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Abstract
Nowadays, autonomous underwater vehicle (AUV) is playing an important role in human society in different applications 
such as inspection of underwater structures (dams, bridges). It has been desired to develop AUVs that can work in a sea 
with a long period of time for the purpose of retrieving methane hydrate, or rare metal, and so on. To achieve such AUVs, 
the automatic recharging capability of AUVs under the sea is indispensable and it requires AUVs to dock itself to recharg-
ing station autonomously. Therefore, we have developed a stereo-vision-based docking methodology for underwater battery 
recharging to enable the AUV to continue operations without returning surface vehicle for recharging. Since underwater 
battery recharging units are supposed to be installed in a deep sea, the deep-sea docking experiments cannot avoid turbidity 
and low-light environment. In this study, the proposed system with a newly designed active—meaning self-lighting—3D 
marker has been developed to improve the visibility of the marker from an underwater vehicle, especially in turbid water. 
Experiments to verify the robustness of the proposed docking approach have been conducted in a simulated pool where the 
lighting conditions change from day to night. Furthermore, sea docking experiment has also been executed to verify the 
practicality of the active marker. The experimental results have confirmed the effectiveness of the proposed docking system 
against turbidity and illumination variation.

Keywords  Visual servoing · Active marker · Underwater docking · Stereo-vision · Turbidity · Illumination variation

1  Introduction

Japan has huge sea area from which resources can be taken 
out using advanced technologies. Autonomous underwater 
vehicle (AUV) plays an important role in deep-sea works 
such as oil pipe inspection, survey of seafloor and search-
ing rare metal [1–4]. The Japanese government is now seri-
ously considering searching methane hydrate as a future 
energy solution. To do such novel works that need long 
duration time in the deep sea, one of the main limitations 

of AUVs is limited power capacity. To solve this problem, 
underwater battery recharging with a docking function is 
one of the solutions to extend the operation time of AUVs. 
Several approaches using different sensors have been con-
ducted worldwide for underwater docking operation [5, 6]. 
Normally, long navigation is performed using acoustic sen-
sors, and camera vision is used for the final step of dock-
ing process. Vision-based navigation is one of the dominant 
positioning units especially when high accuracy is essential. 
The vision-based system can be integrated with other sen-
sor units.

Most of the studies related to vision-based navigation 
for the underwater vehicle are based on single camera 
[7–9]. An optical-guided system in which the lights were 
installed at the entrance of the funnel-shaped docking 
hole and the relative pose was calculated using the geom-
etry of the lights for the autonomous underwater docking 
[10]. In this kind of approach, the calculation of the pose, 
especially orientation, was more complicated and difficult 
than detection of the position. Even though the attitude 
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keeping control was used for the final docking step, the 
obtained orientation information did not have high accu-
racy in [10]. On the other hand, proposed dual-eye camera 
pose detection method has a merit that can use parallactic 
nature of dual-eyes, which cannot be utilized in single-
camera approach. Apart from them, we have developed a 
stereo-vision-based docking approach for AUV [11–14]. 
In our approach, the relative pose between the underwater 
vehicle and a known 3D marker is estimated using Real-
time Multi-step GA (RM-GA), that is, real-time 3D pose 
estimation method. Avoiding the disadvantages of feature-
based recognition methods that are based on 2D-to-3D 
reconstruction, the 3D-model-based matching method that 
is based on 3D-to-2D projection method is used in our 
approach. One of the main drawbacks of 2D-to-3D recon-
struction is incorrectly mapping between corresponding 
points in images.

Since the underwater environment is complex, there 
are many disturbances for vision-based underwater vehi-
cles. Therefore, it is important to make the vision system 
to be robust against possible disturbances. The common 
disturbances for the vision-based underwater vehicle are 
light environment and turbidity. Since underwater battery 
recharging units are supposed to be installed in the deep-
sea bottom, the deep-sea docking cannot avoid the turbidity 
and low-light environment. According to the authors’ knowl-
edge, no existing study has conducted the docking using 
stereo-vision-based real-time visual servoing with perfor-
mance tolerance of turbidity and illumination varieties.

In our previous researches [11–14], the passive marker 
was used to conduct the experiment. The docking experi-
ments were conducted utilizing the passive marker in the 
pool [11, 12], having verified the effectiveness of the pro-
posed system in the day time in an environment with less 
turbid water. The robustness against occlusion of the pas-
sive marker in daytime pool condition has been confirmed 
in [13]. The lighting direction from the ROV affects the pose 
estimation also in pool condition was discussed in [14].

In the turbid water environment and nighttime condition, 
conventional idea that ROV’s LED illuminates the marker 
makes the input image just white since the turbid particles 
in the sea water reflect the lighting from the ROV, result-
ing in full white image. Then, the lighting from the vehicle 
has been confirmed to not be an effective method to detect 
something in turbid and dark condition. On the other hand, 
point light marker with no lighting from the ROV has been 
sometimes used for pose estimation [15], which is possibly 
hidden by small sea weeds or something easily. So, we have 
developed solid lighting 3D marker in this paper. Based on 
this motivation, some experiments were conducted to con-
firm the effectiveness of the proposed lighting marker sys-
tem with turbidity and nighttime condition simulating sea 
bottom docking in this paper.

The improvement of the proposed system by utilizing 
new active/lighting 3D marker for real-time pose estima-
tion is one of the main contributions of the present paper. In 
addition, the docking experiment was conducted to verify 
the turbidity tolerance of the proposed docking approach 
in a simulated pool where the turbidity of the water and the 
lighting was simulated from daytime to nighttime as shown 
in Fig. 1. Finally, sea docking experiment against turbidity 
was conducted to confirm the performance of the 3D-MoS 
system driven by RM-GA under the condition whereby 
the turbidity degrades the visual quality. The experimen-
tal results have confirmed the effectiveness of the proposed 
docking system using active 3D marker against turbidity 
under changing lighting condition.

2 � Remotely operated vehicle

Hovering-type underwater vehicle (manufactured by
Kowa cooperation) was used as a test bed as shown in 

Fig. 2. Two fixed cameras installed at the front of the vehi-
cle are used for real-time pose tracking. Four thrusters with 
maximum thrust force of 4.9 N each are controlled to move 
the vehicle along the desired path. The vehicle can dive up 
to 50 m and two LED light sources are also installed on the 
vehicle.

3 � 3D moving on sensing (3D‑MoS) using 
real‑time multi‑step GA

In a previous study [11], we already introduced and 
explained 3D-MoS that uses three-dimensional measure-
ment with solid object recognition based on visual servoing 

Fig. 1   The experimental setup in the case of nighttime condition: 
a ROV and an active marker in the simulated pool, b left and right 
cameras images from which the dotted circles represent the real-time 
estimated pose by the proposed system
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technology. In this system, RM-GA is used to estimate in 
real time the relative pose between the vehicle and a known 
3D marker. Here, we discuss 3D pose estimation using 
RM-GA briefly, a background for readers.

Figure 3 shows the model-based matching method using 
dual-eye cameras for 3D pose estimation. In Fig. 3, ΣIL and 
ΣIR are the left and right image coordinate systems. ΣH is 
the reference frame of the ROV. ΣM is the reference frame 
of the real target object and ΣMi is the reference frame of the 
ith model. The solid model of the real target object in space 
is projected naturally to the dual-eye camera images. The 
dotted 3D marker model, where the pose is given by one of 
GA’s genes, is projected from 3D-to-2D. The plural poses 
defined by genes are evaluated by comparing the projected 
2D image and the solid model captured by the dual-eye 

cameras. Finally, the best model—most overlapping to the 
real 3D marker—of the target object that represents the true 
pose can be obtained based on its highest fitness value.

3.1 � Real‑time multi‑step GA

The problem of finding/recognizing the 3D marker and 
detecting its pose is converted into an optimization problem 
with a multi-peak distribution.

The meaning of the fitness function is to calculate the cor-
relation between the model and the real target. Refer to [16, 
17] for detailed descriptions of the derivation of a fitness 
function from a correlation function. When the model and 
the real target are coincided, the fitness value has the maxi-
mum. The highest peak in the fitness distribution represents 
the true pose of the target object. Adversely, the fitness func-
tion should be designed to have a highest peak at the true 
pose of the 3D marker. Then, the pose estimation problem 
could be thought to have been converted into optimization 
problem, enabling RM-GA to solve it in real time.

The genetic algorithm is used and utilized as RM-GA to 
estimate the relative pose between the ROV and 3D marker.

Figure 4a shows the flowchart of the RM-GA. First, a 
random population of the models with different poses is gen-
erated in the 3D search space. A new pair of left and right 
images that were captured by ROV’s cameras is input every 
33 ms. The GA procedure is performed continuously within 
33 ms with 9 times evolution for every image. Then, the fit-
test new generation is forwarded to the next step as the initial 
models for the next new generation that is closer to the real 
target 3D marker projected naturally to camera images. By 
performing this procedure repeatedly, the RM-GA searches 
the best solution that can represent the truthful pose of 
the target object in a successively input dynamic images. 
The convergence behavior of GA procedure is illustrated 
as shown in Fig. 4b from the first generation to the final 
generation.

3.2 � Controller

The proportional controller is used to control the vehicle. 
The four thrusters that are mounted on the underwater robot 
are controlled by sending the command voltage based on the 
feedback relative pose between the underwater robot and the 
object. The block diagram of the control system is shown in 
Fig. 5. The control voltage of the four thrusters is controlled 
by the following equations:

(1)The depth direction ∶ v1 = kp1(xd − x) + 2.5

(2)Vertical axis rotation ∶ v2 = kp2(�3d − �3) + 2.5

(3)Vertical direction ∶ v3 = kp3(zd − z) + 2.5

Fig. 2   Photographs of ROV a front view showing two cameras, b 
side view showing traverse thruster, c back view showing horizontal 
thrusters, and d top view showing vertical thruster
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Fig. 3   Model-based matching method using dual-eye cameras and 
3D marker. A solid object in 3D search space a is the real target and 
dotted one is the model of the 3D marker. The degree of matching 
between the projected 2D model and the real 3D marker as captured 
in both camera images b, c is calculated using the fitness function
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where v1 , v3 and v4 are the control voltages of the four thrust-
ers of x−, z−, y-directions, respectively. xd, yd, zd are the 
desired relative pose between the vehicle and the target. �3d 
is the rotation direction around the z-axis and it is expressed 
as the value of v2 . According to the experimental result, the 
gain coefficient is adjusted experimentally to perform so that 
the visual servoing errors could be kept less than ±40 mm 
and orientation error around z-axis could also be kept less 

(4)Horizontal direction ∶ v4 = kp4(yd − y) + 2.5

than ±7◦ . The gain coefficient values of kp1 , kp2 , kp3 , kp4 are 
0.003, 0.07, 0.02, and 0.01, respectively.

3.3 � Active marker

In the present study, the active marker was designed and 
constructed to improve the pose estimation at turbid water 
in day- and nighttime. The appearance of the active/light-
ing 3D marker is shown in Fig. 6. The circuit was designed 
by combining the variable resistors, resistors, and the light-
emitting diodes (LED) such as red, green, and blue. The 3D 
marker was constructed with a waterproof box (100 mm × 
100 mm × 100 mm) and the three white spheres (diameter: 
40 mm) were attached to the box as shown in Fig. 6. The 
red, green and blue LEDs were installed inside the white 
spherical balls, and spherical balls were covered by the color 
balloon. The 3D pose estimation can be improved by emit-
ting the light LED from 3D marker under day and night 
environment. The effectiveness of the active marker will be 
discussed in Sect. 4 based on experimental results.

4 � Experimental results and discussion

4.1 � 3D pose estimation accuracy

The reliability of the proposed system has been checked by 
conducting the recognition performance with plain back-
ground. The 3D marker was fixed in the water with a rela-
tive pose of xt = 341 mm, yt = 0 mm, zt = −67 mm, and �3t 
= 0 ◦ based on ΣH in Fig. 9. The detected errors for xe , ye , 
ze , and �3e that are the results of subtracting the pose esti-
mated by the top gene for x̂ , ŷ , ẑ , and 𝜖3 from the ground-
truth measurement at a sample time of 10 s are xe = xt − x̂ 
= 341–350.20 = −9.20 mm, ye = 0–12.11 = −12.11 mm, 
ze = −67 − (−68.37) = 1.37 mm, and �3e = 0 − (−0.607) = 
0.607◦ . This accuracy is based on the condition that is plain 
background, clear water, passive marker and natural daytime 
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Fig. 6   Active/lighting 3D marker: red, green and blue LEDs were 
installed inside the white ball, and each ball is covered by each color 
balloon. The lumen of the active marker’s LED for red, green, and 
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online)
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illumination. These factors affect the accuracy of the pro-
posed 3D pose estimation.

4.2 � 3D pose estimation in turbid water

The 3D pose estimation was conducted in a simulated pool 
(1540 mm × 1060 mm × 590 mm) which was filled with 
800 m3 of fresh water. The ROV and 3D marker were fixed 
in position and the recognition experiment was conducted 
against different turbidity levels under day and night condi-
tions. The amount of turbidity was controlled by adding mud 
in water in the tank. Mud was chosen to simulate the natural 
condition. The mud was taken from near the sea environ-
ment at Ushimado in Okayama prefecture. In this experi-
ment, the turbidity level (Formazin Turbidity Unit, FTU) 
was measured using a portable turbidity monitoring sensor 
TD-M500 (manufactured by OPTEX). In the recognition 
experiment, the ROV and 3D marker were fixed in posi-
tion at the distance 600 mm. The ROV performed the visual 
servoing at about 600 mm in docking operation, meaning 
waiting and stabilizing for docking operation to recognize 
the target object. Therefore, we selected 600 mm distance 
for recognition experiment in this section. The illumination 
was simulated using artificial light sources. The maximum 
illumination in the daytime is 1280 lx and minimum illu-
mination in the nighttime is 80 lx. Figure 7 shows the fit-
ness values against different turbidity levels under day and 
night conditions. The fitness value calculated by RM-GA 
was used to verify the performance of the proposed sys-
tem under different turbidity levels. The horizontal axis is 
described by the amount of mud (g/m3) and the left vertical 
axis is expressed in terms of fitness values and the right 
vertical axis is described in terms of FTU values which were 
measured using turbidity sensor. According to the depicted 
results in the graph, the fitness value decreases from 1.3 to 
0.1 in the case of daytime, and from 0.6 to 0.1 in the case of 

nighttime when the turbidity is gradually increased from 0 
FTU (0 g/m3 ) to 50.2 FTU (378.5 g/m3 ). The fitness values 
are nearly same at daytime and nighttime when mud input 
is bigger than 100 FTU (125 g/m3 ). When the turbidity level 
reaches 50.2 FTU (378.5 g/m3 ), the RM-GA cannot recog-
nize the 3D marker. At that time, the fitness value is below 
0.2 in both cases of day- and nighttime.

4.3 � Docking performance against turbidity 
under changing lighting condition

This experiment was conducted in an indoor pool as shown 
in Fig. 1 in which the turbidity was created by adding mud 
10 FTU. The desired pose ( xd = 600 mm (350 mm for dock-
ing completion), yd = 15 mm, zd = −20 mm, and �3d = 0 deg) 
between the target and the ROV (see Fig. 9) is predefined so 
that the ROV performs docking by means of visual servoing. 
For detailed explanation of docking strategy, the reader is 
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referred to our previous study [11]. After the docking opera-
tion completed, the vehicle returned to a distance of 600 
mm from the target in the x-direction for the next docking 
iteration.

Continuous docking was performed successfully for 
a total of 17 times by changing lighting from daytime to 
nighttime as shown in Fig. 10. Figure 10 shows the lighting 
simulation for each docking time. The horizontal direction 
is described by the number of docking times and the ver-
tical direction is expressed with the illumination (lx). By 
adjusting the lighting condition, the maximum illumination 
is 1280 lx in the daytime and minimum illumination is 80 lx 
in the nighttime. The illuminance was measured using a lux 
sensor (model: LX-1010B, manufactured by Milwaukee).

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
80

125

205

390

555

835

985

1181

1280

Ill
um

in
at

io
n 

[L
x]

Docking Times

DAY

NIGHT

Fig. 10   Illumination simulated for each docking time. Lighting condi-
tion is changed from daytime to nighttime gradually

0
100
200
300
400
500
600
700

160 165 170 175 180

0
0.2
0.4
0.6
0.8

1
1.2
1.4

160 165 170 175 180
Time [s]

Fi
tn

es
sv

al
ue

Time [s]

Po
si

tio
n 

in
 x

-a
xi

s [
m

m
]

Time [s]

Po
si

tio
n 

 i n
y-

ax
is

 [m
m

]

-100

-60

-20

20

60

100

-100

-60

-20

20

60

100

160 165 170 175 180

Time [s]

Po
si

tio
n 

in
z-

ax
is

 [m
m

]

-25

-15

-5

5

15

25

Time [s]

O
rie

nt
at

io
n 

ar
ou

nd
 z

 -a
xi

s [
 ° ]

Desired position

Estimated position

0 5 10 15 20

(a)

(b)

(c)

(e)

(f)

(d)

Start point
End point

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

y [mm]

z [mm]

x [mm]
A B C

A B C

A B C

A B C

A B C
Desired 
position Estimated position

Error allowance
range

Error allowance
range

Error allowance
range

Estimated position
Desired 
position

Fig. 11   Docking performance against turbidity 10 (FTU) under 1280 (lx) (maximum lighting condition): a fitness value, b position along the 
x-axis, c position along the y-axis, d 3D trajectory of the underwater vehicle, e position along the z-axis, and f orientation along the z-axis



Artificial Life and Robotics	

1 3

The results of docking performance against turbidity at 
the maximum illumination 1280 lx (daytime) are shown in 
Fig. 11, and the results of docking performance at the mini-
mum illumination 80 lx are shown in Fig. 12. In Fig. 11a, 
the fitness value is above 0.8 for the few seconds of the rec-
ognition process and then increased to 1, which means that 
the system could recognize the 3D pose of the active marker 
well. Figure 11b, c, e, f represents the relative pose between 
the desired pose and the estimated pose of the active marker 
recognized by RM-GA. Figure 11d indicates the trajectory 

of the underwater robot measured by RM-GA based on ΣH 
in Fig. 9 during the docking process.

In docking strategy, visual servoing starts when the 3D 
marker is detected, which means the fitness value is above a 
defined threshold (0.4 in the present study). When the pose 
of the vehicle is within the allowable error range of ±40 mm 
of the desired pose, as shown in Fig. 11c, e, and the orienta-
tion around the z-axis (f) is controlled to within 7 deg for 
the desired period (165 ms, which is equal to five times the 
control loop period) in this experiment, docking starts by 
decreasing the distance between the ROV and the 3D marker 
from 550 to 350 mm, as shown in Fig. 11b. The dotted line 
labeled “A” in each subfigure of Fig. 11 indicates the visual 
servoing state, where the desired position along the x-axis is 
600 mm, and the desired position along the y-axis is within 
the error allowance range, as shown in Fig. 11c. Visual ser-
voing continues until the desired pose becomes less than the 
error range for the y- and z-directions and the orientation 
around the z-axis, as shown in Fig. 11c, e, f. At time “B”, 
as shown in Fig. 11b–d, the docking criteria are satisfied 
and docking operation starts. Note that the position in the 
x-direction at point “B” is approximately 500 mm because 
only the positions in the y- and z-directions and the orienta-
tion around the z-axis are considered in the docking criteria. 
The docking operation started approximately 7 s indicated 
by “B” after starting the experiment. Finally, the docking 
operation was successfully completed approximately 20 s 
after starting the experiment. The dotted line labeled “C” 
in each subfigure of Fig. 11 indicates the state whereby the 
docking is completed.

In the case of 80 lx (nighttime), the fitness value is about 
0.8 in recognition of active 3D marker at the start of the 
experiment and then decreased to about 0.5 as shown in 
Fig. 12a. The ROV could recognize the active marker even 
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by GA-PC and the behavior of the ROV is monitored by recording PC
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behavior of the ROV
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though the environment is dark. The desired position along 
the orientation around the z-axis is out of the error range at 3 
s as shown in Fig. 12f. Therefore, visual servoing continues 
until the desired pose of other directions, y, z, and orienta-
tion around z-axis are within the error allowance range. The 
time for docking completion from the start of the experiment 
is 25 s in this case. The underwater robot was confirmed 
to maintain the desired pose while docking was performed 
under changing lighting condition at turbidity, as shown in 
Figs. 11 and 12a–f. According to the experimental results, 
even though the lighting condition was changed from day to 
night in high turbidity, the relative pose of the 3D marker 
can be recognized well and the docking has been done suc-
cessfully against turbidity under changing lighting condition.

4.4 � Sea docking experiment

In Sect. 4.2, the effectiveness of the proposed system in 
docking against turbidity and illumination variations in an 
artificial environment was discussed. However, actual sea 
environment may degrade the visibility of the system more 
than the simulated pool due to the other disturbances such as 
sunlight and reflections. Therefore, we would like to confirm 
the validity of the proposed system in the actual sea environ-
ment with turbidity. Based on this motivation, the docking 
experiment was conducted in the turbid coastal environment 
rather than clear oceanic water.

4.4.1 � Environmental conditions and experiment layout 
of the sea docking experiment

The docking experiment was conducted on the coast of 
Okayama prefecture, Japan. The time was about 18:39 p.m. 
The illumination at the sea surface and under at a 1 m depth 
in water was 0 lx, the turbidity level was 9 FTU. The water 
depth from the surface to the sea bottom was 1.8 m. The 
unidirectional docking station was designed as shown on 
the right side of Fig. 13 in which the two rectangle dock-
ing holes (100 mm × 100 mm) and the 3D act1ive marker 

were installed. The docking station (600 mm × 450 mm × 
3000 mm) was oriented with the long sides to the pier. Two 
underwater cameras were attached to the docking station 
for monitoring the behavior of the ROV during the docking 
experiment and further analyses as shown in Fig. 14. The 
two docking poles were attached to the left and right side of 
the ROV for the purpose of staying in front of the docking 
station after completion of docking without being controlled 
by visual servoing when the data were stored. The ROV is 
supposed to recharge during the stay step intended for the 
battery recharging operation. The center distance between 
the two rectangle docking holes and the 3D marker was 145 
mm. The ROV was tethered and connected by a 200-mm-
long cable to the GA-PC (controller and 3D pose estimator) 
on the pier. The layout of the sea docking coordinate system 
is shown in Fig. 14.

4.4.2 � Sea docking experiment against turbidity

The results of the docking experiment are shown in 
Fig. 15a–j. In Fig. 15a–e, the vertical direction is the fit-
ness value, position along the x-, y-, z-axes in mm and the 
orientation around the z-axis in degree. The horizontal direc-
tion is the time in second. The vertical dotted lines denoted 
by “A”–“G” indicate the docking stage, as explained in the 
caption of Fig. 15. The pairs of horizontal solid lines in 
Fig. 15c–e are the error allowance range for the docking. 

Fig. 15   Docking experiment in actual sea environment with turbidity 
at night 0 lx: a fitness value, b position along the x-axis, c position 
along the y-axis, d position along the z-axis, e orientation around the 
z-axis, f 3D trajectory of the underwater vehicle, g voltage along the 
x-axis, h voltage along the y-axis, i voltage along the z-axis, j volt-
age around the z-axis, k corresponding photographs taken at the time 
“A”, l corresponding photographs taken at the time “E”, and m cor-
responding photographs taken at the time “G”. The dotted lines “A”–
“G” in each subfigure correspond to docking stages as follows: (A–C) 
transition to visual servoing, (D) start docking, (D–G) completion of 
docking. The lower photographs (k), (l), (m) were taken at the same 
time by left and right cameras of ROV (1), (2) and two underwater 
monitoring cameras (3), (4) (top view and side view of docking hole). 
The positions of the two underwater cameras (3)–(4) are shown in 
Fig. 14
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Figure 15g–j indicates the output voltage of each thruster 
and the pairs of horizontal solid lines are the dead zone 
range, which is eliminated by software filters. Figure 15f 
shows the trajectory tracking of the ROV from the start point 
to the end point of the docking experiment. The docking tra-
jectory is measured based on the pose which was estimated 
by RM-GA.

The vehicle approached the docking station manually 
until the 3D marker was in the field of view of the camera 
about 1 m distance. After detecting the 3D marker, the rela-
tive pose between the vehicle and the 3D marker is estimated 
using RM-GA. When the fitness value was above 0.2, the 
visual servoing started. The desired pose ( xd = 600 mm, yd = 
0 mm, zd = 0 mm, �3d = 0 ◦ ) between the ROV and the target 
was predefined. When the vehicle pose is stable within the 
tolerance error range of relative pose by adjusting the x-, y-, 
z-directions within ±40 mm and the orientation is within ±7 
degree (see Fig. 14), it switched from the visual servoing to 
the docking.

When the fitness value increased to 0.5 at about 0.15 
s, the visual servoing started (dotted line “A” in Fig. 15). 
During the visual servoing stage, the desired position in 
x-direction remained constant at about 600 mm because the 
position in y-axis and orientation around in z-axis exceeded 
the error allowance range at times “B” and “C”. Photo-
graph corresponding to the time denoted by “A” is shown in 
Fig. 15k–m. When the position in y-, z-axes and the orien-
tation around z-axis were stable within the error allowance 
range, the docking started at about 28 s (dotted line “D” in 
Fig. 15). During the docking stage, the position along the 
y-axis exceeds the error allowance range at the time from 
42 s (dotted line “E”) to 50 s and from 57 s (dotted line “F”) 
to 65 s as shown in Fig. 15c.During the above time periods 
(42–50 s, 57–65 s), the desired position along the x-axis 
remained constant during the docking step because the fluc-
tuations in the position along the y-axis exceeded the error 
allowance range. The enlarged view of Fig. 15b, c is shown 
in Fig. 16 to show clearly the desired position in x-axis. In 
Fig. 16b, the desired position in x-axis is described by the 
solid line to separate clearly the constant portion and the 
descent portion. The oscillation amplitude of the position 
in z-axis was smaller than the ones of y- and z-axes during 
the docking operation.

The position in y-axis exceeded the error allowance range 
during the docking stage and the orientation around z-axis 
has some fluctuations. There are more fluctuations in each 
direction compared with the pool test, but the controller 
tried to adjust the thrusters in each direction by control-
ling the output voltage as shown in Fig. 15g–j. This fluc-
tuation seems to have occurred because of the effect of the 
waves. Finally, the ROV could perform the docking opera-
tion after 72 s (dotted line “G” in Fig. 15) against turbidity 
under dark environment. Photographs corresponding to the 

times denoted by “E” and “G” are shown at the bottom of 
Fig. 15K–m corresponding to the times “A,” “E,” “G.” The 
part surrounded by the dotted circle as shown in Fig. 15m 
at time “G” is the docking pole tip and it can be fitted in the 
correct position in docking hole. After finishing the docking 
stage, the vehicle stops the visual servoing and then the stay 
step was performed for storing the final data from memory 
into the hard disk by giving the constant voltage 0.1 V to the 
forward thruster in x-direction as shown in Fig. 15g. After 
completing the data-storing stay step, the vehicle performed 
the launching step for the next docking trial.

According to the above experimental results, the ROV 
was automatically controlled by visual servoing and the 
docking operation was performed even though there were 
disturbances such as waves and turbidity.

5 � Conclusion

In the present study, visual servoing-based 3D pose esti-
mation and docking experiment against turbidity for an 
underwater vehicle under changing lighting environment are 
presented. A real-time pose detection scheme was imple-
mented by means of 3D model-based recognition and real-
time multi-step GA using dual-eye cameras and an active 
3D marker. The experimental results show that the proposed 
system can keep recognizing the pose of the active/lighting 
3D marker in pool test although the different turbidity levels 
and illumination conditions were changed. The experimen-
tal results confirmed the 3D pose estimation and docking 
performance in the actual sea environment against turbidity 
using the proposed system.

Acknowledgements  The authors would like to thank Monbuka-
gakusho; Mitsui Engineering and Shipbuilding Co., Ltd.; and Kowa 
Corporation for their collaboration and support for this study.

References

	 1.	 Jasper A (2012) Oil/Gas pipeline leak inspection and repair in 
underwater poor visibility conditions: challenges and perspec-
tives. J Environ Protect 3(5):394

	 2.	 Kume A, Maki T, Sakamaki T, Ura T (2013) A method for obtain-
ing high-coverage 3D images of rough seafloor using AUV-real-
time quality evaluation and path-planning-. JRM 25(2):364–374

	 3.	 Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A (2012) 
Girona 500 auv: from survey to intervention. IEEE/ASME Trans 
Mechatron 17(1):46–53

	 4.	 Krupiński S, Allibert G, Hua MD, Hamel T (2012) Pipeline track-
ing for fully-actuated autonomous underwater vehicle using visual 
servo control. In: American control conference (ACC), 2012. 
IEEE, pp 6196–6202

	 5.	 Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous 
underwater vehicles based on artificial underwater landmarks. 
OCEANS, MTS/IEEE Confer Exhib 1:409–416



Artificial Life and Robotics	

1 3

	 6.	 Cowen S, Briest S, Dombrowski J (1997) Underwater docking of 
autonomous undersea vehicles using optical terminal guidance. 
In OCEANS’97. MTS/IEEE Confer Proc 2:1143–1147

	 7.	 Eustice RM, Pizarro O, Singh H (2008) Visually augmented navi-
gation for autonomous underwater vehicles. IEEE J Ocean Eng 
33(2):103–122

	 8.	 Jung J, Cho S, Choi H T, Myung H (2016) Localization of AUVs 
using depth information of underwater structures from a monocu-
lar camera. In: 2016 13th international conference on ubiquitous 
robots and ambient intelligence (URAI). IEEE, pp 444–446

	 9.	 Ghosh S, Ray R, Vadali SR, Shome SN, Nandy S (2016) Reliable 
pose estimation of underwater dock using single camera: a scene 
invariant approach. Mach Vis Appl 27(2):221–36

	10.	 Park JY, Jun BH, Lee PM, Lee FY, Oh JH (2009) Experiments 
on vision guided docking of an autonomous underwater vehicle 
using one camera. IEEE J Ocean Eng 36(1):48–61

	11.	 Myint M, Yonemori K, Lwin KN, Yanou A, Minami M (2017) 
Dual-eyes vision-based docking system for autonomous under-
water vehicle: an approach and experiments. J Intell Robot Syst. 
https​://doi.org/10.1007/s1084​6-017-0703-6

	12.	 Myint M, Yonemori K, Yanou A, Ishiyama S, Minami M (2015) 
Robustness of visual-servo against air bubble disturbance of 
underwater vehicle system using three-dimensional marker and 

dual-eye cameras. In: OCEANS’15 MTS/IEEE Washington. 
IEEE, pp 1–8

	13.	 Myint M, Yonemori K, Yanou A, Lwin KN, Minami M, Ishiy-
ama S (2016) Visual servoing for underwater vehicle using dual-
eyes evolutionary real-time pose tracking. J Robot Mechatron 
28(4):543–558

	14.	 Myint M, Yonemori K, Yanou A, Lwin KN, Minami M, Ishiyama 
S (2016) Visual-based deep sea docking simulation of underwa-
ter vehicle using dual-eyes cameras with lighting adaptation. In: 
OCEANS 2016-Shanghai. IEEE, pp 1–8

	15.	 Maki T, Shiroku R, Sato Y, Matsuda T, Sakamaki T, Ura T ( 2013) 
Docking method for hovering type AUVs by acoustic and visual 
positioning. In: 2013 IEEE international underwater technology 
symposium (UT). IEEE, pp 1–6

	16.	 Minami M, Agbanhan J, Asakura T (2003) Evolutionary scene 
recognition and simultaneous position/orientation detection. Soft 
computing in measurement and information acquisition. Springer, 
Berlin Heidelberg, pp 178–207

	17.	 Song W, Minami M, Aoyagi S (2008) On-line stable evolutionary 
recognition based on unit quaternion representation by motion-
feedforward compensation. Int J Intell Comput Med Sci Image 
Process 2(2):127–139

https://doi.org/10.1007/s10846-017-0703-6

	Docking at pool and sea by using active marker in turbid and daynight environment
	Abstract
	1 Introduction
	2 Remotely operated vehicle
	3 3D moving on sensing (3D-MoS) using real-time multi-step GA
	3.1 Real-time multi-step GA
	3.2 Controller
	3.3 Active marker

	4 Experimental results and discussion
	4.1 3D pose estimation accuracy
	4.2 3D pose estimation in turbid water
	4.3 Docking performance against turbidity under changing lighting condition
	4.4 Sea docking experiment
	4.4.1 Environmental conditions and experiment layout of the sea docking experiment
	4.4.2 Sea docking experiment against turbidity


	5 Conclusion
	Acknowledgements 
	References


