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Abstract
Recognizing a target object and measuring its pose are important functions of robot vision. Most recognition methods require 
prerequisite information about the target object to conduct the pose estimation, which limits the usability of the robot vision. 
To overcome this issue, the authors proposed a new approach to estimate an arbitrary target’s pose using stereo-vision, which 
was inspired by the parallactic character in human perception. The authors continued the previous research presented in 
AROB 2020 and expanded the ability of projection-based 3D perception (Pb3DP). Through tracking the trajectory of the 
target’s motion with a hand–eye robot, it has been confirmed that the Pb3DP method can provide a feasible result in the 
visual servoing of an unknown target object. In this paper, the authors introduce the methodology of the Pb3DP approach 
in detail and show the effectiveness of the method through the experimental results of visual servoing in 6 DoF using a 
stereo-vision hand–eye robot.
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1 Introduction

Detecting the target and estimating the pose are vital func-
tions in robot vision. Researches and applications in this 
field have been well studied, including visual servoing, 
SLAM, and “bin-picking” tasks to pick up industrial parts. 
All these approaches require a kind of information about 
the target objects’ appearance as a prerequisite. Unlike the 
methods that need a priori information, this paper considers 
a situation that the target is an unknown 3D object existing 
in 3D space. It means that the visual information about the 
target object, such as the color, shape, and size, are consid-
ered unknown before the estimation process starts. Our moti-
vation aims to present a system that can estimate the pose of 
an arbitrary target object in a real-world setting. Meanwhile, 
the whole estimation process should be conducted in real 

time to ensure that the system is functional, while the tar-
get is moving. Thereby the pose estimation process of this 
system should be fast and reliable to make it adaptable to 
the visual servoing that uses dynamic images provided by 
stereo-vision.

Some pioneering studies in robot vision, for example, 
visual servoing, are a technique that uses feedback informa-
tion extracted from the visual sensor to control the robot’s 
motion. The class of visual servoing methods can be divided 
into three varieties: position-based visual servoing (PBVS) 
[1], image-based visual servoing (IBVS) [2], and 2-1/2-D 
method [3]. Those methods need some pre-defined informa-
tion about the target object to generate the feature points for 
conducting visual servoing, which limits the adaptability and 
usability. In a real-world environment, the object’s shapes 
are irregular and not uniform. Therefore, natural things 
could not be represented by prepared models. Thereby, a 
method that could estimate the pose of an arbitrary target 
without prerequisite information is indispensable to expand 
the applicability of robot vision into natural outdoor fields.

Recently, some RGB-D camera employed devices, such 
as Kinect and Realsense, have received much attention. 
Those devices can estimate the distance to the target through 
projecting infra-red light, and they do not require prerequi-
site information about the target object. Therefore, Kinect 
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is thought to have become the major 3D measuring device 
in the indoor environment for its low cost and reliable per-
formance. However, the infra-red has a very high absorption 
rate in water, so the Kinect cannot be used in the under-
water environment. Furthermore, the ambient light such as 
sunlight will lead to a quick saturation of the infra-red sen-
sor, and then, the actual reflection light from the target is 
hard to be detected. Therefore, the applicable environment 
of Kinect is limited, and also, it cannot output the target’s 
pose in the scene, but the projection-based 3D perception 
(Pb3DP) method can do it.

The concept of Pb3DP originated from a photo-model-
based method (PMB) [4], which was developed in our 
laboratory that can estimate a 3D target object’s pose with 
stereo-vision using a 2D photo-model. The performance of 
tracking a 3D target’s pose using the PMB method has been 
reported in [5] and [6], and the pose tracking experiments 
towards underwater target have been successfully conducted 
and presented in [7]. Different from the current technolo-
gies [8–10] that are thought to be derived from [1–3], the 
PMB method provides poses of 3D target objects using a 
2D photo-model of the target object. Considering the fact 
that the pose of a 3D object can be estimated through a 2D 
model, an extended idea that the 2D photo-model could 
be substituted by one camera image in one of the stereo-
vision cameras happened to appear as a new idea. Since 
there is no need for a pre-defined photo-model, the applica-
tion of Pb3DP has expanded the ability that can estimate 
an arbitrary target’s pose. Meanwhile, different from the 
RGB-D camera [11, 12], the Pb3DP only uses visible light 
information,“not using the infra-red light,” which means 
that the Pb3DP can be useful in underwater [13]. And the 
RGB-D methods cannot work outdoors in sunshine [14], but 
the Pb3DP can be workable.

The previous research presented in AROB 2020 [15] has 
been limited in the confirmation of pose estimation. The 
authors focus on expanding the ability of the Pb3DP method 
into visual servoing by controlling a hand–eye robot to track 
a target’s trajectory through Pb3DP’s estimation results. 
The following contents are organized as follows: Sect. 2 
introduces the mechanism of projections and the real-time 
establishment of a searching model. Section 3 explains the 
optimization method used in the Pb3DP method, and the 
visual servoing experiments are explained in Sect. 4.

2  Projection‑based 3D perception

2.1  A concept of Pb3DP

The authors proposed a new method named Pb3DP to rec-
ognize an unknown target and estimate its pose without any 
pre-defined information. The searching model of the Pb3DP 

method can be made from one of the stereo-vision camera 
images. This approach of establishing a model in one camera 
image requires no prerequisite information about the target 
object, it ensured that the Pb3DP method could be applicable 
to any unknown target object.

This section focuses on introducing the methodology of 
the Pb3DP method. The concept of Pb3DP is introduced 
in Fig. 1 in the order from (1) to (5). (1): A real target is 
depicted with dark color and be projected onto left and right 
cameras images—those are natural light projections—are 
indicated by A  . The natural projection is thought to be 
completed based on the true pose, � , but it is unknown. 
(2): Target object is selected in the left camera scene as a 
model depicted by B  . (3): The selected 2D target model is 
inversely projected into the 3D space with an assumed pose 
�̂ , shown by C  and the inverse projection is indicated by 
D  . The inversely projected 2D model in the 3D space is 
depicted with light color, compared with the actual target 
which is also depicted in the 3D space. (4): The 2D flat 
model in 3D space is re-projected back to the right cam-
era image with the same assumed pose �̂ , depicted by E  . 
(5): If the re-projected model with an assumed pose �̂ coin-
cides with the real target in the right camera image, then the 
assumed pose is deemed to represent the real target’s pose 
in 3D space, that is, �̂ = �.

The following explanation about the Pb3DP method can 
be divided into two parts: (1) how the target’s pose is esti-
mated in this section and (2) how to apply the Pb3DP method 
in real time is described in Sect. 3. The first part includes the 
model generation process and the inverse projection from 2D 
to 3D of a 2D image model with the assumed pose �̂ that 
has been explained in Fig. 1. The second part is to detect 

Fig. 1  The schematic of Pb3DP. However, in this figure, since this 
figure is depicted on the assumption of �̂ ≠ � , the two images, natu-
rally projected crab by right camera and the inversely projected crab 
with light color, do not coincide with each other in right camera 
image. If �̂ = � , they would coincide
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the pose �̂i that represents true target’s pose � . It is a time-
consuming task to find � , but could be optimized by a real-
time multi-step GA approach (RM-GA) [16]. The following 
contents will introduce the methodology in detail.

2.2  The establishment of a model

The model used in the Pb3DP is a rectangle area in the left 
camera image that encloses the target object. It consists of 
a 2-D point cloud; each of the sampling points contains the 
color information of the image at the location of the point, 
which is used to evaluate the recognition result. The model 
has two portions: the inner area that mainly presents the 
target object, and the outer area, which presents the back-
ground around the target object. The model can be made 
instantaneously using the target’s image shown on the cam-
era. It means as long as the target object can be seen in the 
camera’s image; the Pb3DP method can make the model of 
the target without any prerequisite about the target object. 
This way of model’s establishment ensured that the Pb3DP 
method could recognize an arbitrary target object.

The components of the model are the same as the previ-
ous research of the authors. The detail of the inner area and 
outer area can be referred to [17].

2.3  Projections and model selection

Figure 2a shows a similar situation as Fig. 1, but it represents 
how the true pose � could be found in genetic algorithm 
(GA) process: a target’s image in left camera is selected as 
2D image model, and the 2D image model is inversely pro-
jected into 3D space with assumed pose �̂i−1 , �̂i , and �̂i+1 ; 
the coordinate systems of those inversely projected model 

are defined as Σi−1 , Σi , Σi+1 . The Fig. 2b shows the situation 
that �̂i = � through the convergence conducted by RM-GA. 
Let us define the coordinate systems and symbols that used 
in Pb3DP method. The coordinate systems can be referred 
to Fig. 2:

– ΣL,R : the coordinate systems of left and right cameras.
– ΣIL,IR : the coordinate systems of left and right camera 

images.
– ΣH : the coordinate system of robot’s hand.
– ΣM : the coordinate system of model whose pose repre-

sents the target object’s pose.
– Σi−1 , Σi , Σi+1 : the coordinate systems of the “i-1”th, “i”th, 

and “i+1”th model that inversely projected into 3D space 
with assumed pose �̂�i−1 , �̂�i , �̂�i+1.

– IL
r
j

i
,IR r

j

i
 : the position vector of j-th point on i-th model in 

the left and right camera image coordinate.
– ΣW : the world coordinate system.

As shown in Fig. 3, there is a 2D model in 3D space with 
the coordinate ΣM attached, consisted of sampling points that 
lie on the plane. Because the model is a 2D flat, the z-axis 
coordinate of an arbitrary jth sampling point on the model is 
fixed to be 0, i.e., Mzj = 0 . The position vectors in the world 
coordinate system ΣW of an arbitrary jth point on a 2D model 
placed in space are set and defined as follows:

– W
r
Mj

 : 3D position vector in ΣW of a jth point on a 2D 
model defined by ΣM.

– M
rj : 2D position vector on x-y plane in ΣM of a jth point 

on a 2D model whose x-y plane coincides with the 2D 
model plane, where Mrj is a constant vector, since ΣM is 
attached to the model.

Fig. 2  The coordinate systems; symbols used in Pb3DP method
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– L
rMj : 3D position vector in ΣL of a jth point on a 2D 

model in space in the left camera coordinates system 
ΣL , as shown in Fig. 3.

– IL
r
Mj

 : 2D position vector of an jth point on a model in 
left image coordinate system ΣIL.

Given the homogeneous matrix connecting ΣM to ΣL as 
L
TM , the relation between LrMj = [LxMj,

L yMj, LzMj, 1]
� and 

M
rj =

[
Mxj,

Myj,
Mzj, 1

]� is represented by

The detailed LTM is given by

where LrM = [LxM ,
L yM ,

L zM]
T , L�M = [L�x,

L �y,
L �z]

T.
The jth point LrMj on a model defined by ΣL in space is 

projected to ILrMj = [ILxMj,
IL yMj]

T on the left camera image 
defined by ΣIL as follows, using � = [LrT

M
,L �T

M
]T:

(1)L
r
Mj

= L
TM

M
rj.

(2)

L
TM(

L
rM ,

L �M) =

⎡⎢⎢⎢⎣

1 0 0 LxM
0 1 0 LyM
0 0 1 LzM
0 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

cosL�z − sinL�z 0 0

sinL�z cosL�z 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

cosL�y 0 sinL�y 0

0 1 0 0

−sinL�y 0 cosL�y 0

0 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 0 0 0

0 cosL�x − sinL�x 0

0 sinL�x cosL�x 0

0 0 0 1

⎤⎥⎥⎥⎦
,

The projective transformation matrix P(LzMj) is given as

where

– LzMj : z-axis position of the j-th point in ΣL on the model 
ΣM,

– f: focal length,
– �x, �y : coefficients [mm/pixel] in x-axis and y-axis of 

image frame.

The projection of right camera can be discussed in the same 
manner.

2.4  Inverse projection from left camera image to 3D 
space and re‑projection to right camera image

For preparation of inverse projection of ILrMj to 3D space, 
the pseudo-inverse projection matrix P+(LzMj) of P(LzMj) 
defined by Eq. (4) is needed

Equation (3) can be modified into

If the position vector of j-th point in 2D model on ΣM is 
selected to be at the origin of ΣM , then Mrj = [0, 0, 0, 1]T . 
Providing that the corresponding point to the origin of ΣM in 
the left camera image coordinate system ΣIL is [ILxC,IL yC]T , 
and that an arbitrary vector l  is given by l = [l1, l2, l3, 1]

T , 
then Eq. (6) leads to

The above relation indicates the origin position LxM ,L yM of 
ΣM in ΣL could be determined dependently based on LzM 
and ILxC,IL yC . When we want to calculate a flat model in 
3D space from flat image in left camera flame ΣIL by inverse 
projection, Eq. (7) means that the origin position LxM ,L yM in 
ΣL could be determined linearly using the center position of 
model ILxC,IL yC in ΣIL and arbitrary position LzM . Figure 3 
represents that the relation given by Eq. (7) could be under-
stood from a view point of geometry as linear projection, 

(3)
IL
rMj = P(LzMj)

L
rMj

= P(�)LTM(�)
M
rj.

(4)P(LzMj) =
1

LzMj

[
f∕�x 0 0 0

0 f∕�y 0 0

]
,

(5)P
+(LzMj) =

LzMj

[
�x∕f 0 0 0

0 �y∕f 0 0

]T
.

(6)L
TM(�)

M
rj = P

+(�)ILrMi + (I4 − P
+
P)l.

(7)

⎡⎢⎢⎢⎣

LxM
LyM
LzM
1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�x
ILxC

LzM∕f

�y
ILyC

LzM∕f

l3
1

⎤
⎥⎥⎥⎦
.

Fig. 3  Projection schematic diagram: The jth point 
M
rj = [Mxj,

Myj,
Mzj]

� on a model shown by ΣM in space is converted 
into the point represented by ΣL as Lrj = [Lxj,

Lyj,
Lzj]

� , and the point 
L
rj is projected to ILrj = [ILxj,

IL yj]
� on the left camera image defined 

by ΣIL



Artificial Life and Robotics 

1 3

meaning that the point ILxC,IL yC and LxM ,L yM are connected 
linearly by the distance LzM.

The assumptions that the proposed Pb3DP is based on 
are given: (1) A target object should be projected onto both 
left and right cameras images. (2) The point cloud defined 
in the left camera image includes the target, as shown in 
Fig. 1 B  . Therefore, the rectangular point cloud depicted in 
ΣIL in Fig. 3 always includes the projected target. (3) To sim-
plify the inverse projection, the rotation around the z-axis, 
i.e., L�z in Eq. (2) be assumed to be zero without loosing 
generality, since the natural light projection relation from 
points in ΣM to points in ΣIL is always straight without rota-
tion around the camera depth direction. Then, Eq. (2) could 
be simplified into

where � is defined as

On the other hand, through comparing the current image 
with the initial status when the model of the target object 
was made, the Pb3DP method can recognize the target’s ori-
entation about L�z , which is a relative value that represents 
how many degrees the target rotated around the zM-axis after 
the estimation started.

The three components LzM ,L �x,L �y of � are independ-
ent variables for inversely projecting the 2D model in left 
camera 2D image into space. Providing a set of variables in 
the variety of � be chosen and fixed, shall we describe the 
fixed variable as �̂ and the true pose as � in later contents, 
then the inversely projected flat model position WrMj(�̂) that 
is determined dependently by �̂ in ΣW is derived from Eq. 
(6) as

Then, the image projected to right camera plane of flat target 
model, IRrMj , is also calculated using assumed �̂ as

(8)

L
TM(�) =

⎡
⎢⎢⎢⎣

1 0 0 �x
ILxC

LzM∕f

0 1 0 �y
ILyC

LzM∕f

0 0 1 LzM
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0

0 cosL�x − sinL�x 0

0 sinL�x cosL�x 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎣

cosL�y 0 sinL�y 0

0 1 0 0

−sinL�y 0 cosL�y 0

0 0 0 1

⎤⎥⎥⎥⎦
,

(9)� = [LzM ,
L �x,

L �y].

(10)

W
rMj(�̂) = W

TM(�̂)LT−1
M
(�̂)

[
P
+(�̂)ILrMj + (I4

− P
+(�̂)P(�̂))l

]
.

(11)IR
rMj(�̂) = P(�̂)RTW (�̂)WrMj(�̂).

2.5  Problem conversion from pose estimation 
to optimization

The purpose of this subsection is to show how to convert the 
estimation problem of a 3D target’s true pose � to the opti-
mization problem. Please assume that �̂ means estimated 
value of � . If a scalar function F(�̂) should satisfy that the 
distribution of F(�̂) has a single maximum peak Fmax at true 
pose � , and that also satisfy F(�̂) = Fmax , then �̂ = � . This 
could be rewritten as single peak assumption, that is,

F(�̂) = Fmax if and only if �̂ = � ∈ L,
where L means parameter space of �̂  , and then, the 

problem to estimate the true pose � can be converted to an 
another problem as,

Find �̂ to maximize F(�̂) subject to �̂ ∈ L.
It means that the estimation of true pose can be completed 

by optimizing F(�̂) in parameters space of �̂ . Then, how to 
constitute a scalar function F(�̂) satisfying the single peak 
assumption above appears to be a next problem.

3  Real‑time multi‑step GA

3.1  Evaluation method

In the proposed Pb3DP method, the models with assumed 
pose are utilized to infer the true pose of the target object. A 
coincidence degree between the projected model and the tar-
get’s image in the right camera captured by dual-eye cameras 
is evaluated by a scalar function used as fitness function in 
optimization GA process [18]. And the fitness value FR cal-
culated from right camera image is used as a numerical value 
to represent the coincidence degree. A higher fitness value 
means a higher coincidence degree between the assumed 
pose �̂ i and true pose � . Therefore, the fitness value can 
convert the problem of finding the true pose of the target 
object into finding the maximum value of fitness.

The number of sampling points in the inner area is Nin and 
the outer area is Nout . As shown in Fig. 2, the coordinate of 
jth point in ith model projected into right camera image is 
IR
r
j

i
 , and the evaluation value of each point in inner portion 

of the model ( IRrj
i
∈ SR,in(�̂) ) is PR,in(

IR
r
j

i
) calculated by Eq. 

(12). One of outer portion ( IRrj
i
∈ SR,out(�̂) ) is PR,out(

IR
r
j

i
) 

calculated by Eq. (13)

(12)PR,in(
IR
r
j

i
) =

{
KR,in, (|HM(

IR
r
j

i
) − HI(

IR
r
j

i
)| ≤ 20)

QR,in, (|HM(
IR
r
j

i
) − HI(

IR
r
j

i
)| > 20)

(13)PR,out(
IR
r
j

i
) =

{
KR,out, (|HM(

IR
r
j

i
) −HI(

IR
r
j

i
)| ≤ 20)

QR,out, (|HM(
IR
r
j

i
) −HI(

IR
r
j

i
)| > 20),
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where

– HM(
IR
r
j

i
) : the hue value of the projected model in right 

camera image at the point IRrj
i
 (jth point in ith model, 

lying in SR,in).
– HI(

IR
r
j

i
) : the hue value of right camera image at the point 

IR
r
j

i
.

– KR,in,KR,out : the evaluation value in inner area and outer 
area when the difference between HM(

IR
r
j

i
) and HI(

IR
r
j

i
) 

is less than 20 or equal.
– QR,in,QR,out : the evaluation value in inner area and outer 

area when the difference between HM(
IR
r
j

i
) and HI(

IR
r
j

i
) 

is larger than 20.
– N: the total number of sampling points in a model.

The fitness function can be given by the following equation:

(14)

FR(�) =
�∑

IRr
j

i
∈SR,in(�̂)

PR,in(
IR
r
j

i
) +

∑
IRr

j

i
∈SR,out(�̂)

PR,out(
IR
r
j

i
)
��

N.

If the projected 2D model entirely coincides with the cap-
tured target object in the right images, the fitness value cal-
culated by Eq. (14) is designed to have a maximum value. 
Therefore, the fitness value distribution for all models will 
be shaped with a peak that represented the real pose of the 
target object as Fig. 4. In Fig. 4, a model of crab is employed 
as the target object, and it was set as the following pose:

Figure 4a shows the image of the selected target object, 
and Fig. 4b shows the fitness distribution in the “ z − L�x ” 
plane. Here, the maximum value of fitness indicates at the 
point (512[mm], 5[◦]), which is near to the true pose of 
the target object (500[mm], 0[◦]). And, Fig. 4c shows the 
fitness distribution in the “ L�x − L�y ” plane, the maximum 
fitness exists at the point (-2[◦ ], -3[◦]), and the result is 
near the true orientation (0[◦ ], 0[◦ ]) of the target object. 
Those results of the distribution of fitness value that show 
single dominant peak are meaning the fitness function, Eq. 

(15)H�M = [0, 0, 500, 0, 0, 0]T.

Fig. 4  Fitness distribution of the mock-up of a crab. a Left and right 
camera images; b fitness distribution in the z-L�x plane; c fitness dis-
tribution in the L�x −L �y plane. In each subfigure of (b), (c), the max-
imum fitness value and corresponding coordinate to give the maxi-

mum value are shown in text boxes, whose values are almost same to 
the pose given by Eq. (15), representing 3D crab target’s pose. The 
experimental setup is shown in Fig. 7. The coordinates are based on 
ΣH
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(14) can convert the target recognition and pose estimation 
problem into an optimization problem to find the maxi-
mum peak in fitness distribution. Since the position of the 
peak is located close to the position of the target object’s 
true pose, it can show that the proposed method can esti-
mate the 3D target pose through GA using the defined 
fitness equation [Eq. (14)]. This fitness function can be 
said as an extension of the work in [19] in which differ-
ent models, including a rectangular shape surface-strips 
model, were evaluated using images from a single camera.

3.2  Real‑time multi‑step GA

Calculating all possible poses of the target object for making 
a fitness distribution like Fig. 4 is time-consuming, contra-
dicting real-time pose estimation. Therefore, in Pb3DP, we 
employed Real-time Multi-step GA (RM-GA) to satisfy the 
real-time recognition in the image frame fresh rate of 30 
[fps]. The reason why we choose RM-GA is that the selected 
poses by RM-GA are just calculated for the GA’s optimiza-
tion [20].

Different from the previous works that calculate six 
variables to infer an assumed pose [21], in the proposed 
Pb3DP method, three variables can determine the pose of 
a 2D model in 3D space according to Eq. (9). It means that 
only three variables are needed to compute simultaneously, 
which improved the time–response performance of RM-GA 
by reducing the calculating time. In the RM-GA used in 
Pb3DP, each chromosome includes 24 bits for searching 
three parameters: ten for the position and fourteen for ori-
entation, as shown in Fig. 5. Figure 6 shows the flowchart 
of the Real-time Multi-step GA, and the recognition process 
in 3D space is presented on the left. Here, a 2D searching Fig. 5  Gene information

Fig. 6  Flowchart of the RM-GA



 Artificial Life and Robotics

1 3

model in 3D space represents a GA individual. The GA’s 
operation is conducted in the sequence as evaluation, sort-
ing, obsolete, crossover, and mutation. Several 2D search-
ing models representing different relative poses converge to 
the target object through the GA evolution process. The 2D 
searching model that represents the true pose with the high-
est fitness value calculated by Eq. (14) is output for every 33 
[ms]. Then, the model with highest fitness is directly trans-
ferred to the next generation as the initial model to evaluate 
the next new images.

4  Experiments

The experimental result in this paper presents the visual 
servoing performance by the Pb3DP method. During the 
experiment, the target object changed its position and orien-
tation with time. The hand–eye robot recognizes the target 
object’s pose in real time and keeps an assigned pose rela-
tionship to control the robot’s hand to track the trajectory of 
the target object.

4.1  Experimental environment

The experimental environment can be referred to Fig. 7. Two 
manipulators are employed in this experiment; both are the 
PA-10 robot arm manufactured by Mitsubishi Heavy Indus-
tries. Two cameras are mounted on the VS-robot’s end-effec-
tor and connected to a host computer (CPU: Intel i7-3770, 
3.40[GHz]). The layout of these two cameras forms a binoc-
ular vision configuration. The resolution of dynamic images 
is 640 × 480 [pixel], and the frame frequency of stereo cam-
eras is set as 30[fps]. TC-robot controls the trajectory of the 

target object, and the VS-robot conducts the visual servoing 
towards the target object through the pose estimation.

Because, this experiment is examining the visual ser-
voing performance of Pb3DP. Therefore, the experi-
mental results are represented in WTH(W�̂�H(t)) , W�̂�H 
= [Wx̂H(t),WŷH(t),WẑH(t),W𝜀1H(t),W𝜀2H(t),W𝜀3H(t)]

to show if the trajectory of the robot’s hand represented 
by ΣH can match with the target’s given by ΣM that moves 
with motion of TC-robot in Fig. 7, or not. During the experi-
ment, the target object moves along with the desired rela-
tive pose between ΣH and ΣM represented by ΣW is given by 
a defined trajectory, which is shown in Fig. 8a–f as black 
solid lines. To the position change, the target object moves 
along the axis of kM , (k = x, y, z) separately and the position 
changes can be referred to step(1) ∼ step (6) in Fig. 8. Mean-
while, the change of target’s orientation happened after the 
position changes were completed. The target rotated itself 
around the axis of kM , (k = x, y, z) , and those rotation can 
be referred to step (7) ∼ step (12) in Fig. 8. The movement 
range of position change is 100[mm] in each direction, and 
the degree of orientation change is set as 20[deg ], which 
can be transformed into quaternion as “0.173.” The time 
of each step is marked as (1)–(12) in the top of Fig. 8. The 
target object changed its position and orientation with time. 

Fig. 7  Experimental layout. The motion of the target animal, crab, is 
given by TC-robot, and the VS-robot moves to keep desired relative 
pose of the VS-robot against the crab attached on a panel with sea 
bottom backdrop whose motion is given by TC-robot. World coor-
dinate system ΣW , hand coordinate system ΣH , and target coordinate 
system ΣM are depicted in the figure

Fig. 8  The experiment result. The trajectory of target object’s move-
ment is shown as black lines in (a–f), and the movement of robot’s 
hand is shown as red lines
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Meanwhile, a pose relationship between the robot hand and 
the target object is kept as Eq. (16)

Equation (16) also represents the initial pose of TC-robot 
and VS-robot in step (0) shown in Fig. 8, and corresponds 
to Eq. (15).

4.2  Experimental result

The trajectories of robot’s hand are shown as Wk̂H , (k = x, y, z) 
in Fig. 8, and the trajectories of target object’s movements 
are shown as black solid lines as WkH , (k = x, y, z) . As a 
result, the Pb3DP method can recognize the pose of the tar-
get object in real time and guide the robot’s hand to track 
the movement of the target object in time keep HTM to same 
as Eq. (16). The position visual servoing results are shown 
as Fig. 8a–c, and the orientation visual servoing results 
are shown in Fig. 8d–f. To the position tracking result, the 
movement of the robot’s hand can follow the trajectory of 
the target object, but there is some error between the desired 
hand position WkH(k = x, y, z) and the real hand position 
Wk̂H(k = x, y, z) . The reason is considered as time delay of 
pose estimation and mechanical motion time delay caused 
by motor’s time delay.

Concerning the orientation tracking results, as shown in 
Fig. 8, the robot hand can track the trajectory of the target 
object with some time delays and some errors during the 
experiment, because the recognition of orientation recogni-
tion result is always changing, while the pose recognition is 
being conducted by RM-GA, which is providing a new esti-
mation result every 33[ms]. According to the experimental 
results, we can see that the PA-10 can recognize and track 
the target object in real time by employing the proposed 
Pb3DP method, while the 6 degrees of pose elements are 
changed in turns that showed that 6 degrees of pose could be 
measured in real time and VS-robot could be controllable to 
the pose changing of the TC-robot shown in Fig. 7.

5  Conclusion

In this paper, the Pb3DP stereo-vision system is intro-
duced. It was verified that the proposed method can make 
the robot’s hand–eye track the 3D target object without a 
pre-defined model. It means that the 3D pose of an arbi-
trary target can be estimated in real time by its 2D model. 
Meanwhile, the RM-GA ensured the feasibility and robust-
ness of recognition towards target objects and also the 

(16)Hd
TM =

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 500[mm]

0 0 0 1

⎤⎥⎥⎥⎦
.

visual servoing robot could be controlled to the devised 
relative pose shown by the moving target.
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