NSGA-II を用いたヒューマノイドの効率の良い歩行プロファイルの探索

Efficient Walking-Profile Search Based on NSGA-II for Humanoid

○学 森本 晃行(岡山大) 和田 亮雅(岡山大)正 戸田 雄一郎(岡山大) 正 見浪 護(岡山大)

Teruyuki MORIMOTO, Okayama University, pzmb3jpb@s.okayama-u.ac.jp Yuuichiro TODA, Okayama University Mamoru MINAMI, Okayama University

There were various studies of Humanoid's bipedal walking. However, most of the researches uses a simplified model. In this research, we study humanoid in hopes of realizing robot walking like a human and consider a gait model of humanoid robot including slipping, bumping, surface-contacting and point-contacting of foot is discussed. First, to stabilize attitude and prevent humanoid from falling down, we proposed Visual-lifting Approach. This method use it's eyes. Humanoid judged surrounding condition and keep it's head position high. Next, we need input torque to step forward by feed-forward control but it determined by try and error. This might be waste of energy. So, to solve this problem, I use Non-dominated Sorting Genetic Algorithm-II (NSGA-II). In the report, I explored the best input by NSGA-II method based on three evaluation(maximize a Walking speed, energy minimization, and taking both of them into consideration) and investigated the result.

Key Words: Humanoid Robot, Genetic Algorithm, Create Walking

1 緒言

人類は長年に渡る進化の過程の中で、安定な直立二足歩行の メカニズムを獲得してきた. その一方でヒューマノイドや二足歩 行ロボットを制御し、人間と同等の安定かつ効率的な歩行を実現 することは困難である.これは、ヒューマノイドが強い非線形性 や多数の干渉及び自由度を含むダイナミクスを有していることを 考慮しなければならず、それ故に従来の線形制御理論を利用した 制御器の設計は適用できない場合が多いためである. このような 現状に対応する手法として, Zero-Moment Point (ZMP) 制御は 最も有力で現実的な手法であることが知られている. (ZMP) 制 御は本田技術研究所の ASIMO を始めとして、多くの実機によ るヒューマノイドが ZMP に基づいて現実世界における二足歩行 を達成している. ZMP 規範の制御以外にも、リミットサイクル に収束する歩行軌道や関節角度軌道を生成し、これらを参照し て二足歩行を生成する手法も存在する [1].これに対し, 我々の 研究では ZMP に依存しない人間らしい二足歩行の実現を目指し ている.この実現には ZMP 以外の制御方法が必要となった.そ こで我々は"Visual-Lifting Approach" と名付けた姿勢安定化を 行うための戦略をビジュアルサーボとインピーダンス制御 [2] の 概念に基づいて提案した. この戦略は文献 [3], [4] において提案 されている "visual pose estimation" を利用しており、ヒュー マノイドが目標物体を実時間で認識することによって取得可能 な物体に対する自身の位置/姿勢の偏差をフィードバックするこ とにより、直立及び歩行状態における姿勢安定化を可能とする. しかし、一方で "Visual-Lifting Approach" の入力だけでは足を 踏み出すための適切な入力トルクを決定でできないという問題 点があった. そこでこの問題を解決する手段として本研究では Non-dominated Sorting Genetic Algorithm-II(NSGA-II) を用 いて適切な入力トルクを探索し、その結果を元に歩行シミュレー ション実験を行った.

2 ヒューマノイドモデル

動力学モデルを導出する対象のヒューマノイドモデルの基準 座標系 \sum_{W} , 各関節角度 q_i [rad] の定義を Fig.1(a) に各リンク座

標系 \sum_i , 各リンク長さ l_i [m] の定義を Fig.1(b) に示す. Table 1には各リンクの長さ、質量を示しており、全長 1.7m、全質量 63.8[kg] のヒューマノイドモデルを作成した. モデルは 17本の 剛体リンクと質量や長さを持たない17個の回転関節,1個の直 動関節で構成されている. 直動関節は主脚の \sum_W の y 軸方向の 滑りを表現している.したがって主脚が滑る場合は、つま先を含 む脚, 胴体, 腕などの全身モデルを 18 自由度を持つ. Fig. 1(a) に示すように脚は、 $\sum_{W} o y$ 軸方向の並進とx軸回りの回転の 自由度を持つが、Fig. 1(b) に示す脚の \sum_{W} のy軸回りの回転 の自由度は与えていない. したがって下半身は矢状面内の運動し か行わないが、上半身は joint-8,9,10 により 3 次元空間内の運動 が可能である.以降では、link-1,…,3によって構成される脚を 「支持脚」, link-5, …, 7 によって構成される脚を状態に応じて 「遊脚」と呼ぶ. link-1 につけられている直動関節は接地面との 滑りを表現する関節である. ただし \sum_{0} は Fig. 1(a)の右下に示 すように主脚つま先に固定されて \sum_{0} のy軸が \sum_{W} のy軸と 一致している座標である. Fig. 1 中の \sum_{0} の運動は足の滑りを, \sum_{1} の運動は link-1 の回転を表している.

運動方程式を Newton-Euler 法を用いて導出を行う.まず, Newton-Euler 法の順動力学計算として根元リンクから各リン クの先端に向かって link-i の関節角速度 ${}^{i}\omega_{i}$, 関節角加速度 ${}^{i}\omega_{i}$, リンク座標系の原点における並進加速度 ${}^{i}p_{i}$, リンクの質量中心 における並進加速度 ${}^{i}s_{i}$ を以下の式から導出する.

導出結果は以下のようになる.

$$M(q)\ddot{q} + h(q,\dot{q}) + g(q) + D\dot{q} = \tau$$
(1)

ここで, M(q) は慣性行列, $h(q, \dot{q})$, g(q) はそれぞれ遠心力/ コリオリカの項及び重力項を表すベクトル, D は関節の摩擦係 数を表す対角行列, $\tau = [f_0, \tau_1, \tau_2, \cdots, \tau_{17}]$ (ただし足の滑りは受 動的であるため $f_0 = 0$) は入力トルクベクトル, $q = [y_0, q_1, \cdots, q_{17}]$ は関節角度ベクトルである.

Fig.1 Gaits including contacting-foot with surfacecontacting

Link	$l_i[m]$	$m_i[kg]$	$d_i[\text{Nms/rad}]$
Head (l_{17})	0.24	4.5	0.5
Upper body (l_{10x})	0.41	21.5	10.0
Middle body (l_9)	0.1	2.0	10.0
Lower body (l_8)	0.1	2.0	10.0
Upper arm (l_{11}, l_{14})	0.31	2.3	0.03
Lower arm (l_{12}, l_{15})	0.24	1.4	1.0
Hand (l_{13}, l_{16})	0.18	0.4	2.0
Waist (l_4)	0.27	2.0	10.0
Upper leg (l_3, l_5)	0.38	7.3	10.0
Lower leg (l_2, l_6)	0.40	3.4	10.0
Foot (l_{1x}, l_{7x})	0.07	1.3	10.0
Total weight [kg]		64.2	_
Total hight [m]	1.7	_	

 Table 1 Physical parameters

3 Visual-lifting Approach

ー般的に ZMP を参照しない連続歩行は不安定な歩容が現れ るため、困難であるとされる.不安定な歩容とは転倒状態を意 味し、一旦転倒状態が生じると安定な姿勢に復帰することは難 しい.本章ではこのような問題を避けるために、ヒューマノイド の直立時または歩行時の安定性向上を目的として"Visual-lifting Approach"と呼ぶ戦略を提案した.本戦略の概念は頭部の位置/ 姿勢を一定に保つことである.まず、その概略図を Fig.2 に示す. ヒューマノイドの頭部に固定された座標系 Σ_H に基づいて、固定 目標物体の位置/姿勢を測定するために Model-based matching 法を使用する.固定目標物体に対して設定された座標系との関 係は同次変換行列として定義される.その結果、頭部の目標位置 を表す座標系との偏差を表す同次変換行列は以下の式によって求 まる.

$${}^{H}\boldsymbol{T}_{H_{d}}(\boldsymbol{\psi}_{d}(t),\boldsymbol{\psi}(t)) = {}^{H}\boldsymbol{T}_{R}(\boldsymbol{\psi}(t)) \cdot {}^{H_{d}}\boldsymbol{T}_{R}{}^{-1}(\boldsymbol{\psi}_{d}(t))$$
(2)

式 (9) において, ${}^{H}\boldsymbol{T}_{R}$ は文献 (10) で提案されている "On-line visual pose estimation" によって測定された $\boldsymbol{\psi}_{d}(t)$ を用いて計算可能であるが,本研究では ${}^{H}\boldsymbol{T}_{R}$ をビジュアルサーボによる認識によって得るのではなく,既知の変数として扱っている. そし

Fig.2 Concept of Visual Lifting Approach stabilizing walking.

て、 $\delta \psi(t) (= \psi_d(t) - \psi(t))$ として定義される頭部の目標値と実際の偏差を最小とするために、関連した関節に入力されるべきトルクが以下の式により計算される.

$$\boldsymbol{\tau}_{h}(t) = \boldsymbol{J}_{H}(\boldsymbol{q})^{T} \boldsymbol{K}_{p} \delta \boldsymbol{\psi}(t)$$
(3)

ここで、 $J_{H(q)}$ は支持脚から頭部までの位置/姿勢を表すヤコ ビ行列、 K_p は比例ゲインを表している.すなわち式 (10) は頭 部を目標位置に引っ張る力 f_v を生み出し、重力による頭部や重 心位置の低下及び予測不可能な滑りや外乱による転倒を防止する 効果を持つ.

4 NSGA-II を用いた入力トルクの探索

ヒューマノイドの効率の良い歩行において,1[m] あたりの消 費エネルギーを抑える歩行ができないかと考えた.その際の評価 方法を「歩行速度の最大化」,「総消費エネルギーの最小化」と した.しかし,この2つの事象は互いにトレードオフの関係にあ り,同時に満たす歩行は1つに定まらない.そこでこの問題を 多目的最適化問題として考え,Non-dominated Sorting Genetic Algorithm-II(以下 NSGA-II と呼ぶ)を用いて適切な入力トルク を探索する.

4.1 NSGA-II の概要

ー般的に目的関数が3つ以下であるときに最適化性能を示し、 世代ごとに交叉、突然変異を行い劣個体、非劣個体を生成し分類 する.この動作を繰り返すことでパレート最適解が得られる.ま たパレート最適解とは他のどの解にも優越されない非劣個体であ り、複数個存在する.

NSGA-II のフローチャートを Fig. 3 に示す.

4.2 NSGA-II のアルゴリズムの説明

NSGA-II のアルゴリズムを以下に示す.

- 1. 50 歩の歩行が可能な個体をランダム探索で用意した. その 結果 30 個体生成された.
- 遺伝子操作を用いた探索を行うための母集団 Q_t,遺伝子操 作を行った個体を保存するための母集団 P_t(アーカイブ集 団)を用意する.
- 3. 母集団 *Q_t* の中に 30 個の初期個体を入れ, ランダムに選択 し, 交叉, 突然変異を行う. 遺伝子操作された個体は *P_t* に 保存する.
- 4. $P_t \ge Q_t$ をあわせたものを R_t と呼び, R_t に対して評価関数に基づいた評価を行い, 非優越ソートを行う. 非優越ソー

Fig.3 Flowchart about NSGA-II

トとは全ての個体群の中の非優越な解をそれぞれランク分けし、ランクの高い順に分類することである.また 30 個入る新しい母集団 P_{t+1} を用意しランクの高い順に個体を入れていく.入らなかったランク体は淘汰する.

5. P_{t+1} にある個体を混雑距離を基に混雑度トーナメント選択 をし新しい探索母集団 Q_{t+1} に生成する. これを行うこと で密集した個体を取り除き解の多様性を保つことができる. その後 Q_{t+1} に対して交叉,突然変異させる. これを世代数を満たすまで行う.

4.3 混雑度

同一ランク体の個体集合を目的関数でソートし、隣接する個 体を調べる.全個体それぞれの隣接する個体間の混雑度距離を求 め、個体間の和の数値が低いものほどその個体は混雑していると いう.以下に混雑度距離の式を示す.

$$d_j = \sum_{m=1}^{M} \frac{F_m^{I_{j+1}} - F_m^{I_{j-1}}}{F_m^{max} - F_m^{min}} \tag{4}$$

j は個体数, M は目的関数の数を表している. 個体間の距離 を求めるため, 調べる個体に隣接している二つの個体の差を F_m の値が最大の個体と最小の個体の差で割ることで正規化すること ができ混雑度距離 d を求められる.

4.4 評価関数

ヒューマノイドの効率の良い歩行を図るため、以下に評価関数 を作成した. 関数 $F_1(v)$ では歩行速度の最大化、関数 $F_2(\tau_i, \dot{q}_i)$ では総消費エネルギーの最小化を図っている.また,50歩歩く ことを制約条件として定めた.

4.4.1 歩行速度の最大化

$$F_1(v) = k_1 \frac{1}{v} \tag{5}$$

v[m/s] は腰の並進速度, k₁[]=10 は無次元化化定数とする. 4.4.2 総消費エネルギー最小化

$$F_2(\tau_i, \dot{q}_i) = k_2 \sum_{i=1}^{17} \int_0^t \tau_i \dot{q}_i dt$$
 (6)

 $k_2[]=1/10000$ は無次元化定数としている.また $\tau_i[N \cdot m]$ はトルク、 $\dot{q}[rad/s]$ は角速度である.

4.4.3 制約条件

50 歩歩くことを条件に設定する.

$$x_{step} \ge 50 \tag{7}$$

x_{steps}[steps] は歩数である.

4.5 NSGA-II を用いるための入力トルク

NSGA-Ⅱ を用いて評価関数に基づく適切な入力トルク係数,周期係数の探索を行う.以下に入力トルクの式を示す.

$$\tau_8 = \begin{cases} g_{x_1} \sin(\pi (t - t_{end})/g_{per_1}) & (C = 1) \\ -g_{x_1} \sin(\pi (t - t_{end})/g_{per_1}) & (C = 0) \end{cases}$$
(8)

$$\tau_5 = g_{x_2} \cos \pi (t - t_{end}) / g_{per_2} \tag{9}$$

$$\tau_{6} = \begin{cases} g_{x_{3}} \sin \pi (t - t_{end})/g_{per_{3}} & (if \ y_{2} - 0.1 < y_{6}) \\ g_{x_{4}} \sin \pi (t - t_{end})/g_{per_{4}} & (otherwise) \end{cases}$$
(10)

$$\tau_7 = g_{x_5}(g_{per_5} - q_6) \tag{11}$$

ここで y_2 , y_6 はそれぞれ支持脚の膝の y 座標, 遊脚の膝の <math>y座標である. $g_{x_1} \sim g_{x_5}$ [] は入力トルク係数, $g_{per_1} \sim g_{per_5}$ [] は周期 係数を表し,範囲に制限は設けていない. C=0 は支持脚の爪先 が地面に接触し,支持脚と遊脚が入れ替わると C=1 とし,次に遊 脚の爪先が接地すると C=0 とする.

4.6 探索実験

本研究では 50 歩歩行する個体をランダム探索で探索した. その結果 30 個体得られた. これを初期個体とし個体数 30, 個体長10, 最大世代数を 9000 とし,世代数を満たすまで進化させた. Fig.4 に 9000 世代の探索結果を示す.

この評価分布はパレート最適解であり、「総消費エネルギーの最小 を優先した個体」、「歩行速度の最大を優先した個体」、「その両方 を満たそうとする個体」を生成することができた.

5 歩行シミュレーション実験

上記の実験より得られた入力トルク係数,周期係数を用いて 10歩の歩行シミュレーション実験を行った.評価する個体は「総 消費エネルギーの最小を優先した個体」,「歩行速度の最大を優先 した個体」,「両方を満たそうとする個体」の3つである.以下に シミュレーション結果を示す.

9000世代における評価分布から歩行速度の最大を優先した歩行,総消費エネルギーの最小を優先した歩行,両方を満たそうとする歩行を生成することができた.Fig.5のより総消費エネルギーの最小を優先した個体は足を滑らすように歩行をし,Fig.6のように歩行速度の最大を優先した個体は足を大きく上げ上半身を並進方向に揺らして歩行した.Fig.7は両方の評価関数を満たそうとする歩行で人間のような歩行を行った.

5.1 考察

Fig.8 ではこれらの3つの歩行に対して1[m] あたりの入力エ ネルギーの比較を行った.これより効率の良い歩行をするために は歩行速度,総消費エネルギーをバランスよくする必要があると 考える.また,今回の実験で得られたは歩行速度,総消費エネル ギーの両方を満たそうとする歩行はわずかではあるが腕を振る 歩行をした.考えられる原因として上半身の動きが足に正しく伝 わっていないことである.このため今後は足の入力トルクそのも のを見直す必要があると考える.

6 結言

本論文では可能な限り詳細にモデル化された複雑なダイナミク スを持つヒューマノイドについて議論し、ヒューマノイドロボッ トの効率の良い歩行を目的とし、以下の内容について記述した. 試行錯誤により決められていた制御器内の入力トルクの整理を行 い、NSGA-IIによって適切な入力を探索した.50歩の歩行とい う制約条件のもと歩行速度の最大化、総消費エネルギーの最小化 の両方をバランスよく満たす歩行の生成をすることができ、エネ ルギー効率を改善できた.

Fig.4 Evaluation distribution

Fig.5 Walking of minimize energy

Fig.6 Walking of maximum speed

Fig.7 Walking of both

Fig.8 Consumption energy per 1 meter

References

- Y. Harada, J. Takahashi, D. Nenchev and D. Sato, "Limit Cycle Based Walk of a Powered 7DOF 3D Biped with Flat Feet," *Proc. of International Conference on IROS*, pp.3623– 3628, 2010.
- [2] N. Hogan, "Impedance Control; An Approach to Manipulation, Parts I–III, ASME Journal of Dynamics Systems, Measurement, and Control Vol.107, No.1, pp.1–24, 1985.
- [3] W. Song, M. Minami, F. Yu, Y. Zhang and A. Yanou, "3-D Hand & Eye-Vergence Approaching Visual Servoing with Lyapunov-Stable Pose Tracking," *Proceedings of IEEE International Conference on Robotics and Automation*, pp.5210– 5217, 2011.
- [4] F. Yu, W. Song and M. Minami, "Visual Servoing with Quick Eye-Vergence to Enhance Trackability and Stability," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.6228–6233, 2010.