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Stability / Precision Improvement of 6-DoF Visual Servoing
by Motion Feedforward Compensation and Experimental Evaluation

Wei Song and Mamoru Minami

Abstract— This paper deals with position-based 6-DoF visual
servoing. With a common sense of feedback control, we stress
that improvement of the dynamics of the sensing unit is
important for a stable visual servoing. We propose a method to
improve dynamics in visual recognition, with compensating the
fictional motion of the target in the camera images based on
kinematics of the manipulator, by extracting the real motion
of the target. We named it as hand-eye motion feedforword
(MFF) method. The enhanced dynamics of recognition gave
further stability and precision to the total visual servoing
system, evaluated by full 6-DoF servoing experiment using 7-
link manipulator. The convergence time in step response was
about 10[s] and precise visual servoing to a moving target object
has been achieved.

I. INTRODUCTION

Tasks in which visual information are used to direct a
manipulator toward a target object are referred to visual
servoing, as shown in Fig.1. Generally, visual servoing can
be described as a feedback control as shown in Fig.2. The
following things are well-known in a feedback control theory.
Let dY denote the change of the output Y, it gives

ay 1 ds |

Y 1+CSH S’ M

Usually CSH >> 1, the change of S will not affect the

output a lot, which indicates that the influence from changing

the dynamics of the system could be suppressed by the effect
of feedback.

Let H be changed as dH, then the change of the output

Y is
ay — CSH dH ’)
Y  1+CSH H' (
Giving CSH >> 1, we can get the following approximate
expression oy .
Y  H ®)
Eq. (3) indicates that the change of H will affect the output
directly even with the high controller gain. This analysis
displays the uncertainty and time delay of the dynamics
of H affects the output dynamics directly more than the
change of .S, and it reduces the stability of visual servoing.
Therefore, improvement of the dynamics of the sensing unit
is essential for stable visual servoing. As shown in Fig.2,
hand-eye motion disturbs recognition in H, and incorrect
recognition will cause hand motion Y to be unstable, and
the disturbed Y amplifies servoing error. This repeating
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Trajectory W 4 p,

Fig. 1. Visual servo system of PA-10
Unstable recognition . = ai
disturbs hand-eye motion Y a

Hand-eye motion
disturbs recognition

Fig. 2.

Feedback system

in feedback loop may lead to dangerous unstable motion.
Such an undesirable circulation is preferably cut down by
improving the recognition dynamics to make the system be
robust against the hand-eye motion.

However, research regarding the sensing dynamics for
visual servoing has not been concentrated energetically so
far. In [1], the authors used extended kalman filters to
predict the target’s pose in the real world. They considered
from the view point of improving the ability of the servo
controller, and did not pay attention to the recognition unit
in the visual servoing system. In contrast, in this paper,
we separate the target motion seen from the camera into
two parts: one is the real motion from the target itself, the
other is the fictional motion caused by the hand-eye camera’s
dynamical motion. We propose a method to compensate the
fictional motion through the camera motion calculated by
the kinematics of the manipulator and the observation of
joint angles and angular velocities. We named it as hand-
eye motion feedforword (MFF) method. Once the fictional
motions is compensated during on-line recognition by MFF,
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TABLE I
POSITION-BASED AND IMAGE-BASED VISUAL SERVOING

Advantage

Drawback

Position-based
Cartesian coordinate space

Trajectory planning is done in an intuitive

Require a model of the target object

problem and the control problem.

There is a clear separation of the measurement

Require camera and robot calibration

Familiar robot control design is used

Image-based

do not require a model of the target object

difficult to do trajectory planning
in the non-intuitive image plane,

Best suited to planar motion where

the plane is parallel to the image plane

difficult to non-planar motion where the plane
is not parallel to the image plane

Robust to camera and robot calibration errors

the recognition becomes easier and the recognition dynamics
can be improved.

Visual servoing can be classified into two major groups:
position-based and image-based visual servoing [2]. Position-
based visual servoing is to determine the object pose in
Cartesian coordinate frame and lead to Cartesian robot
motion planning, [3], [4]. On the other hand, in an image-
based visual servoing, image features are measured in the
2-D image space, and the robot is controlled directly to
servo the image features to a set of desired locations, [5],
[6], without recognizing the target pose in 3-D space. The
advantages and drawbacks of each visual servoing method
have been discussed by a significant amount of researches,
listing in Table I. Comparing image-based visual servoing
with position-based visual servoing, the latter is more un-
derstandable, since the way of the visual servo is more
like human-being, who positions perceived pose in Cartesian
space during dynamical action like sports. This 3-D space
perception does not exist in the image-based servoing, and
thus position-based method suits to the MFF compensation.

We will show three experiments in this paper to evaluate
the effectiveness of our system through full 6-DoF visual
servoing experiments using 7-link manipulator. The first one
is step response, in which the convergence time is about
10[s] that shows a good ability comparing with the other re-
searches; the second is time-varying path control experiment;
and the third is visual servoing to a moving target that is
fixed on a mobile robot. Through these experiments, we will
confirm the effectiveness of our system to enhance dynamics
of recognition that gave further stability and precision to the
total visual servoing system.

II. ON-LINE EVOLUTIONARY RECOGNITION
A. Background of 3-D Object Recognition

There is a variety of approaches for 3D target object’s pose
estimation, and they can be classified into three general cat-
egories: feature-based, appearance-based, and model-based.

Feature-based approaches use local features like points,
line segments, edges, or regions to match against the in-
coming video to update the estimation pose. Feature-based
techniques are naturally less sensitive to occlusions, as they
are based on local correspondences. Some researches apply
this method to head pose estimation based on tracking of
small facial features like the corners of the eyes or mouth,

[8]. Appearance-based (also template-based) approaches take
the template as a whole. The image is compared with various
templates to determine which one most closely matches the
image, resulting in wasting time to recognize. In [9], the
surface of the target 3D object is modeled by a set of
small square patches, which needs a learning process to be
determined from several key views. The third method is to
use a model to search a target object in the image, and the
model is composed based on how the target object can be
seen in the input image [11], [12]. Our method is included
in this category.

B. 3-D Model-based Matching

First, we give the definitions of coordinate systems used
in this paper. The world coordinate frame is represented as
Yw, the target coordinate frame is >;;, the end-effector
coordinate frame is Y g and the camera coordinate frame
is Xcg, as shown in Fig. 1. Here, the left camera is fixed
parallel with the right one, so they are considered as one
coordinate frame is Y. X g is assumed the same as X¢ogr
since the camera is mounted on the robot’s end-effector.

We use a model-based matching method to recognize a
target object in a 3-D searching area. A solid models is
located in X g, its position and orientation are determined
by six parameters, 1» = [r1 el]T, where r = [z,v,2]T,
€ = [e1, €2, €3)T. Here, the target’s orientation is represented
by unit quaternion [14], which has an advantage that can
represent the orientation of a rigid body without singularities.
The unit quaternion, viz. Euler parameters, defined as

Q= {n €}, (A.D)

where
n= cosi, €= sinikz, (A2)
where k(||k|| = 1) is the rotation axis and 6 is the rotation

angle. n is called the scalar part of the quaternion while € is
called the vector part of the quaternion. They are constrained
by

7]2 +ele=1. 4)

In (4) n can be calculated by €, so we just use three
parameters € to represent an orientation.

The left and right input images from the stereo cameras
are directly matched by the left and right searching models,
which are projected from 3-D model onto 2-D image plane.
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The matching degree of the model to the target can be
estimated by a fitness function F'(¢») by using the color
information of the target. Please refer to [13] for a detailed
definition of F'(¢). When the searching models fit to the
target objects being imaged in the right and left images,
F(4p) gives the maximum value. Therefore the 3-D object’s
position/orientation measurement problem can be converted
to a searching problem of ) that maximizes F'(1)). We solve
this optimization problem by 1-step GA method that will be
explained in the next section.

C. GA-based On-line Recognition

The theoretically optimal pose ™*(t) that gives the
highest peak of F'(¢(t)) is defined as

P (t) = {9(t) | max F(y(t))}, (5)

Pel

where L represents 6-DoF searching area of x, y, 2, €1, €2, €3.

Here we use GA to search ¢"™“"(t). The individual of

GA is defined as 1, ;(t), which means the i-th gene (i =

1,2,---,p) in the j-th generation. Denote v ,*“(t) as the
highest peak in GA process,

1/’_3;”(75) = {"b”(t) | max F(‘/’Lj(t))} (6)
17bi,j L

In fact we cannot always guarantee the best individual

of GA p**(t) correspond to the theoretically optimal pose

™ (t), because the number of GA’s individuals is limited.

The difference of ¥™**(t) and 1,,**(t) is denoted as

09 (t) = P (t) — by (1) ©)

And the difference of F(3p™**(t)) and F(tpy,"*(t)) is
denoted as

AF(59(t)) = F(p™ (1)) — F(¢pgq " (1)) 20. (8)

Here, we present two assumptions.

[Assumption 1]: Assuming that F'(e)(t)) distribution sat-
isfies AF(01)(t)) = 0 if and only if dap(t) = 0.

[Assumption 2]: Assuming that F (Pga (1) >
F (3™ (t)), which indicates that the convergence speed
to the traget in the dynamic images should be faster than
the changing speed of the dynamic F(v(t)) distribution as
time ¢ varying.

From [Assumption 2], we have

ABGp(1) = E(™ (1)) — F@e(t) < 0. (9)

These two assumptions depend on some factors such
as object’s shape, object’s speed, definition of F(w(t)),
parameters of GA and viewpoint for observing. We could
set such an environment to satisfy or close to the above two
assumptions. When above two assumptions are satisfied, (8)
and (9) will be satisfied, then AF(d1)(t)) is so-called Lya-
punov function. That means AF(dtp(t)) will be gradually
decreased to 0. Thus, from the above definitions, we have
01 (t)—0, which means gradual stability in searching space
L, that is

Yga  (H)—

P (L), (t—00) (10)

Let t. denotes a convergence time, then

0 ()] = [P () — g “ (B)|<e, (e>0,8>t) (1)

In (11), € is the tolerable extent that can be considered as
a observing error. Thus, it is possible to realize real-time
optimization, because tb,,**(t) is or near to the theoretically
optimal ™" (t) after ¢..

The above discussion is under the condition of varying
time. Here, when we consider evolution time of each gener-
ation of GA denoted by At. The GA’s evolving process is
described as

b, ;(t) evolye p, ;(t + At). (12)

Obviously, this evolution time At will be possible to generate
somewhat bad influence. If we assume that this bad influence
on 1 (t) can be described as

[0 (t)|<e', (€ >e>0), (13)

then, it can be considered At can manage real-time optimal
solution. In (13), €' is also tolerable extent as a observing
error and it is somewhat larger than e. Since the GA
process is executed only one time to output the semi-optimal
Pyo " (t), we named this on-line recognition method as “1-
step GA”.

We have confirmed that the above time-variant optimiza-
tion problem could be solved by 1-step GA through several
experiments [7]. 1 ,** () will be output as the measurement
result in each generation to control the robot manipulator. We
define

&(t) = wz;am(t)? 1& = [jv ?37 '27 éla €A2; €A3]T-
III. HAND-EYE MOTION COMPENSATION

(14)

The motion of the target seen from the camera will be
affected by both the motion of the target in the real world
and the motion of the camera in a eye-in-hand system. Here
we describe such a relationship by a mathematical function,
which can distinguish these two motions.

A. Analysis of target’s motion in X g

Take Xy as the reference frame. Denote the vector from
Oy (the origin of Xyy) to Oc g expressed in Xy as Wrog,
the vector from Oy to Ops expressed in Xy as W, and

the vector from Ycg to X expressed in Xogr as CRp, .
The following relations hold:
“Fry = PRw(q)(Vra =" ror(q), (15

where Ry is a rotation matrix determined by q. Differ-
entiating (15) with respect to time
CR,’;,NI — CRRW(q)(W,’-,,M W 7.'CR) + S(Cwa)
“BRw (q)("Vry =" rer(q)). (16)

where S(-) is the operator performing the cross product
between two (3% 1) vectors. Given w = [wy, wy,w;]7, S(w)
takes on the form

0 —Ww, Wy
Sw)=| w. 0 —w (17)
—Wy Wy 0
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The angular velocities of Y- and X, with respect to
Yy are represented by Wweopr and Ww)y, and the angular
velocity of Xj,; with respect to Ycgr is represented by
R . Then the following relations hold:

Puy = PRy (q)(Wwy =" wenr). (18)
The target’s 3-D pose volecity is defined as
Ry = | 19)
M — CRéM ’

where the time derivation of target’s position “7; is given

by (16). The relation between the time derivative of e,
and the body angular velocity “%w,, is given by [14] and
is rewrote as

. 1
CRGM — §(CR7]]V[I_ S(CRGM))CROJM, (20)
where “fiw) is given by (18).

Moreover, the camera velocity, which is considered as the
end-effector velocity, can be expressed using the Jacobian
matrix J(q) = [Jp” (q), Jo” (q)]7,

w

rcr = Jp(q)q, (21)
Wwer =Jo(q)q, (22)
S(“Rwyw) = -“FRy (q)S(Wwer)" Rer(q) 23)

= -“"Rw(q)S(Jo(9)9)" Ror(q).
Substituting (21), (22), (23) to (16), (20), the target ve-

locity in €% ©Rq),  can be described by a mathematical
formulation:
ORyy = [ Ry ]
M — CRé
M

—“ERw (q)J p(q) + ““Rw(q)
= S Rcr(q)“Fru)Jolq)
— 5[ I — S(“Fer)°" Rw (q) T o(q)

g+

“RRyw (q) 0 ] [WTM }
0 %[CRWMI — S(“Fen)“FRw (q) Wwr

= Ju(q, “Ppp)g+ In(@) éy

The matrix J s in (24) describes how target pose change
in Yo p with respect to changing manipulator pose in X¢g.
The matrix J in (24) describes how target pose change in
Yo r with respect to the pose changing of itself in real word.

In this paper, we do not deal with the prediction of the
target’s motion in the real world, we take account of the
prediction of the target velocity in ¥ g based on the joint
velocity g of the manipulator, so we can rewrite (24) as

CR"bM = JM(q7CR¢1L1)iI~ (25)

Then the 3-D pose of the target at time ¢ + At can be
predicted based on the motion of the end-effector motion at
time ¢, presented by

By (t+ At) =T 4 (1) + Oy At

(24)

(26)

Time : t + At

Fig. 3. MFF Compensation. Notice ¥ and ¥ are relative coordinates,
here we suppose the end-effector is moving and the target is static.

B. MFF Compensation

In the same way as the above equation (25), (26), the pose
of the individuals 1), ; in the next j + 1 generation can be
predicted based on the current pose,

¥ = Ju(g,P(t)q.
Y i1 (t+At) =, (1) + PAL,

where At is the time cost in one generation. By using
(28), GA group will move together with the motion of
the target in X, never lose it even under a high-speed
moving of robot manipulator, as shown in Fig. 3. Since the
effect on the recognition from the dynamics of manipulator
can be compensated, recognition by hand-eye cameras will
be independent of the dynamics of the manipulator, robust
recognition can be obtained just like using fixed cameras.

27)
(28)

IV. CONTROLLER
A. Desired-trajectory generation

The desired relative relationship of X,; and Xcp is
given by Homogeneous Transformation as ©fT (1), the
difference of the desired camera pose Xcprq and the actual
camera pose Yo is denoted as “ BT ¢ py. BT Ry can be
described by

CRTcpa(t) = BT (t) ORI (@),

Notice that (29) is a general deduction that satisfies arbitrary
object motion WT,,(t) and arbitrary objective of visual
servoing CFIT /(1).

Differentiating (29) with respect to time yields

(29)

. 2 _ - .1
T opa(t) = Ry () T3 )+ T ar (T (1),
_ (30)
Here, “R4T),(t), CRIT M (t) are given as the desired
visual servoing objective. “#T,(t) is mearsured by cameras
using the on-line recognition method proposed in Section 1L

CRT\/(t) is then calculated by
BT (t) = (CRT (1) —“F Tar(t — At)) /AL,

which is output periodically with a time of At regardless
the object is moving or not. Notice that (25) can not be

3D

used to calculate CBT w (t) because it assumes the object is
stationary.
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Objective of visual servo

CRrap,, CRp,
| !
w o
. CRT, . TOR.CRd . Manipulator .
Desired: “"T:,z ‘| Coordinate |wi "\ n. Ve]ocz’t’y T dynamics .l
i C. J(a)a+Clg,9)q
generation | “"¢cni| Lop—> Sy w(:(%f(vud block rGl@) =
ong,,
cngry,
1 1
1 . L. . |
by model-based |_Raw image |
' A camera fla
1 matching and 1-step GA - ] @
1 ) 1
| Visual Feedback block 1

Fig. 4. block diagram of the visual servoing system

B. Servoing controller

The aforementioned real-time recognition system is de-
picted at the lower side of the block diagram of the visual
servoing system in Fig.4. Based on the above analysis of the
desired-trajectory generation, the desired hand velocity V4
is calculated as,

w

. w W .
rqe=Kp," rcrcrda+ Kv," TCR,CRd, (32)

where Wrc&c ra, Ve R,CRd are given by transforming
CRTCRd and CRTCRd from Xcgr to Xy . Kpp and KVP
are positive definite matrix to determine PD gain.

The desired hand angular velocity " w, is calculated as,

Wwi=Kp,""Rcr“FAe + Kyv,Vwcrcora, (33)

where % Ae is the quaternion error that from the recognition
result directly, and Wwe R,CRd can be calculated by trans-
forming CRT o pq and CBT Ry from Top to Sy, Also,
K p, and Ky, are suitable feedback matrix gains.
The desired joint variable g, is obtained by
W .
.+ Td
q=4J (Q)[Wwd:| (34
where J7T(q) is the pseudoinverse matrix of J(q), and
J(q) = JT(JJT)~1. The hardware control system of the
velocity-based servo system of PA10 is expressed as

t
7= Ksplay— )+ Ksr / (Gu—a)ydt 35
0

where K sp and K g; are symmetric positive definite matrix
to determine PI gain(Table II).

V. EXPERIMENT OF VISUAL SERVOING

To verify the effectiveness of the proposed visual servoing
system, we conduct the experiment of visual servoing to a
3D marker that is composed of a red ball, a green ball and a
blue ball. The radiuses of these three balls are set as 30[mm].

TABLE II
GAIN PARAMETERS

[LIL2L31L4L5L6L7]
[3200 3200 1400 1400 1000 1000 1000]
[1362 1362 596 596 596 426 426]

Link Number
Ksp
K

Fig. 5. Step response experiment. (a) Initial pose of Pal0O. (b) Visual
servoing to a static 3-D marker.
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Fig. 7. Hand pose error of step response by using MFF

A. Experimental Condition

A photograph of our experimental system is shown in Fig.
11. The robot used in this experimental system is a 7-Link
manipulator, Mitsubishi Heavy Industries PA-10 robot. Two
cameras are mounted on the robot manipulator’s end-effector.
The image processing board, CT-3001, receiving the image
from the CCD camera is connected to the DELL Optiplex
GX1 (CPU: Pentium2, 400 MHz) host computer.

The initial pose of the end-effector is defined as X, , and
given by

0 0 1 -918
-1 0 0 0
w _
Teo=1| o _1 0 455 |- (36)
0 0 0 1

position unit: [mm].

B. Experimental Results

1) Step Response Experiment: Here, a static object is set
as “Fap,, = [~70[mm], 70[mm], 1000[mm], 0.1, —0.2,
0.12]T, where the value of orientation 0.1 in quaternion
expression is about 12[deg]. The objective of visual servoing
is given by a fixed relation between Xcpr and Xy, as

CRaprra = [0[mm], 10[mim], 900[mm],0,0,0]%.  (37)

The initial pose of the robot manipulator is shown in Fig.5(a),
and the moved robot manipulator to satisfy “®af,, is shown
in Fig.5(b).
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TABLE III
REVIEW OF LITERATURE

Reference [[ Convergence time of step response
[5] about 9.9[s] when the desired position is parallel to
the image plane, else, about 49.5[s].
[6] in x,y, roll,pitch, yaw 30s, in z position about 70s
15 about 60s.
16 about 150s.
17 is about 200s.

(a) (b)

Fig. 8. (a)A photograph of time-varying visual servo system. (b)Coordinate
system of (a).

To show the effectiveness of the proposed MFF method,
we perform the step response experiment with MFF method
and without MFF method separately. Fig 6 shows the dif-
ference of the desired hand pose and the actual hand pose
in ¥, without using MFF method. Fig 7 shows the hand
difference with using MFF method. In Fig 6, the end-effector
is unstable from 6[s] to 28[s]. Since the hand began to move,
the object in camera frame was moving together with the
end-effector, then the recognition dynamics became worse,
which cause the vibration in this period. The end-effector
cost 30[s] to be converged to the desired pose in the case of
not using MFF compensation.

On the other hand, as shown in Fig 7, such vibrations
existing in Fig 6 had been suppressed, and the end-effector
cost about 10[s] to converge to the desired pose by using
MFF method.

Step response is usually used to evaluate the ability of
a visual servoing system. Here, we list some similar visual
servoing researches and their convergence times in Table III.
By comparing the convergence speed with these researches,
our system shows a good ability in visual servoing task.

2) Time-varying Path Control Experiment: The visual
servoing described in this section is that the object remains
stationary and the robot is commanded to move through a
reference path with respect to it. Such a visual servoing has
been performed by William J. Wilson etc. in [4], and they
named it as relative path control experiment.

Here, a static object is set as “Fa,, = [0[mm], 70[mm),
1300[mm], 0,0, 0]T. The desired end-effector’s time-varying
trajectory is given by

ORdg 1 (t) = 100sin(ZEt) mm]
CRdy )/ (t) = 70[mm)]

CRdz0r(t) = 1300[mm]
! (33)
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Fig. 9. Hand pose error of time-varying visual servoing without MFF
method when t = 60s
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Fig. 10. Hand pose error of time-varying visual servoing with MFF method
when t = 60s

The desired motion of the end-effector with respect to a static
object is shown in Fig. 8.

First, we set the motion period of the manipulator 7" as
60[s]. Fig 9 shows the errors of the desired hand pose and the
actual hand pose in ¥, without using MFF method. Fig 10
shows the hand errors with using MFF method. The stereo
cameras were shaking because of the dynamics of the robot
manipulator. Thus, the fictional motion of the target object
coming from the moving camera was difficult to recognize.
As shown in Fig.2, the incorrect recognition affects the hand
motion directly, and will cause the feedback system unstable.
The increased errors shown in Fig 9 indicated the system
became unstable as time passing. Compared with Fig.9, the
errors in Fig 10 were limited in a range, which means the
system was under a stable control.

We compare the visual servoing with and without MFF
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TABLE IV
RESULTS OF TIME-VARYING VISUAL SERVOING

Condition F EoAz[mm] | PoAgimm] | PoAzZlmm] | FoA& | PoAé | FoAd
T = 60s, without MFE. || 0.8416 73.92 92.06 37.25 0.035 0.029 0.025
T = 60s, with MFF. 0.9032 51.00 52.85 21.46 0.020 0.020 0.014
T = 40s, without MFE. || 0.7822 80.39 82.94 37.92 0.032 0.041 0.034
T = 40s, with MFF. 0.9052 4378 51.48 18.16 0.019 0.018 0.014
T = 20s, without MFE. || 0.7241 96.39 76.48 31.63 0.022 0.045 0.043
T = 20s, with MFF. 0.9068 51.04 56.46 21.43 0.022 0.019 0.015

PA1GSTHRk
“manipulator

8 oSy

A photograph of visual Fig. 12. Coordinate system of
visual servoing

12
1

Zo0s

206

£ o4
.

67658
time (s]

Fig. 11.
Servo system

96575

Fitness value of visual
servoing with MFF method

Fig. 15.  Fitness value of visual Fig. 16.
servoing without MFF method

method by changing the servoing speed of end-effector, that
is, changing the period as 7' = 60,40,20[s]. The figures
for comparisons under T = 40[s] and T" = 20[s] are not
shown here for brevity. Table IV shows the mean value
of the fitness function F' defined as F' and the rms (root-
mean-square) value of all components of Eoq)y defined as
BoAap = [FoAz, PoAgy, Po Az, FoAé, Fo Aéy, PoAés)T in
each situation of T' = 60, 40, 20[s]. We can see that without
using MFF, F gets lower, and o A'«:b gets bigger to about
96[mm] in AZj,;, and 0.045 in Aéy,; (corresponding to
7[deg]) when T is 20[s], which means the motion of the
end-effector became more unstable. On the other hand, by
using MFF, both F' and ©° A1) are not changed much, about
51[mm] in AZp; and 0.019 in Aé,; (corresponding to
2[deg]), which indicates the motion of the end-effector kept
stable, even the hand-eye cameras move faster and faster.

This time-varying path control experiment has confirmed
the effectiveness of the proposed MFF method. By using
MFF method, the affect on recognition from the motion
of the camera itself is compensated and the recognition
dynamics is improved, therefore, the stability of the visual
servoing system is increased.

3) Visual Servoing To A Moving Object: In this experi-
ment, the target object is fixed on a mobile robot, as shown in
Fig. 11. Fig. 12 shows the coordinate system corresponding
to Fig. 11. The coordinate system of the mobile robot is
represented as X p. Here, the motion of the mobile robot is
rotation around the z axis of X p by

Oaldeg) = asin(%)t, (39)

where we set a = 8[deg], T' = 40[s]. The voltage of the right
and left wheel is given by

Vi kp(0 — 0) + kv(6a — 0),
VL _VRa

where kp and kv are suitable feedback PD control gains.

The effectiveness of the proposed visual servoing are
evaluated by comparing the actual hand pose with the desired
hand pose through visual servoing to the moving target
object. We also do the same experiment in the case of
without using MFF method and with MFF method sep-
arately. Here, the objective of visual servoing is a fixed
relative pose between ), and Y p, defined as ©1dq) M=
[0, 10, 700, 0,0,0]T.

Figs. 13(a) to (f) is the experimental results in the case of
not using MFF method, which show the actual motion of the
end-effector with respect to the fixed frame of X, defined
as P04, compared with the desired hand pose %1 p,.
Figs. 14(a) to (f) show the experimental results of “91)
and 94, in the case of using MFF method. In the period
of the trajectory of %, is a straight line, the mobile
robot did not move, visual servoing to a static object was
performed firstly. Then the desired trajectory in Fig. 13 and
Fig. 14(a),(e) began to turn to curved line of sin/cos function,
the mobile robot started to move. Comparing Figs. 13(a),(e)
with Fig. 14(a),(e), the time-delay of hand motion in the
case of using MFF method was smaller than that without
using MFF method. The errors of hand motion in the other
(b),(c),(d),(f) figures were also smaller in the case of using
MFF method.

The Fitness values representing the accuracy of the object
recognition during visual servoing are shown in Fig. 15
and Fig. 16, corresponding Figs. 13 and Figs. 14 in the
case of without using MFF and with MFF separately. It
can be found that the recognition accuracy of the object
decreased as soon as the start of the hand motion without
using MFF compensation, as the fitness values shown in Fig.
15 became lower from 65[s]. The undesired influence of the
recognition and the hand motion in the feedback loop of
the visual servoing system discussed in the Introduction has
been shown in Fig. 15 and Figs. 13. However, by using MFF
method, such an undesired circulation can be cut down, and
both the recognition and the hand motion are stable, which
has been verified in Fig. 16 and Figs. 14.

VI. CONCLUSION

(40)
(41)

This paper deals with position-based 6-DoF visual ser-
voing. We propose a MFF method to compensate the fic-
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tional motion of the target based on the joint velocity of
manipulator, and extract the real motion of the target for
the robot to recognize during visual servoing. Thus, visual
recognition preciseness is improved, and the visual servoing
become more stable. Three experiments has been conducted,
and the effectiveness of our proposed visual servoing system
has been confirmed.
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