagram of 3D MoS for Visual servoing based
underwater vehicle.

the four thrusters is controlled as the following equations.

The depth direction : v1 = kp1(xd − x) + 2.5 (1)

Vertical axis rotation : v2 = kp2(ε3d − ε3) + 2.5 (2)

Vertical direction : v3 = kp3(zd − z) + 2.5 (3)

Horizontal direction : v4 = kp4(yd − y) + 2.5 (4)

Where v1, v3 and v4 are the control voltage of the four
thrusters of x, z, y direction respectively. xd, yd, zd are the
desired relative pose between the vehicle and the target. ε3d

is the rotation direction around the z-axis and it is expressed
as the value of v2. According to the experimental result, the
gain coefficient is adjusted to perform the best condition for
visual servoing.

3.3 Active Marker
In our previous researches [10]-[13], the passive marker

was used to conduct the experiment. In the present study,

Active 3D marker

Fig. 5. Active 3D marker: Red, green and blue LED were
installed into the white spherical ball and covered by colour
balloon.
the active marker was designed and constructed to improve
the pose estimation at high turbidity level in day and night
time. Figure 5 shows the appearance of the active marker.
The circuit was created by combining the variable resistors,
resistors, and the light emitting diodes such as red, green, and
blue. The resistance value of the variable resistors, and the
number of resistors are determined by trial and error. The
3D marker is constructed from a water proof box (100 mm
× 100 mm × 100 mm) and the white spheres (diameter: 40
mm) are attached to the water proof box. The red, green
and blue LED were installed into the white spherical ball and
covered by the color balloon as shown in Fig. 5. This marker
can be used as the passive marker when the light is switched
off. The active marker allowed the ROV to recognize in day
and night time by emitting the light of LED.

4 EXPERIMENTAL RESULTS AND DISCUS-

SION

4.1 3D Pose Estimation in Turbid Water
The 3D pose estimation was performed when the ROV

and 3D marker were fixed with a distance of 600 mm between
them under different turbidity levels in day and night time.
The amount of turbidity is controlled by adding mud in wa-
ter in the tank. Mud is chosen in order to simulate the natural
condition. In this experiment, the turbidity level (Formazin
Turbidity Unit, FTU) is measured by using a portable turbid-
ity monitoring sensor (Model: TD-M500, manufactured by
OPTEX).

The ROV performed visual servoing at about 600 mm in
docking operation. It is the aware distance for docking op-
eration to recognize the target object. Therefore, we give
prominence to discuss 600 mm distance for recognition per-
formance. Figure 6 shows the fitness value against turbidity
using mud and the ROV and the 3D marker were fixed in
distance 600 mm. The horizontal axis is described by the
amount of mud (ml/m3) and the vertical axis is expressed
in terms of fitness values and FTU values.

According to the results, the fitness value decreases from
1.3 to 0.1 in the case of day time and from 0.6 to 0.1 in the
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Fig. 6. Fitness values against turbidity at the distance 600
mm between the ROV and 3D marker. The illumination for
day and night time are 1280 (lx) and 80 (lx) respectively. The
left and right camera images taken at (A), (B), (C) are shown
in Fig. 7.
case of night time when the turbidity is gradually increased
from 0 FTU (0 ml/m3) to 50.2 FTU (375.875 ml/m3). The
fitness value is nearly same at day and night time above 30
FTU. According to the experimental results, the performance
of 3D pose estimation under different turbidity levels is ana-
lyzed and the maximum turbidity can be determined accord-
ing to the defined threshold of fitness value. For example,
when the ROV is controlled with the minimum fitness value
of 0.4, the maximum turbidity is 40 FTU in that condition
docking experiment can be conducted. To verify that con-
cept, docking experiment in the pool in which turbidity is 40
was conducted under light changing environment. The de-
tailed discussion on docking experiment is presented in the
following section.

50.2 FTU 50.2 FTU

19.6 FTU

0 FTU

19.6 FTU

0 FTU(A)

(B)

(C)

Fig. 7. Left and right images corresponding to the conditions
of (A), (B), (C) in Fig.6 for day and night time. Dotted cycles
mean recognized poses by RM-GA.

4.2 Docking Performance Against Turbidity Under

Changing Lighting Condition
This experiment was conducted in an indoor pool as

shown in Fig. 8 in which the turbidity was created by adding
mud (40 FTU). The desired pose (xd = 600 mm (350 mm for
docking completion), yd = 15 mm, zd = -20 mm, and ε3d =

Left and right camera images

ROV Active marker

Fig. 8. Docking experiment in turbid water using an active
marker under changing lighting environment.
0 deg) between the target and the ROV (see Fig. 9) is pre-
defined so that the ROV performs docking by mean of visual
servoing. The detailed explanation of docking strategy is re-
ferred to our previous study [10]. After the docking operation
completed, the vehicle returned to a distance of 600 mm from
the target in the x-direction for the next docking iteration.

The totally 17 times continuous docking was performed
successfully by changing lighting from day time to night time
as shown in Fig.10. Figure 10 shows the lighting simulation
for each docking time. The horizontal direction is described
by the number of docking times and the vertical direction is
expressed with the illumination [Lx]. By adjusting the light-
ing condition, the maximum illumination is 1280 Lx in day
time and minimum illumination is 80 Lx in night time. The
illuminance was measured using a lux sensor (model: LX-
1010B, manufactured by Milwaukee).
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Fig. 9. Docking coordinate system.

The results of docking performance against turbidity at
the maximum illumination 1280 Lx (day time) are shown in
Fig. 11, and the results of docking performance at the min-
imum illumination 80 Lx are shown in Fig. 12. In Fig. 11
(a), the fitness value is above 0.8 for the few seconds of the
recognition process and then increased to 1, which means
that the system could recognize the 3D pose of the active
marker well. Figures 11 (b), (c), (e), and (f) represent the rel-
ative pose between the desired pose and the estimated pose
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of the active marker recognized by RM-GA. Figure 11 (d)
indicates the trajectory of the underwater robot based on ΣH

in Fig. 9 during the docking process.
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Fig. 11. Docking performance against turbidity (40 FTU) in
the case of mud using dual-eye images recognition at 1280
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sition along the x-axis, (c) position along the y-axis, (d) 3D
trajectory of the underwater vehicle, (e) position along the
z-axis, and (f) orientation along the z-axis.

In docking strategy, visual servoing starts when the 3D
marker is detected, which means the fitness value is above a
defined threshold (0.4 in the present study). When the pose of
the vehicle is within the allowable error range of ±40 mm of
the desired pose, as shown in Figs. 11(b), (c), and (e), and the
orientation around the z-axis (f) is controlled to within 7 deg
for the desired period (165 ms, which is equal to five times
the control loop period) in this experiment, docking starts by
decreasing the distance between the ROV and the 3D marker
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Fig. 12. Docking performance against turbidity (40 FTU) in
the case of mud using dual-eye images recognition at 80 Lx
(minimum lighting condition): (a) fitness value, (b) position
along the x-axis, (c) position along the y-axis, (d) 3D trajec-
tory of the underwater vehicle, (e) position along the z-axis,
and (f) orientation along the z-axis.
from 550 mm to 350 mm, as shown in Fig. 11(b). The dot-
ted line labeled “A” in each subfigure of Fig. 11 indicates the
visual servoing state, where the desired position along the x-
axis is 600 mm, and the desired position along the y-axis is
within the allowance error range, as shown in Fig. 11(c). Vi-
sual servoing continues until the desired pose is within the er-
ror range for the y and z directions and the orientation around
the z-axis, as shown in Figs. 11(c), (e), and (f). At time “B”,
as shown in Figs. 11(b), (c), and (d), the docking criteria
are satisfied and docking operation starts. Note that the po-
sition in the x direction at point “B” is approximately 500
mm because only the positions in the y and z directions and
the orientation around the z-axis are considered in the dock-
ing criteria. The docking operation started approximately 7 s
after starting the experiment. Finally, the docking operation
was successfully completed approximately 20 s after starting
the experiment. The dotted line labeled “C” in each sub-
figure of Fig. 11 indicates the state whereby the docking is
completed.

In the case of 80 Lx (night time), the fitness value is about
0.8 in recognition of active 3D marker at the start of the ex-
periment and then decreased to about 0.5 as shown in Fig.
12(a). The ROV could recognize the active marker even
though the environment is dark. The desired position along
the orientation around the z-axis are out of error range at 3 s
as shown in Fig.12 (f). Therefore, visual servoing continues
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until the desired pose of other direction y, z, and orienta-
tion around the z-axis is within allowance error range. The
time for docking from the start of the experiment is 25 s in
this case. The underwater robot was confirmed to maintain
the desired pose while docking was performed under chang-
ing lighting condition at high turbidity, as shown in Figs. 11
and 12(a) through (f). According to the experimental results,
even though the lighting condition was changed from day to
night in high turbidity, the relative pose of the 3D marker can
keep recognize well and the docking has been done success-
fully against turbidity under changing lighting condition.

5 CONCLUSION
This paper presents the docking performance against tur-

bidity of the proposed dual-eye based docking system using
an active 3D marker under changing lighting condition. Pool
docking experiment was conducted against turbidity using an
ROV. Turbid water was simulated using mud taken from the
real sea. Recognition performance against turbidity under
day and night was verified in terms of fitness value that is
used in the 3D pose estimation of RM-GA. 17 times continu-
ously repeated docking in the turbid water was conducted and
docking performance under day and night environment was
discussed in details. The experimental results have confirmed
the docking performance of the proposed system against tur-
bidity under different lighting conditions. Docking experi-
ment in the turbid sea under day and night environment will
be conducted in future.
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