Improvement of 3D Pose Estimation Abilities by
Light-Emitting-3D Marker for AUV Docking
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Abstract—Disturbances of turbidity and low illuminance are
problems in real sea areas when recognizing objects with cam-
eras. Therefore, the recognition target was made to emit light
so that it can be recognized correctly even in that environment.
However, a suitable light intensity of the target was not decided
and it is obvious that recognition results was changed by light
intensity of the target. This paper presents the analysis of
recognition accuracy of the Real-time 3D estimation system by
changing the current value of each color LED (red, green, blue)
under turbid and low illuminance. Recognition experiments were
conducted at the distance 600 [mm] between the ROV and 3D
marker. The turbidity level was set constant value. The current
value was changing from 0 [mA] to 16 [mA] for each LED
individually. The best current for each LED was optimized by
the fitness value and estimation value of position and orientation.
The results showed that the recognition accuracy of the proposed
system was improved by using optimized lighting intensity.

Index Terms—Pose Estimation, Turbidity, Active/Lighting 3D
marker, LED’s current value

[. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) play an impor-
tant role in deep sea works such as oil pipe inspection, survey
of sea floor, searching expensive metal, scientific studies, etc
[1], [2]. These works can be made more effective by long-term
continuous operation of AUVs. However, the operation time of
AUVs is still limited because a recharging method for AUVs
has not been established. Landing and docking operation
accompanied by highly accurate control are necessary for
charging underwater robot.

The studies on visual servoing based underwater vehicle
have been conducted all over the world in recently years.
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Fig. 1. Images from ROV cameras in two different current value condition.

Some references are based on single eye camera to estimate the
pose of the target object [3]- [5]. The disadvantage of single
eye camera is that the precision of distance measurement of
the camera’s depth direction is not enough for applications in
which high homing accuracy is important. A binocular vision
was used in some of these studies in order to estimate the
relative pose of the target object in [6], [7]. However, the two
cameras look at difference target, then these approaches do not
have enough materialize parallactic nature. Therefore, as an
initiated research to AUV environment, a 3D-Move on sensing
system using stereo vision to provide high homing accuracy
have been conducted by our research group. In previous work
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[8], docking experiments for AUV using stereo vision in
simulated pool for sea bottom battery recharging application
were succeed. However, the experiments were conducted in
relatively clear water. Recognition ability using ROV’s light
is limited to low turbidity environment. In the real sea area,
turbidity of water is made by mad, plankton and marine snow.
To expand tolerance against turbidity and low illuminance,
a active 3D marker (recognition target) was designed and
constructed [9]. Figure 1 shows the recognition image from
stereo cameras and transition of fitness value at two different
light intensities of active 3D marker (current values). The
fitness function expresses the degree of agreement between the
search model and the recognition target. This figure shows that
the light intensities have a large influence on the recognition
result. Then, these have been a room to improve the pose
estimation more accurate by adjusting the appropriate light
intensity for image recognition process. The remainder of
the paper is organized as follow: Section II describes 3D
recognition and control. Section III describes Methods of
current value determination and experiment results. The final
section concludes this paper.

II. REAL-TIME 3D POSE ESTIMATION METHOD
A. Model-based Matching Method

In this section, recognition system based on 3D MoS
using dual-camera for underwater docking especially 3D pose
estimation method has been discussed for reader convenience.
Please refer to [10] for detailed explanation. In proposed sys-
tem, the model-based matching method is used to estimate the
matching degree between the projected model and the captured
images. In other conventional methods, the pose estimation
method is implemented by using feature-based recognition
based on 2D to 3D reconstruction. In that approach, the set
of image points in different images is used to determine the
information of the target object. The main drawback is com-
plex for searching the corresponding points and time taken.
Apart from this, the model-based pose estimation approach
based on 3D to 2D projection is applied in this work avoiding
the effects of wrong mapping points in images using dual-eye
cameras. Figure 2 shows the model-based matching method
using dual-eye cameras for 3D pose estimation. In Fig. 2, ¥;r
and X, are the reference coordinate frames of the right and
left camera images. X is the reference frame of the ROV.
Yiar is the reference frame of the real target object. The solid
model of the real target object in space is projected naturally
to the dual-eye camera images and the dotted 3D marker
model where pose is given by one of GA’s genes projected
from 3D to 2D. The different relative pose is calculated by
comparing the projected model and the captured images by
the dual-eye cameras. Finally, the best model of the target
object that represents the true pose can be obtained based on
its highest fitness value. There are some works done on visual-
servoing experiments concerning hand eye manipulator in the
air using 3D model-based matching method utilizing genetic
algorithms and dual-eyes camera [11], [12], which are used as
fundamental knowledge for this research.
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Fig. 2. Model-based matching method using dual-eye cameras and 3D marker
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Fig. 3. Real 3D marker and model: (a) active/lighting marker, (b) model with
enlarged view of the blue ball model, where the inner area is the same size
as the real target object (blue ball) and the outer area is the background area.
The dots in enlarged view of blue ball mean points to calculate the correlation
degree on how much the inner area overlaps the blue ball and the outer area
does not overlap the blue ball.

B. Fitness Function

The fitness function is constructed to evaluate the matching
degree between the projected model and the captured image.
The good fitness function affects GA to explore the search
space and convergence speed more effectively and efficiently.
In previous research, only hue value was used for recognition
in this system. However, due to the diffused light of the active
3D marker, the range of color extends to the outside of the
marker sphere. Therefore, color spread decreases recognition
accuracy. Equation (1) shows the fitness function used in this

paper.
F = Fpye + FBa — FrhueF'Ba (1)
Fle : fitness value from hue information

Fpg : fitness value from Brightness information



In the present studies, besides hue, brightness value was also
used for evaluating fitness function. Brightness is the weighted
value of each RGB, which is strictly different from Value
of HSV. However, the method of calculating fitness value is
almost the same as method in our previous study [13]. Figure
3 shows the real target and model of 3D marker. Each model
consists of three spherical ball (red, green and blue). Each
spherical ball consists of two areas, where the inner area is
the same size as the real target object and the outer area is
the background area. If a color ball of 3D marker in captured
image fits in the inner area of searching model, the fitness
value will be increased. On the contrary, if a color ball of 3D
marker in captured image overlap in the outer area of searching
model, the fitness value will be decreased. Therefore, when the
real target matches the model, fitness value is maximized. A
concept of the fitness function can be found in our previous
study [13].

C. Real-time Multi-step GA (RM-GA)

The genetic algorithm is used as a search and an optimiza-
tion method to estimate the relative pose between the ROV and
3D marker. Even though there are many powerful optimization
methods, we selected GA and modified as Real-time Multi-
step GA (RM-GA) because of its simplicity and especially
effectiveness in real-time performance. The RM-GA is capable
of real time recognition of the true pose of the target through
successively input images. Figure 4 shows a genotype of GA
population and Fig. 5 (a) shows the flowchart of the RM-
GA and Fig. 5 (b) illustrates the behavior of GA convergence
from the first generation to the final generation. Please note
that although the pose of the target object is evaluated in
2D, convergence occurs in 3D. Position and orientation of the
three-dimensional model are represented as 72 bits string of
length as shown in Fig. 4. The former 36 bits represent the
position of the 3D marker and the later 36 bits represent the
orientation defined by a quaternion.

Firstly, a random population of model is generated. A new
pair of left and right images captured by ROV’s cameras is
input. The fitness value of each model is evaluated by using
the fitness function. Each model is sorted and selected the
better model from the current generation according to the
fitness value to reproduce the new generation. Then, again
new generations are formed from the two-point crossover and
mutation operation of GA. The RM-GA evolves the models
with as many generations as possible within the video frame
rate for each image. In the present study, the number of
evolution times of the RM-GA is chosen to be nine, which is
a maximum that the computer used in the present study could
calculate within 33 ms (determined by the video frame rate)
during the GA evolution process. The RM-GA find repeatedly
the solutions to get the optimum value that indicates the best
pose of the target object. The convergence performance to an
optimum value of the GA’s evolution function used as fitness
function has been proved mathematically by a Lyapunov
analysis in a previous work [14]. The effectiveness of the GA
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Fig. 4. A genotype of GA population: 12 bits for each x, y, z represents the
position coordinate of the three dimensional model of the gene and 12 bits
for each €1, €2, €3 describes the orientation defined by a quaternion.
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Fig. 5. Flowchart of the real-time multi-step GA: (a) the flowchart of the RM-
GA, the true pose of the target object is evaluated within 33 ms through the
GA process (b) the convergence behavior of RM-GA from the first generation
to the final generation to represent the true pose of the target object in which
evaluation is performed in 2D and convergence occurs in 3D.

was demonstrated in a previous study on visual servoing for
catching fish using a GA search [15].

D. Active/Lighting Marker

The recognition target is called as a 3D marker in our
research group. In our previous research, the passive (not
lighting) 3D marker was used to conduct experiments. There-
fore, in order to recognize the 3D marker by using dual-
camera in the dark turbid environment, it was necessary to
illuminate with ROV’s light. Then, the whole recognition
images became whitish, and recognition accuracy decreased
(Fig. 7 ROV’s Light). In the present study, the active (lighting)
3D marker was designed and newly constructed to improve the



pose estimation at dark turbid environment (Fig. 7 3D marker
Light). The value of each variable resisters and resisters are
shown in Fig. 6. Red, green and blue LEDs were installed into
the white spherical ball and covered by three color balloon
(red, green, blue). It can take in only the light necessary for
recognition even without ROV’s light in dark turbid envi-
ronment. However, in previous studies, the lighting intensity
for each color LED in 3D marker has not been determined
quantitatively. Therefore, it is necessary to experimentally
determine suitable current values for recognition.

Green ball

AC100V[ AC
100V

1
DC 12V

Fig. 6. Active 3D marker and its internal circuit.

III. EXPERIMENTAL RESULTS AND DISCUSSION FOR
DETARMINATION OF SUITABLE CURRENT VALUE

A. Determined by Fitness Value

1) Experimental Environment: Recognition experiments
were conducted in order to quantitatively determine suitable
current value of our pose estimation system. Figure 8 shows
the experimental layout in an indoor pool (length 750 [mm]
X width 570 [mm] X height 490 [mm]) which was filled with
800 liters water. Table I shows the experimental condition.
The methods of measuring illuminance and turbidity are
shown in [16]. Assuming that AUVs work on the sea bottom,
illumination in the water was set to 0 [Ix]. The turbidity of
water was set to 8.6 [FTU]. The distance from ROV’s camera
to active 3D marker was set to 600 [mm]. Current value of the
LEDs in one color was changed by 1 [mA] from 0 [mA] to
16 [mA], and current values of LEDs in other two color balls
were fixed at initial current value (Table I). The initial current
value with little diffused light enabled the color and shape to
be visible by the human eye. Recognition experiments were
conducted for a minute at each current value.

2) Experimental Results : Figure 9 shows the fitness value
when current of red LED changed by 1 [mA] from 0 [mA]
to 16 [mA]. Figure 9 (b) shows the fitness value of Fp,.. In
these results, although the fitness value of red also increases
as the current value increases, it gradually decreases over
4 [mA]. Figure 9 (c) shows the fitness value of Fpy. In
this graph, although the fitness value increases as the current
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Fig. 8. Experiment environment

value increases, the fitness value converges about 9.5 when
the current value exceeds 7 [mA]. Therefore, the red light
intensity of active 3D marker is considered to be suitable for
recognition when the current value for red LED is 7 [mA].
Figure 10 shows the fitness value when current of green LED



TABLE I
EXPERIMENTAL CONDITION

Turbidity [FTU] 8.6
Illumination [Ix] (in the water) 0
Distance x [mm)] 600
Red 6
Initial current value Green 6
[mA]
blue 1
Range of current value to be changed 0~ 16

[mA]

was changed for every 1 [mA] from 0 [mA] to 16 [mA]. For
the green LED as well, considering fitness value of F},,. and
Fpq separately, the green light intensity of active 3D marker
is considered to be suitable for recognition when the current
value for green LED is from 9 [mA] to 11 [mA]. Figure 11
shows the fitness value when current of blue LED is changed
by 1 [mA] from O [mA] to 16 [mA]. For the red and green
LEDs as well, the green light intensity of active 3D marker
is considered to be suitable for recognition when the current
value for blue LED is from 2 [mA] to 4 [mA]. From the above
results, the suitable current values for recognition were in the
range (red : 7 [mA], green : 9~11 [mA], blue : 2~4 [mA]).

B. Optimal Combination of LED’s Currents

1) Experimental Environment: The suitable current values
established on previous subsection had range with current
values of green LED and blue LED. Therefore, in order
to determine the suitable current values uniquely from the
estimated value and the distribution of fitness value, a recog-
nition experiment was conducted again. Figure 12 shows the
experimental layout. Experimental condition is shown in Table
II. INluminance was set the same condition as section III (A)
and turbidity was set the close value to section III (A). The
distance between the camera and the active 3D marker was
set to be 600 [mm] in the z axis direction and 0 [mm] in
the y axis and z axis direction. The current values (red : 7
[mA], green : 9~11 [mA], blue : 2~4 [mA]) determined in
section III (A) were used. Camera images were acquired for
each current value, and recognition accuracy was verified.

2) Experimental Results: Figure 13 (I) shows an example of
the image obtained by recognition experiments. Figure 13 (II)
shows an example of the distribution of fitness value in the z-y
plane. Table III shows the fitness values of the peak position
in fitness distribution for each current value. There was no
significant difference in the peak position for each current
value in table III. Therefore, the current values (red : 7 [mA],
green : 11 [mA], blue : 2 [mA] ) that give the highest fitness
value (table III) were decided as the most suitable current
value for the present recognition system.
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Fig. 12. Experiment environment

TABLE II
THE TABLE OF EXPERIMENTAL CONDITION

Turbidity [FTU] 8.9

Illumination [Ix] (in the water) 0
Distance x [mm] 600

Red 7
current value [mA] Green o~11
blue 2~4

IV. CONCLUSION

In this paper, the suitable current values to recognition
system proposed by our research group were decided from
experimental data. In the previous research, robustness to the
turbidity of our recognition system was discussed. Further-
more, using the current values determined in this paper (red
: 7 [mA], green : 11 [mA], blue : 2 [mA]) will improve
recognition accuracy and stability of recognition system.
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(1)

red LED = 7 [mA]
Currentvalue | green LED =11 [mA]
blue LED = 2 [mA]

Fig. 13. Results obtained in the experiment. (I) an example of obtained image (II) an example of 3D graph of fitness distribution in the z-y plan

TABLE III
FITNESS VALUE AT PEAK ON 3D GRAPH AND PEAK POSITION FOR EACH CURRENT VALUE
Current value [mA] Estimation value
Red G:lee Belu Fitness x [mm] y [mm]
(A) 7 9 2 0.5361 499 -4
(B) 7 9 3 0.5028 512 -4
© 7 9 4 0.5192 498 2
D) 7 10 2 0.5194 498 -2
(E) 7 10 3 0.4778 499 -5
(F) 7 10 4 0.5 523 -1
(€)) 7 11 2 0.5472 499 -4
H) 7 11 3 0.5306 497 -4
D 7 11 4 0.5139 499 -4






