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Grinding Experiment by Direct Position / Force Control with On-line
Constraint Estimation
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Abstract: Based on the analyses of the interaction between a manipulator’s hand and a working object, a model rep-
resenting the constrained dynamics of the robot is first discussed. The constrained forces are expressed by an algebraic
function of states, input generalized forces, and constraint condition, and then direct position / force controller without
force sensor is proposed based on the algebraic relation. To give the grinding system the ability to adapt to any object
shape being changed by itself, we added new estimating function of time-varying constraint condition in real time for the
adaptive position / force control. Evaluations through simulations and real grinding experiments by fitting the changing
constraint surface with spline functions, indicate that reliable position / force control and shape-grinding can be achieved
by the proposed methodology.
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1. INTRODUCTION
Many researches have discussed on the force control

of robots for contacting tasks. Most force control strate-
gies are to use force sensors [1] to obtain force infor-
mation, where their reliability and accuracy are limited
since the work-sites of the robot are filled with noise and
thermal disturbances. Force sensors could lead to the
falling of the structure stiffness of manipulators, which
is one of the most essential defects for manipulators ex-
ecuting grinding tasks. To solve the problem, some ap-
proaches without any force sensor have been presented
[3]. To ensure the stabilities of the constrained motion,
force and position control have utilized Lyapunov’s sta-
bility analysis under the inverse dynamic compensation.
Their force control strategies have been explained intelli-
gibly in books [5]-[7].
However, insofar as we survey the controllers intro-

duced in the books or papers don’t base on the algebraic
function of states and input generalized forces derived
from the relation between the constraint condition and
the equation of dynamics. So we discuss first a strategy
for simultaneous control of the position and force with-
out any force sensors, where the equation of dynamics in
reference to the constrained force has been reformulated
[8]. The constrained force is derived from the equation
of dynamics and the constrained equation as an explicit
algebraic function of states and input generalized forces,
which means force information can be obtained by calcu-
lation rather than by force sensing. Equation (1), which
has been pointed out by Hemami [10] in the analysis of
biped walking robot, denotes also the kinematical alge-
braic relation of the controller, when robot’s end-effecter
being in touch with a surface in 3-D space:

Fn =a(q, q̇) − A(q)τ , (1)

where, Fn is exerting force on the constrained surface.
q and q̇ are state variables. a(q, q̇) and A(q) are scalar
function and vector defined in following section. τ is in-
put torque. This algebraic equation has been known, but

it was the first time in robotics to be applied to the sens-
ing function of exerting force by Peng [4]. As a new con-
trol law, the controller doesn’t include any force feedback
sensors but realizes simultaneous control of position and
force in the constrained motions and is different from the
traditional ones[1].
A strategy to control force and position proposed in

this paper is also based on (1). Contrarily to Peng’s
Method to use (1) as a force sensor, we used the equa-
tion for calculating τ to achieve a desired exerting force
Fnd. Actually, the strategy is based on two facts of (1)
that have been ignored for a long time. The first fact is
that the force transmission process is an immediate pro-
cess being stated clearly by (1) providing that the manip-
ulator’s structure is rigid. Contrarily, the occurrence of
velocity and position is a time-consuming process. By us-
ing this algebraic relation, it’s possible to control the ex-
erting force to the desired one without time lag. Another
important fact is the input generalized forces have some
redundancy against the constrained generalized forces in
the constrained motion. Based on the above analysis, we
had confirmed our force / position control method can re-
alize the grinding task through real grinding robot [8].
The problem to be solved in our approach is that the

mathematical expression of algebraic constraint condi-
tion should be predefined in the controller instead of
the merit of not using force sensor. Grinding task re-
quires on-line estimation of changing constraint condi-
tion since the grinding is the action to change the con-
straint condition. In this presentation, we estimate the
object’s surface using the grinder as a touch sensor. In
order to give the system the ability to grind any work-
ing object into any shape, we focus on how to update the
constraint condition in real time. Based on the above
preparation we constructed a simulator to evaluate the
proposed shape-grinding system, which indicates the va-
lidity of our system to have the performance to adapt for
grinding desired-shape without force sensor [11]. Also,
we constructed a grinding robot to complete the grinding
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experiment by using this proposed constraint condition
estimation method when the constraint surface is flat, the
experiment results will be discussed in the end of this pa-
per.

2. MODELING
2.1 Constrained Dynamic Systems
Hemami and Wyman have addressed the issue of con-

trol of a moving robot according to constraint condition
and examined the problem of the control of the biped lo-
comotion constrained in the frontal plane. Their purpose
was to control the position coordinates of the biped loco-
motion rather than generalized forces of constrained dy-
namic equation involved the item of generalized forces
of constraints. And the constrained force is used as a de-
termining condition to change the dynamic model from
constrained motion to free motion of the legs. In this
paper, the grinding manipulator shown in Fig.1, whose
end-point is in contact with the constrained surface, is
modelled as following (2) with Lagrangian equations of
motion in term of the constraint forces, refering to what
Hemami and Arimoto have done:
d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (2)

where, Jc and Jr satisfy,

Jc =
∂C

∂q
/ � ∂C

∂r
�= ∂C

∂r

∼
Jr / � ∂C

∂r
�,

∼
Jr=

∂r

∂q
, JT

r =
∼
Jr

T

ṙ/ � ṙ �,
r is the l position vector of the hand and can be expressed
as a kinematic equation ,

r = r(q).

L is the Lagrangian function, q is l(≥ 2) generalized co-
ordinates, τ is l inputs. The discussing robot system does
not have kinematical redundancy. C is a scalar function
of constraint, and expressed as an equation of constraints

C(r(q)) = 0, (3)

Fn is the constrained force associated with C and Ft is
the tangential disturbance force.
Equation (2) can be derived to be

M(q)q̈+H(q, q̇)+G(q)

=τ +JT
c (q)Fn−JT

r (q)Ft, (4)

where M is an l × l matrix, H and G are l vectors. Fn

can be expressed as

Fn = a(q, q̇) + A(q)JT
r Ft − A(q)τ , (5)

where, a(q, q̇) is a scalar representing the first term in the
expression of Fn, andA(q) is an l vector to represent the
coefficient vector of τ in the same expression. Equations
(4) and (5) compose a constrained system that can be con-
trolled, if Fn = 0, describing the unconstrained motion
of the system.
Substituting the (5) into (4), the state equation of the

system including the constrained force (as Fn > 0 ) can
be derived.

2.2 Modeling of Grinding Process
In the past, we did the experiment when working sur-

face was flat, so we can just do flat grinding. Now we
want to grind the work-piece into the one with different
kinds of shapes, for example, grinding the flat surface into
a curved one, just like Fig.2. In Fig.2, we can find that the
desired working surface is prescribed (it can be decided
by us), which means the desired constrained conditionCd

is known, so

Cd = y − fd(x) = 0 (6)

where r = [x, y] means the hand position given by (3).
But the constrained condition C(j) (j = 1, 2, · · ·, d − 1)
changed by the iterative grinding as shown in Fig. 1 and
Fig. 2 is defined,

C(j) = y − f (j)(x) = 0 (7)

We assume C(1) is known, that is to say, f (1)(x) is ini-
tially defined. f (j)(x) is the working surface remained
by i-th grinding. And f (j)(x) is a function passing
through all points, (x1, f (j)(x1)), (x2, f (j)(x2)), · · ·, (xp,
f (j)(xp)), these observed points representing the (j)-th
constraint condition obtained through the grinding tip po-
sition used as a touching sensor of ground newly surface.
Here we assume f (j)(x) could be represented by a poly-
nomial of (p−1)-th order of x. Given the above p points,
we can easily decide the parameters of polynomial func-
tion y = f (j)(x). If the current constrained condition
can be got successfully, which means the current work-
ing surface f (j)(x) can be detected correctly, the depth
from the current working surface to the desired working
surface which is expressed as Δh(j) shown in Fig. 2 can
be obtained easily.

Δh(j)(xi) = f (j)(x)
��
x=xi

− fd(x)
��
x=xi

(8)

In this case, we can obviously find that the desired con-
strained force should not be a constant. It should be
changed whileΔh(j) changes. So we redefine the desired
constrained force F (j)

nd as a function of Δh(j), shown as
follows:

F
(j)
nd (xi) = kΔh(j)(xi) (9)

where, k is a constant.

Fig. 2 The model of shape grinding
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Fig. 1 Shape-grinding position / force control system

F
(j)
nd (xi)is given to the controller(16), then the exerted

force F
(j)
n (xi) is determined by(5). New-ground sur-

face f (j+1)(xi) can be represented through exerted force
F

(j)
n (xi) and previous constraint f (j)(xi) as

f (j+1)(xi) − f (j)(xi) =
k�

|ṙx|F
(j)
n (xi) (10)

where, k� is a constant,|ṙx| is the real velocity of grinder
in x-axis, which is output from Dynamic system. Here
is why we set the coefficient of F (j)

n (xi) with both k�

and |ṙx|. According to the fact of grinding process, we
all know that with a same constrained force, the big-
ger grinder’s velocity will cause thinner ground depth.
Therefore, coefficient of F (j)

n (xi) should be modeled as
to be divided by velocity term |ṙx|.Then k� will be set
along with |ṙx| to make the influence of F (j)

n (xi) more
reasonable.
A condition that the new object shape f (j+1)(xi) have

to satisfy, i.e.,

y = f (j+1)(xi) (11)

Then C(j+1) can also be known:

C(j+1) = y − f (j+1)(x) = 0 (12)

So, starting from C(1), all of C(j) can be decided.
What we want to emphasize is Ci represents the resulted
ground shape of the object defined in the shape-grinding
simulator.

3. ADAPTIVE CONTROLLER
3.1 Controller using predicted constraint condition
Reviewing the dynamic equation (2) and constraint

condition (3), it can be found that as l > 1, the number
of input generalized forces is more than that of the con-
strained forces. From this point and (5) we can claim that
there is some redundancy of constrained force between
the input torque τ , and the constrained force Fn. This
condition is much similar to the kinematical redundancy
of redundant manipulator. Based on the above argument
and assuming that, the parameters of the (5) are known

and its state variables could be measured, and a(q, q̇) and
A(q) could be calculated correctly, which means that the
constraint condition C = 0 is prescribed. As a result, a
control law is derived and can be expressed as

τ = −A+(q)
�
Fnd−a(q, q̇) − A(q)JT

RFt

�

+(I − A+(q)A(q))k, (13)

where I is an identity matrix of l × l, Fnd is the desired
constrained forces, A(q) is defined in (5) and A+(q) is
the pseudoinverse matrix of it, a(q, q̇) is also defined in
(5) and k is an arbitrary vector which is defined as

k =
∼
Jr

T

(q)
�

Kp(rd − r) + Kd(ṙd − ṙ)
�
, (14)

Through the experimental experiences we noticed that
owing to the characteristic of kinematics, the oscillation
ofΔṙ = ṙd - ṙ exerted during grinding procedure will ef-
fect torque τ ’s result. Therefore, here Δṙi = ṙ(i× Δt),
(Δt = 0.0007s) will be treated as:

Δṙi = (
i�

j=i−100

Δṙj)/100 (15)

where Kp=diag[kp1, kp2] and Kd=diag[kd1, kd2] are
coefficient matrices applied to the position and the veloc-
ity control by the redundant degree of freedom of A(q),
rd(q) is the desired position vector of the end-effector
along the constrained surface and r(q) is the real position
vector of it. The controller presented by (13) and (14)
assumes that the constraint condition C = 0 be known
precisely even though the grinding operation is a task to
change the constraint condition. This looks like to be a
contradiction, so we need to observe time-varying con-
straint conditions in real time by using grinding tip as a
touch sensor.
The time-varying condition is estimated as an approx-

imate constrained function by position of the manipulator
hand, which based on the estimated constrained surface.
The estimated condition is denoted by Ĉ = 0. Hence,
a(q, q̇) and A(q) including ∂Ĉ/∂q and ∂/∂q(∂Ĉ/∂q)
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are changed to â(q, q̇) and Â(q) as shown in (17), (18).
They were used in the later simulations of the unknown
constrained condition. As a result, a controller based on
the estimated constrained condition is given as

τ̂ = −Â
+
(q)

�
Fnd−â(q, q̇) − Â(q)JT

RFt

�

+(I − Â
+
(q)Â(q))k, (16)

mc
−1� ∂Ĉ

∂r
�{−[

∂

∂q
(
∂Ĉ

∂q
)q̇]q̇ + (

∂Ĉ

∂q
)M−1(h + g)}

�
= â(q, q̇) (17)

mc
−1� ∂Ĉ

∂r
�{(∂Ĉ

∂q
)M−1} �

= Â(q) (18)

Figure 1 illustrates a control system constructed accord-
ing to the above control law that consists of a position
feedback control loop and a force feedfoward control.
It can be found from (5) and (16) that the constrained
force always equals to the desired one explicitly if the es-
timated constraint condition equals to the real one, i.e.,
C = Ĉ and Ft = 0. This is based on the fact that force
transmission is an instant process. In the next section, we
will introduce several prediction methods which are used
to get Ĉi in current time.

Fig. 3 Experimental grinding system

3.2 On-line Estimation of Constraint
When the constraint surface of the manipulator is un-

known, we fit respectively the constraint surface with lin-
ear function, quadratic function, and spline curve. Three
simulations have been done basing on different constraint
conditions. Here, an unknown constrained condition is
estimated as following,
(Assumptions)
1. The end point position of the manipulator during per-
forming the grinding task can be surely measured and up-
dated.
2. The grinding task is defined in x− y plane.
3. When beginning to work, the initial condition of the
end-effector is known and it has touched the work object.
4. The chipped and changed constraint condition can be
approximated by connections of minute sections.
Three methods which are fitting by linear function,

quadratic function and spline function had been used to
get the online estimation of the unknown constrained
condition and results of spline function is most accurate,
we adopt it in our final experiment. Here we just intro-
duce the spline curve fitting method.

3.2.1 Fitting by quadratic spline curve
The unknown constrained condition, which is in Fig.

1, is estimated and expressed as,
Ĉi+1 = y − [ai(x− xi−1)2 + bi(x− xi−1) + ci] (19)

The end-effector position at time (i − 1)Δt, iΔt are de-
noted respectively as (xi−1, yi−1), (xi, yi).
The quadratic spline curve denoted as

Si(x) = ai(x− xi−1)2 + bi(x− xi−1) + ci,

x ∈ [xi−1, xi](i = 1, 2, 3 · · · n) (20)

The constrained condition Ĉi+1 = y− (ai(x− xi−1)2 +
bi(x − xi−1) + ci) can be determined. And we can get
the coefficients of the spline curve uniquely as follows.

Fig. 4 Fitting by quadratic spline curve

Firstly, let Si(x) satisfy the following conditions
shown in Fig. 4.
(A)Go through two ends of the interval
yi−1 = Si(xi−1) (21)
yi = Si(xi) (22)

(B)First-order differential of the spline polynomials
are equal at the end-point of adjoined function.

dSi+1(x)
dx

���
x=xi

=
dSi(x)
dx

���
x=xi

(23)

Inputting (20) into (21), (22) and (23), we can obtain:
ci = yi−1, (i = 1, 2, · · ·, n) (24)
bi+1 = 2ui − bi, (i = 1, 2, · · ·, n− 1) (25)

ai =
bi+1 − bi

2hi
, (i = 1, 2, · · ·, n− 1) (26)

where, hi = xi − xi−1, ui = (yi − yi−1)/hi. Here to
avoid the oscillation, coefficients ai and bi are treated as:

αi = (
i�

j=i−100

αj)/100, (αi = ai, bi) (27)

From the above-mentioned result, the constrained con-
ditional expression Ĉi+1 can be updated step by step.

4. EXPERIMENT
The experiment when constraint surface is being esti-

mated by quadratic spline curve method has been done.
Parameters of the grinding robot manipulator used in the
experiment are: length of link 1 is 0.3[m], length of link
2 is 0.5[m], and the mass of link 1 is 12.28[kg], the mass
of link 2 is 7.64[kg]. The specifications of first and sec-
ond joints are as follows, the first joint: AC Servo Mo-
tor, 200V, 400W, 2.6A; the second joint: AC Servo Mo-
tor, 200V, 200W, 2.0A; both are made by YASKAWA
ELECTRIC Co.. The desired constrained force is set as
Fnd = 10[N]. Here the force control performance that
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Fig. 5 Trajectory of end of grinder

the exerting force Fn be equal to the desired one, Fnd, is
expected to be realized by compensating the effect gener-
ated by friction force Ft in (16) by Ft=KtFn. We had
confirmed this force control accuracy improvement by
real grinding experiments[9], so we will not discuss the
influence of Ft in this paper, thus setting Ft = 0[N].
The desired constrained surface is denoted as

f(x) = 0.51 (28)

The known constraint condition C = y − 0.51 has
been recorded in Fig.5, at the same time, unknown con-
straint condition Ĉ which was estimated by quadratic
spline curve fitting method through (19), has also been
recorded in Fig.5. From this comparison figure, we can
find that using the proposed estimation method, the shape
of constraint surface can be estimated very well. And
we consider this kind of coincidence has provided an ini-
tial proof for the operability of this proposed controlling
method.

Fig. 6 Change of τ1

Then let’s take a look at the torque resulted in grind-
ing experiment through Fig.6 to Fig.9. τ1 and τ2 which
had been calculated by (13), meaning with known con-
straint condition, are shown in Fig.6 and Fig.7, τ̂1 and
τ̂2 which had been calculated by (16), meaning with esti-
mated constraint condition, are shown in Fig.8 and Fig.9.
τ i(i = 1, 2) and τ̂ i(i = 1, 2) are different from each
other, as we discussed in section4.1. When τ i(i = 1, 2)
being calculated , the already known constraint condition
C = 0 is used, but when τ̂ i(i = 1, 2) being calculated,
the estimated constraint condition Ĉ = 0 is used, which
means that τ̂ i(i = 1, 2) is the calculation result from
the estimation of constraint surface using quadratic spline
curve fitting method.
And in this experiment, we use τ̂ i(i = 1, 2) to drive

the grinding robot which is shown in Fig.3 to complete
the grinding experiment. Constraint force Fn exerted on
the tip of grinder has been measured by a force sensor. On

Fig. 7 Change of τ2

Fig. 8 Change of τ̂1

the case that controller is (16) using estimated constraint
condition Ĉ = 0,the measured force denoted as F̂n is
shown in Fig.10. Also, for comparing the performance of
this experiment, the one without using quadratic spline
curve fitting method, by means of τ i(i = 1, 2) is used
to drive the grinding robot, has also been done and con-
straint force Fn’s value is shown in Fig.11. By compar-
ing these two figures, we can see that constraint force Fn

in these two different experiments are almost the same
value, which can be thought as an proof to show that the
proposed controlling method has the same performance
with the controller using known constraint condition.
To judge this experiment is successful or not, another

view point of the important evaluation methods is to see
whether the constraint force Fn be equalling to Fnd or
not, since constraint force Fn is deduced from desired
constraint force Fnd=10[N ] through (5) and (16). In
Fig.10, until about 0.2s, constraint force Fn was spike-
likely bigger than desired constraint force Fnd, this phe-
nomenon doesn’t testify that the proposed controlling
method can be utilized effectively, but until 0.2s the
grinder hadn’t been touching with constraint surface. So
we think this phenomenon came from the instability of
the manipulator when it was trying to touch the con-
straint surface. From about 0.2s to 5s, value of Fn fluc-
tuated above and below the value of desired constraint
force Fnd. Of course some of other noises such as the
unevenness of the constraint surface influenced the con-

Fig. 9 Change of τ̂2
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straint force Fn, but substantially, value of Fn generated
during this experiment is believable and proposed con-
trolling method is available in shape-grinding field.

Fig. 10 Measured force Fn with on-line constraint esti-
mation

Fig. 11 Measured force Fn with known constraint

5. CONCLUSION
The constraint dynamical equations of a manipulator

are derived and the constraint forces are expressed as
an explicit function of the state and inputs. The pre-
sented methodology allows computation of the forces, as
an alternative to sensing. Hence, the system is controlled
with no force sensor. The control law presented is con-
structed by using the dynamical redundancy of constraint
systems. The controller designed with this control law
can be used for simultaneous control of force and posi-
tion. In this paper, we present three methods for estimat-
ing the constrained condition to attain time-varying un-
known constraint information. The simulations indicate
the quadratic spline curve fitting for unknown constrained
surface is the most closed to the known constraint sur-
face, but from the final experiment result, quadratic spline
curve fitting can not be thought as the best unknown con-
straint condition estimation method, although it is the
best one among those three estimation methods theoret-
ically. As a result, we will consider the cubic spline
curve fitting as the unknown constraint condition estima-
tion method and try to test it better or not for increasing
the performance of controller through the real grinding
experiment.
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