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Abstract— This paper deals with visual servoing to a 3D pose (6 degree of freedom) of a target object,
whose pose is expressed by unit quaternion. We propose a motion-feedforward (MFF) method to improve
visual recognition dynamics, which is worsened by being disturbed hand-eye motion during visual servoing of
the robot manipulator. Simulation of visual servoing to a 3D pose will be performed to show the effectiveness
of the proposed method.
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1. Introduction

In recent years, object recognition and visual track-
ing and servoing have been studied intensively in the
field of robotics and in other research areas. Tasks
in which visual information are used to direct a ma-
nipulator toward a target object are referred to visual
servoing in [1]-[4]. This field is the fusion of many ar-
eas, such as kinematics, dynamics, image recognition,
and control theory. This paper deals with problems
of the real-time 3-D pose (position and orientation)
recognition of a target for visual servoing by a 7-link
manipulator.

Since a visual servoing system incorporates the vi-
sion sensor in the feedback loop, a changing of the
sensing unit will cause direct influence to the out-
put motion of the robot manipulator. So it is im-
portant to improve the dynamics of the sensing unit
which may cause the feedback system unstable. Here,
we define the recognition dynamics as a phenomenon
that the sensed variables (the 3D pose of the tar-
get object) can be detected with time delay because
sensing mechanism generally be governed by differen-
tial equations in time domain. Recently, several re-
searches deal with the problem of recognition dynam-
ics. Hashimoto and Kimura [5] propose a nonlinear
controller and a nonlinear observer for the visual servo
system to estimate the object velocity and predict the
object motion. Theoretically, prediction without er-
ror can be obtained when time is infinity using nonlin-
ear observer. However, the errors in the early stage
need some time to decrease to nearly zero and may
cause the visual servoing system unstable. The same
method is also used by Luca [6] to estimate the dis-
tance z between the object to the camera. Also, cor-
rect prediction can not be achieved at the beginning of
the estimation, the error of z is decreasing along with
time passing. And the convergence of z is obtained
by using the given motion of the camera since it uses
single camera to recognize, that is, the method does
not work if the camera is static. As we know, there is
a big difference between the sampling rate of the cam-

era 33[ms] and that of the joint controller 1[ms], which
also cause the time delay of the sensing unit. Nakabou
and Ishikawa [7] use a vision chip whose sampling rate
is about 1[ms] to perform high-speed image process-
ing. It has been shown that high-speed moving object
can be tracked by using vision chip without any pre-
diction or compensation. However, such a high-speed
vision chip system is so expensive that can not be
applied popularly.

Most visual servo systems use an hand-eye config-
uration, having the camera mounted on the robot’s
end-effector, so the dynamics of the manipulator will
cause the recognition dynamics to deteriorate directly.
It is common sense that the time-delay of recogni-
tion existing in feedback largely decreases the stabil-
ity of whole control system. However, as we know, re-
searches on improving the recognition dynamics have
not been attracted by researchers. Thus it is im-
portant for the robot to improve the recognition dy-
namics by distinguishing the motion of the target ob-
ject in real world from the motion detected through
the camera by compensating the dynamic motion of
the robot end-effector. In this paper, we proposed a
motion-feedforward (MFF) method that is to predict
the target’s 3D pose based on the motion of the end-
effector to compensate the target’s fictional motion
coming from the cameras. When the fictional mo-
tions are compensated during recognition, it seems
that the recognition were performed by using just
fixed cameras, so the recognition dynamics is sepa-
rated from the dynamics of the manipulator. Thus
the recognition can become easier and the recognition
dynamics can be improved. Contrast to the nonlinear
observer method, the proposed motion-feedforward
method can give effective prediction as soon as the
camera starts to move. So the stability of visual servo
system can be guaranteed from the beginning.

We use model-based method to recognize 3-D pose
in real-time. The matching degree of the model to the
target can be estimated by a fitness function, whose
maximum value represents the best matching and can
be solved by“1-Step GA” [8]. Unit quaternion is used



P
W

P
M

Camera Camera Camera Camera 

PA10PA10PA10PA10

Target ObjectTarget ObjectTarget ObjectTarget Object

x

y

z

x

x

y

y

z

z

q1

q2

q7

q6

q5

q4
q3

P
CR
;
P
E

W†ETrajectory

Fig.1 Visual servo system of PA-10

to represent the orientation of the target object, which
has a advantage that can represent the orientation of
a rigid body without singularities. singularities cause
multi-solution for a given orientation that is difficult
for GA to converge. An advantage of our method is
that we use a 3-D solid model that possesses all 6 de-
gree of freedom (DOF). Based on the 3D solid model,
the robot can keep moving toward the target even
it gets out of the images under high-speed action in
visual servoing. On the other hand, visual servoing
based on the 2-D image features has also been re-
searched popularly. However, loosing visual features
causes a big problem to control the robot stably.

2. Motion-Feedforward (MFF) Com-

pensation

The motion of the target seeing from the camera
will be affected by both the motion of the target in
the real world and the motion of the camera in hand-
eye system. Here we describe such a relationship by
a mathematical function, which can distinguish these
two motions.

The target coordinate system is represented as ΣM

(see Fig. 1). Take ΣW as the reference frame. Denote
the vector from OW (the origin of ΣW ) to OCR ex-
pressed in ΣW as W rCR, the vector from OW to OM

expressed in ΣW as W rM , and the vector from ΣCR

to ΣM expressed in ΣCR as CRrM . The following
relations hold:

CRrM = CRRW (q)(W rM −W rCR(q)), (1)

where CRRW is a rotation matrix determined by q.
Differentiating (1) with respect to time

CRṙM = CRRW (q)(W ṙM −W ṙCR) + S(CRωW )
CRRW (q)(W rM −W rCR(q)). (2)

where S(·) is the operator performing the cross
product between two (3 × 1) vectors. Given ω =

[ωx, ωy, ωz]T , S(ω) takes on the form

S(ω) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (3)

The angular velocities of ΣCR and ΣM with respect
to ΣW are represented by W ωCR and W ωM , and the
angular velocity of ΣM with respect to ΣCR is repre-
sented by CRωM . Then the following relations hold:

CRωM = CRRW (q)(W ωM −W ωCR). (4)

In this paper, the target’s orientation is also ex-
pressed by unit quaternion. The 3-D pose of the tar-
get is defined as CRψM = [CRrT

M ,CR εT
M ]T , where

CRrM = [r1, r2, r3]T , CRεM = [ε1, ε2, ε3]T .
The target’s 3-D pose volecity is defined as

CRψ̇M =

[
CRṙM

CRε̇M

]
, (5)

where the time derivation of target’s position CRṙM is
given by (2). The relation between the time derivative
of CRεM and the body angular velocity CRωM is given
by [10] and is rewrote as

CRε̇M =
1
2
(CRηMI − S(CRεM ))CRωM , (6)

where CRωM is given by (4).
Moreover, the camera velocity, which is considered

as the end-effector velocity, can be expressed using
the Jacobian matrix J(q) = [JP

T (q),JO
T (q)]T ,

W ṙCR = JP (q)q̇, (7)

W ωCR = JO(q)q̇, (8)

S(CRωW ) = −CRRW (q)S(W ωCR)W RCR(q)

= −CRRW (q)S(JO(q)q̇)W RCR(q).
(9)

Substituting (7), (8), (9) to (2), (6), the target ve-
locity in CR CRψ̇M can be described by a mathemat-
ical formulation:

CRψ̇M =

[
CRṙM

CRε̇M

]

=



−CRRW (q)JP (q) + CRRW (q)

S(W RCR(q)CRrM )JO(q)
− 1

2 (CRηMI − S(CRεM ))CRRW (q)JO(q)


 q̇

+

[
CRRW (q) 0

0 CRRW (q)

][
W ṙM

W ε̇M

]

= JM (q, CRrM ,CR εM )q̇ + JN (q)W ψ̇M . (10)



x

y

x

x

y

y

zP
M

P
CL

P
CR

f

Solid Model

Camera RCamera RCamera RCamera R

Camera LCamera LCamera LCamera L

y

zx

P
IR

Image RImage RImage RImage R

Image LImage LImage LImage L

x

y

z
P
IL

d

y
z

x P
W

Searching Area

r2;min

r2;max

r1;min
r3;min r3;max

CR†M = [r1; r2; r3; è1; è2; è3]T

r1;max

Wri

CRri

CLri

i

Fig.2 Coordinate systems

The matrix JM in (10) describes how target pose
change in ΣCR with respect to changing manipulator
pose in ΣCR. The matrix JN in (10) describes how
target pose change in ΣCR with respect to the pose
changing of itself in real word.

In this paper, we do not deal with the prediction of
the target’s motion in the real world, we take account
of the prediction of the target velocity in ΣCR based
on the joint velocity q̇ of the manipulator, so we can
rewrite (10) as

CRψ̇M = JM (q, CRrM ,CR εM )q̇. (11)

Then the 3-D pose of the target at time t + ∆t can
be predicted based on the motion of the end-effector
motion at time t, presented by

CRψ̂M (t + ∆t) =CR ψM (t) + CRψ̇M∆t. (12)

(12) shows JM is a function of q, CRrM ,CR εM . q

can be considered known from the robot manipulator
without errors, while CRrM (t),CR εM (t) is the result
of recognition at time t by using model-based match-
ing in which errors exist probablely. Then the errors
included in JM from CRrM (t),CR εM (t) will lead to
incorrect prediction and cause the recognition errors
at the next time t + ∆t. It is seems as a difficulty
in 3-D pose prediction since the errors may increase
exponentially due to such a vicious circle. However, a
proposed “1-Step GA” method will limit the increas-
ing errors by correcting the recognition result based
on the prediction at each time t, which is explained
in detail in 3·3.
3. 3D Measurement Method

3·1 Kinematics of Stereo-Vision
We utilize perspective projection as projection

transformation. Fig. 2 shows the coordinate sys-
tem of our stereo vision system. The target object’s
coordinate system is represented by ΣM and image
coordinate systems of the left and right cameras are
represented by ΣIL and ΣIR. A point i on the target
can be described using these coordinates and homo-
geneous transformation matrices. At first, a homo-
geneous transformation matrix from ΣCR to ΣM is

defined as CRT M . And an arbitrary point i on the
target object in ΣCR and ΣM is defined CRri and
Mri. Then CRri is,

CRri = CRT M
Mri. (13)

Where Mri is predetermined fixed vectors. Using
a homogeneous transformation matrix from ΣW to
ΣCR, i.e., W T CR, then W ri is got as,

W ri = W T CR
CRri. (14)

The position vector of i point in right image coordi-
nates, IRri is described by using projection matrix P

of camera as,
IRri = P CRri. (15)

By the same way as above, using a homogeneous
transformation matrix of fixed values defining the
kinematical relation from ΣCL to ΣCR, CLT CR, CLri

is,
CLri = CLT CR

CRri. (16)

As we have obtained IRri, ILri is described by the
following (17) through projection matrix P .

ILri = P CLri (17)

Then position vectors projected in the ΣIR and ΣIL

of arbitrary point i on target object can be described
IRri and ILri. Here, position and orientation of ΣM

based on ΣCR has been defined as CRψM . Then (15),
(17) are rewritten as,

{
IRri = fR(CRψM , Mri)
ILri = fL(CRψM , Mri).

(18)

This relation connects the arbitrary points on the ob-
ject and projected points on the left and right im-
ages corresponding to a 3-D pose CRψM of the object.
This measurement problem of CRψM (t) in real time
will be solved by consistent convergence of a matching
model to the target object by a “1-Step GA” which
will be explained in 3·3.

3·2 Model-based matching

The 3-D solid model named S for the target object
of a rectangular block is shown in Fig. 3 (on the top).
The set of coordinates inside of the block model is
depicted as Sin, which is composed of each surfaces
Sin,k(k = 1, 2, ···, n), the outside space enveloping Sin

is denoted as Sout. Projecting Sin and Sout onto the
2-D coordinates of left camera ΣIL, we have

SL,in(CRψM ) =
m∑

k=1

SL,in,k =
m∑

k=1

{
ILri ∈ <2

∣∣ ILri =

fL(CRψM ,Mri),Mri∈Sin,k ∈<3
}

(19)



SL,out(CRψM ) =
{
ILri ∈ <2

∣∣ ILri = fL(CRψM ,Mri),
Mri ∈ Sout ∈ <3

}
(20)

where m<n denotes the number of the visible sur-
faces. The projection for the right camera is in the
same way. The left and right 2-D searching models,
named SL and SR, are shown in Fig. 3(on the bot-
tom).

We suppose there are many solid models in the
searching area, each has its own pose CRψM . To de-
termine which solid model is most close to the real tar-
get, a fitness function is defined for evaluation. The
input images will be directly matched by the projected
moving models SL and SR, which are located by only
CRψM as described in (20) that includes the kinemat-
ical relations of the left and right camera coordinates.
Therefore, if the camera parameters and kinemati-
cal relations are completely accurate, and the solid
searching model describes precisely the target object
shape, then the SL,in and SR,in will be completely lies
on the target reflected on the left and right images,
provided that true value of CRψM is given.

Here, we use color information to search for the
target object in the images. Let therefore bk, (k =
1, 2, · · · , n) denote the hue value of the color in Sin,k

surface of the target object. Let h(ILri) (or h(IRri))
denote the hue value of the searching models at the
image position ILri(or IRri). Then the evaluation
function of the left moving surface-strips model is
given as,

F L(CRψM ) =
1
Λ

m∑

k=1

( ∑

ILri∈SL,in,k(CRψM )

δ
(
h(ILri)−bk

)

−
∑

ILri∈SL,out(CRψM )

δ
(
h(ILri) − bk

))

where δ is the Kronecker delta function defined as

δ(n) =

{
1 n = 0
0 n 6= 0.

(21)

Here Λ =
∑m

k=1 nk, nk represents the number of
the searching points in SL,in,k. It is a scaling fac-
tor that normalized FL(CRψM ) ≤ 1. In the case of
FL(CRψM ) < 0, FL(CRψM ) is given to zero. The
first part of this function expresses how much each
color area of SL,in defined by CRψM lies on the tar-
get being imaged on the left and right cameras. And
the second part is the matching degree of its contour-
strips. The difference between the internal surface
and the contour-strips of the surface-strips model can
make the estimation more sensible, especially in dis-
tance recognition between the target to the cameras
which determine the size of the flat models. The right
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one is defined in the same way. Then the whole eval-
uation function is given as

F (CRψM ) = (FL(CRψM ) + FR(CRψM ))/2. (22)

Equation (22) is used as a fitness function in GA
process. When the moving searching model fits to the
target object being imaged in the right and left im-
ages, then the fitness function F (CRψM ) gives maxi-
mum value.

Therefore the problem of finding a target object and
detecting its position/orientation can be converted to
searching CRψM that maximizes F (CRψM ). We solve
this optimization problem by GA whose gene repre-
senting possible pose solution CRψGA is defined as,

tx︷ ︸︸ ︷
01 · · · 01︸ ︷︷ ︸

12bit

ty︷ ︸︸ ︷
00 · · · 01︸ ︷︷ ︸

12bit

tz︷ ︸︸ ︷
11 · · · 01︸ ︷︷ ︸

12bit

ε1︷ ︸︸ ︷
01 · · · 01︸ ︷︷ ︸

12bit

ε2︷ ︸︸ ︷
01 · · · 11︸ ︷︷ ︸

12bit

ε3︷ ︸︸ ︷
01 · · · 10︸ ︷︷ ︸

12bit

.

The 72 bits of gene refers to the range of the search-
ing area: −150 ≤ tx ≤ 150[mm], 0 ≤ ty ≤ 300[mm],
650 ≤ tz ≤ 950[mm], and −0.5 ≤ ε1, ε2, ε3 ≤ 0.5
which represents almost the same range of −60 ≤
roll, pitch, yaw ≤ 60[deg].

3·3 On-line Evolutionary Recognition
Although GA has been applied to a number of robot

control systems [9], it has not been yet applied to a
robot manipulator control system to track a target in
3D space, since the general GA method costs much
time until its convergence. So here, for real-time vi-
sual control purposes, we employ GA in a way that we
denoted as “1-Step GA” evolution in which the GA
evolutional iteration is applied one time to the newly
input image. While using the elitist model of the GA,
the position/orientation of a target can be detect in
every new image by that of the searching model given



Table 1 Physical parameters of the PA-10

Joint Base Link1 Link2 Link3 Link4 Link5 Link6 Link7

Length(m) 0.200 0.115 0.307 0.143 0.225 0.245 0.080 0.020
Center of mass (m) 0.0750 −0.0518 0.0633 0.0536 0.0461 0.0803 −0.0186 0.0040

mass (Kg) 3.04 9.78 8.41 3.51 4.31 3.45 1.70 0.36
Inertia momentIxx (Kgm2) N/A 1.23 × 10−2 6.86 × 10−2 3.70 × 10−2 2.79 × 10−2 4.07 × 10−2 1.09 × 10−2 2.50 × 10−3

Inertia momentIyy (Kgm2) N/A 6.36 × 10−2 6.86 × 10−2 2.62 × 10−2 2.79 × 10−2 5.83 × 10−3 1.09 × 10−2 2.50 × 10−3

Inertia momentIxx (Kgm2) N/A 1.23 × 10−1 1.19 × 10−2 3.70 × 10−2 6.48 × 10−3 4.07 × 10−2 6.97 × 10−4 1.74 × 10−4

by the best individual in the population. This feature
happens to be favorable for real-time visual recogni-
tion. We output the current best individual of the
GA in every newly input image, and use it as real-
time recognition result. Our previous research has
confirmed the 2D recognition method enabled a eye-
in-hand robot manipulator to catch a swimming fish
by a net equipped at the hand [8]. Since the image
inputting process is included in the GA iteration pro-
cess seeking for the potential solution, so the evolving
speed to the solution in the image should be faster
than the speed of the target object in the successively
input images, for the success of real-time recognition
by “1-Step GA”.

However, as the searching space extending to 3D,
the time of each GA process will become longer since
the parameters is increased to six. So the dynam-
ics of recognition will become worse. The proposed
MFF recognition method can help us conduct such
a task since it can predict the motion of the target
seeing from the cameras based on the motion of the
robot. So when it got converged, GA group will move
together with the moving of the target in the image,
never loose it even under a high-speed moving of robot
manipulator.

Using (12), the pose of the individuals CRψGA in
the next generation can be predicted based on the
current pose, presented by

CRψ̂
i+1

GA =CR ψi
GA + CRψ̇M

i
∆t, (23)

where i represents the number of the generation.
Since the effect on the recognition from the dynamics
of manipulator can be compensated. Thus, recogni-
tion by hand-eye cameras will be independent of the
dynamics of the manipulator, robust recognition can
be obtained the same as using fixed cameras.

4. Controller

4·1 Desired-trajectory generation
The task in visual servoing is to use visual infor-

mation to control the pose of the robot’s end-effecter
relative to a target object. In Fig. 4, suppose the
motion of the target object W T M (t) (Homogeneous
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Transformation) is given, and the relative relationship
of ΣM and ΣCR denoted by CRdT M (t) is also given,
then a desired-trajectory of the robot’s end-effecter is
determined by

W T CRd(t) = W T M (t)CRdT M
−1

(t). (24)

Denote the controlled end-effeter’s coordinate as ΣCR,
and the relative relationship CRT M (t) can be ob-
served by cameras, so the actual-trajectory of end-
effecter is expressed by

W T CR(t) = W T M (t)CRT M
−1

(t). (25)

By using Eq. (24), (25) the difference of ΣCRd and
ΣCR denoted as CRT CRd can be deduced as
CRT CRd = W T−1

CR(t)W T CRd(t) (26)

= (W T M (t)CRT−1
M (t))−1 W T M (t) CRdT−1

M (t)

= CRT M (t) MT CRd(t), (27)

Notice that Eq. (27) is a general deduction that sat-
isfies arbitrary object motion W T M (t) and objective
of visual servoing CRdT M (t).

Differentiating Eq. (27) with respect to time yields
CRṪ CRd = CRṪ M

MT CRd + CRT M
M Ṫ CRd. (28)

Differentiating Eq. (28) with respect to time again

CRT̈ CRd = CRT̈ M
MT CRd + 2CRṪ M

M Ṫ CRd+
CRT M

M T̈ CRd. (29)
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Here, MT CRd, M Ṫ CRd, M T̈ CRd are given by the
desired visual servoing objective. CRT M , CRṪ M ,
CRT̈ M can be assumed to be recognized by cameras.
So CRT CRd, CRṪ CRd, CRT̈ CRd can be calculated.

4·2 Servoing controller
The block diagram of our proposed controller is

shown in Fig. 5. The controller used in our visual
servoing is proposed by B.Siciliano [10]. Here, we just
show main equations of the controller to calculate τ ,
which is output to control the robot manipulator.

ap =W r̈CRd + KDp

W ṙCR,CRd + KPr

W rCR,CRd,

(30)
ao =W ω̇CRd + KDo

W ωCR,CRd + KPo

W RCR
CR∆ε,

(31)

q̈d = J+(q)(

[
ap

ao

]
− J̇(q, q̇)q̇)+(I −J+(q)J(q))

(Ep(q0 − q) + Ed(0 − q̇)), (32)

τ = J(q)q̈d + C(q, q̇)q̇ + G(q). (33)

Here, the vectors in Eq. (30), (31) is expressed in
ΣW , which can be obtained from the vectors in ΣCR

deduced in 3. by coordinate transformation as follows.
It has been proved in [10] that the system must be

exponentially stable for any choice of positive definite
KDp

,KDo
and KPp

,KPo
, thus

lim
t→∞

W rCR,CRd = 0 lim
t→∞

W ṙCR,CRd = 0 (34)

lim
t→∞

CR∆ε = 0 lim
t→∞

W ωCR,CRd = 0. (35)

Substituting Eq. (34), (35) to Eq. (26), we have

lim
t→∞

CRT CRd = I lim
t→∞

CRṪ CRd = 0 (36)

Substituting Eq. (36) to Eq. (27), we have

lim
t→∞

CRT M = lim
t→∞

CRdT M (37)

Eq. (37) proves stable convergence of visual servoing.

5. Simulation of visual servoing
To verify the effectiveness of the proposed visual

servoing system, we conduct the simulations of vi-
sual servoing to a rectangular solid block(100mm ×
150mm×200mm) with symmetrical colored surfaces.
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5·1 simulation condition
The simulation experiment is performed using soft-

ware ”Open GL”. Here, a manipulator modeling the
actual 7-link “PA-10”, which is a 7 DOF robot arm
manufactured by mitsubishi Heavy Industries. Two
cameras are mounted on its end-effector, shown in
Fig. 6. Physical parameters of the PA-10 are shown
in Table 1. The initial pose of the end-effector (also
the right camera) is defined as ΣCR0 , and given by

W ψCR0
= [W rCR0 ,

W εCR0 ]
T

= [0.918[m], 0, 0.455[m],−0.5, 0.5,−0.5]T ,(38)

as shown in Fig. 6(a). We compare the visual servoing
using “1-step GA ” with that using “1-step GA +
MFF” when the target object is set as

CR0ψM = [CR0rM ,CR0 εM ]T

= [0[m], 0.1, 0.6[m], 0, 0.130, 0]T , (39)

which means 15[deg] rotation of ΣM around y axis of
ΣCR0 . Here, we suppose the target is static, and the
step response ability of the visual servoing system is
estimated. The objective of the visual servoing system
is

CRdψM = [CRdrM ,CRd εM ]T

= [0[m], 0.1[m], 0.6[m], 0, 0, 0]T , (40)

so the final pose of the end-effector should stay sta-
blely as

CRψM = [CRrM ,CR εM ]T

= [0[m], 0.1[m], 0.6[m], 0, 0, 0]T , (41)

shown in Fig. 6(b).
Notice that the pose of the target object CRψM is

supposed to be unknown before visual servoing.

5·2 simulation results
The cost of one generation process of GA is 140[ms],

here we assume it can be finished in 30[ms] in the sim-
ulation to perform real-time recognition (in the case
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Fig.7 Visual servoing without MFF when
[KDp , KDo ]T = [0.3, 0.6, 0.6, 0.6, 0.6, 0.6]T ,
[KPp , KPo ]T = [0.5, 1, 1, 2, 2, 2]T .

the frame frequency is about 33fps ). In the future
practical experiment, fast recognition could be real-
ized by using multi-computer to decrease the calcula-
tion time.

Table 2 GA Parameters

Population size 30 individuals

Selection rate 0.5

Crossover Two-point

Mutation rate 0.10

Elitist model yes

Firstly, we set the gains of controller in (30, 31)
are set as [KDp

,KDo
]T = [0.3, 0.6, 0.6, 0.6, 0.6, 0.6]T ,

[KPp ,KPo ]
T = [0.5, 1, 1, 2, 2, 2]T .

Fig. 7 shows step response of visual servoing by us-
ing just “1-step GA”. When the robot starts to mov-
ing, the pose of target object in ΣCR is changed due to
the dynamics of the robot manipulator. The “1-Step
GA” can not recognize precisely, wrong recognition
result will lead to wrong control of the robot, which
makes the recognition more difficult. As shown in
Fig. 7(a), the fitness value of the recognition is de-
creasing, and after t = 4[s], the fitness value is lower
than 0.2, in such case, the target object is considered
as to be lost, and the robot can not be normally con-
trolled. The reason of target object lost is considered
as GA’s convergence speed was not faster than the
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Fig.8 Visual servoing with MFF when
[KDp , KDo ]T = [0.3, 0.6, 0.6, 0.6, 0.6, 0.6]T ,
[KPp , KPo ]T = [0.5, 1, 1, 2, 2, 2]T .

target speed relative to the camera.
On the other hand, “1-step GA + MFF” gives sta-

ble control of the robot manipulator, as shown in Fig.
8. Since the the target’s fictional motion coming from
the moving cameras can be compensated by using
MFF method, the recognition dynamics can be im-
proved. Once “1-step GA” finds the closeness model
of the target object, the model will keep overlapping
the target object, never lose it. So in the case of using
“1-step GA + MFF” recognition method, the visual
servoing can be performed, and the end-effector’s mo-
tion will be converged after about 7s.

Secondly, we set the gains of controller in (30,
31) are set as [KDp

,KDo
]T = [1.5, 3, 3, 3, 3, 3, 3]T ,

[KPp ,KPo ]
T = [2.5, 5, 5, 10, 10, 10]T . In this case, the

response of the robot will become more faster, so by
using just “1-step GA”, the correct recognition can
not be received. See Fig. 9(a), when the robot starts
to moving, the fitness value decreased to 0.4 soon, and
did not increase. After t = 2[s], the target object is
lost, and the robot can not be normally controlled.
The results of visual servoing by using “1-step GA +
MFF” are shown in Fig. 10. Even the response of the
robot will become more faster, the models can still
keep matching the target object well, and the end-
effector’s motion will be converged after about 2s.

These simulations have confirmed that MFF
method can compensate the fictional target motions
in the camera view induced by the end-effctor’s mo-
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Fig.9 Visual servoing without MFF when
[KDp , KDo ]T = [1.5, 3, 3, 3, 3, 3, 3]T ,
[KPp , KPo ]T = [2.5, 5, 5, 10, 10, 10]T .

tion, the recognition became robust to the dynamics
of the manipulator. It has been proved that includ-
ing “1-step GA + MFF” method to visaul servoing
system gives stable control of the robot.

6. Conclusion
We have proposed a method of visual servoing to a

3D pose (6 degree of freedom) of a target object. The
3D pose measurement method utilizes an evolution-
ary recognition technique of GA and a fitness evalua-
tion based on a matching stereo model whose pose is
expressed by unit quaternion. A motion-feedforward
compensation method is proposed to improve visual
recognition dynamics, which become worse by dis-
turbing hand-eye motion during visual servoing of the
robot manipulator. Simulation results have been ver-
ified the effectiveness of the proposed MFF method
to give stable visual servoing to a 3D pose.
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