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Abstract: RANdom SAmple Consensus (RANSAC) has been applied to many 3D image processing problems such as 

homography matrix estimation problems and shape detection from 3D point clouds, and is one of the most popular robust 

estimator methods. However, RANSAC has a problem related to the trade-off between computational cost and stability of 

search because RANSAC is based on random sampling. In our previous work, we proposed Adaptive Evolution Strategy 

SAmple Consensus (A-ESSAC) as a new robust estimator, and we applied ESSAC to the homography matrix estimation for 

3D SLAM using RGB-D camera. A-ESSAC is based on Evolution Strategy in order to maintain the genetic diversity. 

Furthermore, ESSAC has two heuristic searches. One is a search range control for reducing the computational cost of 

RANSAC. The other is adaptive/self-adaptive mutation for changing the search strategy of A-ESSAC according to the best 

fitness value. In this paper, we apply A-ESSAC to 3D reconstruction method using two cameras, and we show an experimental 

result, and discuss the effectiveness of the proposed method. 
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1 INTRODUCTION 

Recently, 3D image processing technologies have 

expected as a development of Robotics and Intelligent 

Transport Systems. In 3D image processing technologies, 

RANdom SAmple Consensus (RANSAC) proposed by 

Fischer and Bolles in order to estimate a model from a data 

set, is one of the most popular algorithms in robust 

estimator fields [1]. RANSAC has been applied to many 3D 

image processing problems such as homography matrix 

estimation problem and shape detection from 3D point 

clouds [2-4]. However, one of problems in RANSAC is a 

sampling bias in a search, since it selects candidate pairs 

from a data set of pairs randomly. In order to solve the 

problem of RANSAC, many researchers have improved 

RANSAC algorithm. Choi et al. [5] gave a critical survey 

of RANSAC family algorithms. They synthesized seven 

research axes that were: Partial Evaluation (e.g., 

Progressive RANSAC), Adaptive Termination (e.g., 

uMLESAC), Adaptive Evaluation (e.g., pbM-estimator), 

Local Optimization (e.g., LO-RANSAC), Model Selection 

(e.g., MAPSAC), Loss Function (e.g., MLESAC), and 

Guided Sampling (e.g., GASAC). These research axes were 

discussed from different objectives; being fast, being robust, 

being accurate. In this paper, our objective is proposing 

new robust estimator in order to improve the trade-off 

between computational cost and search stability. 

Furthermore, Choi et al said that “the new tool can 

stimulate this field such as genetic algorithm of GASAC”. 

In this paper, therefore, we focus on evolutionary 

computation for RANSAC family algorithms. V. Rodehorst 

and O. Hellwich proposed Genetic Algorithm SAmple 

Consensus (GASAC) based on a population-based multi-

point search to improve RANSAC [6]. GASAC can 

improve the performance of search, however it is 

sometimes difficult to maintain the genetic diversity in the 

search if the large size of outliers is included in a data set. 

Furethermore, GASAC require more computing time than 

any other SAC methods. Therefore, we must deal with the 

trade-off between computational cost and stability of search. 

There are two possible approaches to improve the trade-off. 

One is to control the rate of local search and global search. 

We can control the genetic diversity of a population to 

improve the stability in evolutionary search. The other is to 

manage the search range in a search space. We can remove 

obvious outliers from a data set. However, the feasible 

solutions of the model parameters are required to 

discriminate inliners from outliers. This means that the 

discrimination of inliners and outliers requires model 

parameters, while the estimation of model parameters 

requires a set of inliers. This is a nesting structure each 

other. In our previous work, we proposed Adaptive 

Evolution Strategy SAmple Consensus (A-ESSAC) as a 

new robust estimator method in order to improve the trade-

off between computational cost and stability of search in 

RANSAC. Furtheremore, we applied to A-ESSAC to 3D 

map building method using RGB-D camera for realizing 

the real time 3D SLAM [7]. In this paper, we apply A-

ESSAC to 3D reconstruction method using two cameras for 

verifying the effectiveness and possible application of A-

ESSAC. 

This paper is organized as follows. Section 2 explains 

our 3D reconstruction method. Section 3 explain A-ESSAC.  

Section 4 shows experimental results of the proposed 

method. 
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2 3D reconstruction using two cameras 

2.1 Algorithm of 3D reconstruction 

In this paper, we focus on 3D reconstruction from two 

cameras. Our 3D reconstruction method uses a local feature 

extraction method for reconstructing the sparse point cloud 

data. For the local feature based 3D reconstruction method, 

the alforithm can mainly divide into two steps. One step is 

the image processing step that is for searching correct 

corresponding points between two camera data. The other is 

the matching step of 3D point clouds using the relation 

between two data. In these algorithms, a homography 

estimation method such as RANSAC is required for 

extracting the corresponding points. Therefore, we deal 

with the 3D modeling method as an application of our 

method. Figure 1 shows the flowchart of this algorithm. In 

Fig. 1, the t-th measurement data from left and right camera 

are expressed by DL(t) and DR(t), respectively. Specifically, 

the possible pairs of corresponding points between DL(t) 
and DR(t) are generated by extracting any features of 

camera image. However, the pairs include many 

mismatched pairs when the pairs are generated. Therefore, 

the homography matrix is estimated in order to remove the 

mismatched pairs. Finally, the coordinate transform matrix 

is estimated by using 3D distance information of the 

corresponding points in order to update 3D environmental 

map. 

 

Figure 1. Flowchart of proposed 3D modeling method. 

2.2 Feature extraction 

This subsection explains the detail of feature extraction 

and matching method. Recently, vaious types of local 

features have been proposed for the object recognition and 

extracting the corresponding points from multiple images. 

In local features, Scale-Invariant Feature Trans-form (SIFT) 

and Speeded Up Robust Features (SURF) are the most 

commonly used in order to extract the corresponding points 

from the multiple images [8, 9]. These local features are 

robust to the change of illumination and local affine 

distortion of images. Especially, SURF proposed by Bay et 

al. is based on 2D Haar wavelet responses as a robust lo-cal 

feature detector inspired by SIFT. The standard SURF is 

several times faster than SIFT. Furthermore, we must 

reduce computational time as much as possible in real-time 

image processing. General-purpose graphics processing 

unit (GPGPU) has been applied to calculate and extract 

features in real-time. For example, OpenCV provides the 

library that includes SURF implemented on GPGPU [10]. 

In this paper, we use SURF implemented on GPGPU to 

describe features for pattern matching between the left and 

right camera images. 

After extracting SURF from the two images, each SURF 

feature is described by a vector containing 64 or 128 

elements. An initial set for estimating homography matrix 

(possible pairs of corresponding points) is obtained by 

selecting the pairs with the minimum Euclidian disrtance of 

the feature vector between the left and right camera images 

(Fig. 2). 

2.3 Homography estimation 

After the feature extraction and matching, we should 

extract the correct pairs of corresponding points from the 

dataset of possible pairs. In many researches, homography 

matrix is estimated for extracting the correct pairs [11, 12]. 

In this way, the homography matrix estimation problem is 

one of the most important problems not only in 2D image 

processing but also in 3D image processing because the 

matrix is required in various types of 3D image processing 

such as stereovision [12] and 3D environment map building. 

The homography matrix H that has 9 elements is the 

matrix that describes the relation between two images. Fig. 

3 displays the concept image of homography matrix 

between two images. The set of homogeneous image points 

{xi} (i = 1, . . ., n) as viewed in the first image is 

transformed into the set {xi’} in the second image, with the 

positions related by
 

′xi = Hxi , (1)

where x and x’ are homogeneous three vectors x=(x, y, 1)
T
, 

x’=(x’, y’, 1)
T
 because the matrix H is composed of 3 × 3 

matrix. In addition, equation (1) can be also defined by the 

following equation: 

  ′x = a1x + a2y + a3
a7x + a8y +1

  (2) 

  ′y = a4x + a5y + a6
a7x + a8y +1

  (3) 

where a1-a8 are the parameters. Therefore, the homography 

matrix is estimated by estimating these 8 parameters. 

Estimating the homography matrix between two images 

enables to extract the correct pairs of corresponding points. 

However, the set of possible pairs includes many mismatch 

pairs. Therefore, robust estimators are applied to this 

problem [13, 14]. 

 
Figure 2. A result of the feature extraction and matching by using SURF. 
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Figure 3. Concept image of 2D homography 

2.4 Update of 3D model 

The update of the 3D model is to obtain the position 

x’ri=(x’ri, y’ri, z’ri) of a pixel in the 3D space based on the 

position xri=(xri, yri, zri) according to the relationship 

between (x i’, y i’) and (x i, y i). An interactive closest point 

(ICP) algorithm is one of the most widely used methods of 

matching a set (Xr) of points with point clouds (X’r) in 3D 

space [15]. The error function to be minimized is defined as 

E R,t( ) = 1

Nc

R ′xri + t − xri
i=1

Nc

∑  (4) 

where R is the rotation matrix; t is the translation vector; 

We apply the unit quaternion proposed by Horn [16]. The 

quaternion is defined as q̂ = (q0,q1,q2,q3) . First, the center 

of gravity (COG) of each point cloud is calculated in the 

following; 

xr
g = 1

Nc

xrj
i=1

Nc

∑ ,  (5) 

′xr
g = 1

Nc

′xrj
i=1

Nc

∑ ,  (6) 

where Lr is the number of points in each point cloud. Next, 

the relative position from the COG is calculated in the 

following; 

xi
a = xri − xr

g
,  (7) 

′xi
b = ′xri − ′xr

g
.  (8) 

Next, Sab is defined as; 

Sab = xi
a ′xi

b

i=1

Nc

∑ .  (9) 

According to Sab, a matrix P is defined as 

P =

xxS +
yyS +

zzS yzS −
zyS zxS −

xzS xvS −
yxS

yzS −
zyS xxS −

yyS −
zzS xyS +

yxS zxS +
xzS

zxS −
xzS xyS +

yxS yyS −
xxS −

zzS yzS +
zyS

xyS −
yxS zxS +

xzS yzS +
zyS zzS −

xxS −
yyS

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.(10) 

Here the eigenvector corresponding to the maximum 

positive eigenvalue of P is quaternion ( ). The rotation 

matrix is obtained by  in the following; 

R =

q0
2 + q1

2 − q2
2 − q3

2 2(q1q2 − q0q3) 2(q1q3 + q0q2 )

2(q2q1 + q0q3) q0
2 − q1

2 + q2
2 − q3

2 2(q2q3 − q0q1)

2(q3q1 − q0q2 ) 2(q3q2 + q0q1) q0
2 − q1

2 − q2
2 + q3

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (11) 

Furthermore, the translation vector is also obtained by R in 

the following; 

t = xr
g −R ′xr

g
. (12) 

3 Adaptive Evolution Strategy Sample        

  Consensus (A-ESSAC) 

3.1 Total algorithm of A-ESSAC 

At first, Fig. 6 shows the procedure and flowchart of 

ESSAC, respectively. In ESSAC, the genotype is composed 

of k candidate data needed to calculate the model 

parameters and the combination of candidate data is 

optimized by global search and hill-climbing search using 

genetic operators. The fitness value fiti is calculated by 

following fitness function 

fiti = fitnessFunction g i( )( ) = ρ ej( )
j
∑ .  (13) 

In ESSAC, the fitness function usually uses the number 

of inliers. Therefore, this problem is a maximization 

problem. Furthermore, ESSAC has a search range control 

method in order to reduce computational cost and improve 

the stability of search simultaneously. 

3.2. Evolution Strategy 

Basically, the random sampling required to estimate 

parameters of a mathematical model in the generation of 

hypothesis is one of combinatorial optimization problems, 

but we can incorporate local search or heuristics to reduce 

computational cost.   

Evolutionary computation (EC) is used to solve 

optimization problem by simulating evolution on a 

computer. From the historical point of view, EC can be 

divided into genetic algorithm (GA), evolutionary 

programming (EP), and evolution strategy (ES). These 

methods are fundamentally iterative generation and 

alternation processes operating on a set of candidate 

solutions called a population. All the population evolves 

toward better candidate solutions by selection operation and 

genetic operators (crossover and mutation). The selection 

decides candidate solutions evolving into the next 

generation, which limits the search space spanned by the 

candidate solutions. The crossover and mutation generate 

new solution candidates. However, genetic operators used 

for generating new solution candidates are a little different 

among GA, EP, and ES from histrorical point of view [17]. 

The important feature of ES is the self-adaptation which 

can self-tune the diversity of mutation parameters according 

to the success records. Rechenberg suggested that the ratio 

of successful mutations to all mutations should be 1/5 [18]. 

If this ratio is greater than 1/5, increase the variance; if it is 

less, decrease the variance. This ratio has often been 

discussed in the previous studies, but the self-adaptive 

mutation can change the variance of the normal random 

value according to the success ratio based on the landscape 

of a fitness function. While a self-adaptive mutation refers 

to its own fitness record, an adaptive mutation refers to the 

average, maximum, and minimum of fitness values of the 

candidate solutions in the population, i.e., the adaptive 

mutation relatively changes the distribution of genotype in 

a population according to the fitness values of the candidate 
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solutions.  

ES was proposed by Rechenberg, and extended further 

by Schwefel. Basically, ES is classified into (μ+λ)-ES and 

(μ, λ)-ES. First, Algorithm3 presents the procedure of a 

standard (μ+λ)-ES. Initialization randomly generates an 

initial population of individuals. Creation (λ) generates λ 

children from μ parents by genetic operators in a single 

generation. As a result, the (μ+λ)-ES has the intermediate 

population of (μ+λ) individuals. Selection (μ) 

deterministically selects the best μ individuals from the 

intermediate population. On the other hand, in (μ, λ)-ES, 

Selection (μ) selects the best μ individuals only from the 

created λ children (μ<λ). Therefore, (μ+λ)-ES is 

considered as a continuous model of generation, while the 

(μ, λ)-ES is considered as a discrete model of generation. 

Especially, as the special cases of ES, (1,1)-ES is a random 

search, (1+1)-ES is an iterative improvement method, (1, 

λ)-ES or (1+λ)-ES is a multi-point neighboring search, and 

(µ+1)-ES is a local hill-climbing search. In our proposed 

method, the search method is mainly based on mutation 

operators and uses self-adaptive mutation since we assume 

that the dataset includes a huge number of noises. The 

mutation operator is very important to extract the correct 

pairs from the dataset effectively. Therefore, we use ES in 

this study. In ESSAC, we use uniform crossover as a 

recombination and simple mutation that changes genes 

randomly according to the mutation rate. 

 

Algorithm 3 Standard ES: 

1:  Initialization 

2:  while (until termination_condition is True) 

3:    Creation (λ) 

4:    Evaluation 

5:    Selection (μ) 

6:  end while 

3.3. Search range control 

ESSAC performs a search range control in order to 

reduce computational cost and improve the stability of 

search simultaneously. This subsection proposes the search 

range control method that is the feature of ESSAC. The step 

that requires computational cost in SAC algorithm is the 

hypothesis evaluation step. In the hypothesis evaluation, the 

generated model parameters are evaluated by using all data 

in a data set S of the possible pairs. Therefore, if the data set 

has a huge mount of data such as 3D image processing, the 

computational cost is very expensive. Furthermore, it is 

difficult to optimize the combination of candidate data if 

the outlier rate in the set S is very high. Therefore, in the 

search range control method of ESSAC, if an individual 

satisfied with starting condition is generated, the search 

space is reduced by removing obvious outliers from the 

data set S. Fig. 5 shows the concept image of search range 

control method of ESSAC. Specifically, by using the model 

parameters of the best individual and predefined threshold 

τa (τa  >τ), the number of removal data Na and the set Sa are 

calculated as follows, 

 Na = ρl (ei )
i=1

N

∑ ,   (14) 

 Sa ← Sa + {i}     if ρl (i) = 1 ,  (15) 

 ρl (ei ) =
1      if  ei > τ a
0     otherwise

⎧
⎨
⎩

.  (16) 

Furthermore, by using Na and Sa, the number of data N 

and the set S are updated as follows 

 N ← N − Na ,   (17) 

 S← S − Sa .   (18) 

The model parameters are estimated from the updated 

data set S. In addition, the starting condition in homography 

matrix estimation are defined by 

 
fitbest
N

>α ,       (19) 

where α  is a threshold value. The condition means th

e ratio of the fitness value of the best individual to th

e number of data in the data set. After the search ran

ge control method is once performed, the obvious outli

ers are removed from the set S when the best individu

al is improved. 

3.4 Adaptive mutation 

This subsection explains the adaptive mutation rate that 

enables to change the mutation rate according to the fitness 

value of the best individual in order to improve the stability 

and accuracy for ESSAC. Because if the outlier rate is high, 

the good combination is not generated even in later phase 

of the search in some cases. 

Specifically, the adaptive mutation rate is determined by 

the following equation 

Pm1 = 1− exp − fitbest
Tm

⎛
⎝⎜

⎞
⎠⎟

  (20) 

where fitbest is the fitness value of the best individual and 

Tm is coefficient. In this paper, we use Tm = 0.2 N. On the 

other hand, the search is based on the recombination 

operator in equation (20) when the fitness value of the best 

individual is low during an early stage. In equation (20), the 

recombination randomly selects two host individuals in 

order to maintain the genetic diversity. 

3.4 Self-adaptive mutation 

In order to start search range control method efficiently, 

the search capability of ES is very important since we must 

search the feasible solution from the dataset including the 

large number of outliers quickly. Therefore, we need to 

control a ratio of exploration and exploitation. In order to 

control the rario, ESSAC uses a self-adaptive mutation. In 

the adaptive mutation, if the search fails for m times in a 

row, the mutation rate is calculated by following equation,  

Pm2 = 1− Pm1 . (21) 

In equation (21), the search is based on the mutation 

operator when the fitness value of the best individual is low 
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and the mutation rate decreases when an individual having 

good genetic information is generated. Therefore, ESSAC 

can control the ratio by using adaptive and self-adaptive 

mutation. Algorithm 4 shows the procedure of adaptive 

ESSAC. 

4 Experimental result 

We conducted an experiment on 3D reconstruction in 

order to verifying the effectiveness of A-ESSAC in a 

moving image. Left and right images were acquired by 

using a robot arm equipped with two cameras  and 

the number of frames is 670. Fig. 6 shows examples 

of camera images from the left camera. Fig. 7 shows 

the experimental result of homography matrix 

estimation between DL(t) and DR(t). In addition, Table 

1 shows the results of a comparison between A-

ESSAC and RANSAC (The number of trials of each 

dataset is set to 1000). A-ESSAC outperforms 

RANSAC in all of the datasets from the viewpoint of 

the average fitness value and computational cost 

because the search capability of ES and the search 

range control can improve the trade-off between 

computational cost and stability of search. However, 

the variance results (t=1 and 230) of the fitness value 

are slightly large because A-ESSAC gets stuck in a 

local optimum in some trials. However, A-ESSAC can 

recover from such a situation by extracting the correct 

pairs between the next images. Therefore, the result of 

3D reconstruction could be stably performed by using 

A-ESSAC (Fig.8). 

4 CONCLUSION 

In this paper, we applied A-ESSAC to 3D reconstruct

ion method using two cameras. At first, we explained 

the 3D reconstruction method from two cameras and d

efined the homography matrix estimation problem. Next,

 we explained A-ESSAC whose search strategy is base

d on Evolution Strategy in order to maintain the genet

ic diversity. In the experiments, we showed that A-ES

SAC outperforms RANSAC in the average fitness and 

computational time and our proposed method could rec

onstruct the 3D model from two cameras. However, ou

r proposed method has the problem of the accuracy of

 3D reconstruction because of accumulated errors in ea

ch frame. Therefore, we will apply a closed-loop meth

od to our proposed method for improving the accuracy

 of the 3D model. 
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