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Abstract
This paper deals with position-based 6-DoF visual servoing. With a common sense of
feedback control, we stress that improvement of the dynamics of the sensing unit is
important for a stable visual servoing. We propose a method to improve dynamics in
visual recognition, with compensating the fictional motion of the target in the camera
images based on kinematics of the manipulator, by extracting the real motion of the
target. We named it as hand-eye motion feedforword (MFF) method. The enhanced
dynamics of recognition gave further stability and precision to the total visual servoing
system, evaluated by full 6-DoF servoing experiment using 7-link manipulator. The
convergence time in step response was about 10[s] and precise visual servoing to a
moving target object has been achieved.

Key words : Evolutionary Recognition, Visual Servoing, Hand-eye Motion Feedfor-
word

1. Introduction

Tasks in which visual information are used to direct a manipulator toward a target object
are referred to visual servoing, as shown in Fig. 1. Generally, visual servoing can be described
as a feedback control as shown in Fig. 2. The following analysis is well-known in a feedback
control theory. Let dY denote the change of the output Y , it gives

dY
Y
=

1
1 +CS H

dS
S
. (1)

Usually CS H >> 1, the change of S will not affect the output a lot, which indicates that
the influence from changing the dynamics of the system could be suppressed by the effect of
feedback.

Let H be changed as dH, then the change of the output Y is

dY
Y
= − CS H

1 +CS H
dH
H
. (2)

Giving CS H >> 1, we can get the following approximate expression

dY
Y
� −dH

H
. (3)

Eq. (3) indicates that the change of H will affect the output directly even with the high con-
troller gain. This analysis displays the uncertainty and time delay of the dynamics of H affect
the output dynamics directly more than the change of S , and it reduces the stability of visual
servoing. Therefore, improvement of the dynamics of the sensing unit is essential for stable
visual servoing. As shown in Fig. 2, hand-eye motion disturbs recognition in H, and incorrect
recognition will cause hand motion Y to be unstable, and the disturbed Y amplifies servoing
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Fig. 1 Visual servo system of PA-10

Fig. 2 Feedback system

error. This repeating in feedback loop may lead to dangerous unstable motion. Such an unde-
sirable circulation is preferably cut down by improving the recognition dynamics to make the
system be robust against the hand-eye motion.

However, research regarding the sensing dynamics for visual servoing has not been con-
centrated energetically so far. In this paper, we pay attention to a visual servoing system with
a hand-eye configuration, having the camera mounted on the robot’s end-effecter. In this case,
the dynamics of the manipulator will make the recognition unit deteriorating directly, since the
manipulator oscillation produces a false motion of the target object in the camera image even
though the target is stopping in the task space. We call the false motion as “fictional motion”.
A motion-feedforward (MFF) method is used to improve the deterioration in recognition dy-
namics caused by the fictional motion. The target’s 3-D pose in the camera image made by
the fictional motion can be predicted by using the kinematics of the manipulator based on
the current estimated pose(1)(2). However, the prediction result of MFF includes errors from
the estimation result, so we could not use MFF independently in the visual servoing control
system. Here, our proposal is to combine the evolutionary recognition method using GA(3)

and the MFF, that is “1-step GA + MFF ”. We use the prediction result to reset the individ-
ual pose in the next generation of GA. Thus, the on-line optimization method, “1-Step GA”
combined with the above prediction by MFF has an ability to prevent the pose tracking error
from increasing by correcting the pose estimation through exploring nature of GA in heuristic
searching behavior. Since the fictional motions can be compensated during on-line estimation
in GA process, it seems that the recognition was performed by using just fixed cameras in task
space, then the recognition dynamics can be separated from the dynamics of the manipulator.
Thus the tracking becomes easier and the tracking dynamics can be improved.

Visual servoing can be classified into two major groups: position-based and image-based
visual servoing(4). The advantages and drawbacks of each visual servoing method have been
discussed by a significant amount of researches(5)(6)(7). Compared with image-based visual
servoing, position-based visual servoing is more understandable, since the way of the visual
servo is more like human-being, that is, to determine the object pose in Cartesian coordinate
frame and lead to Cartesian robot motion planning. Moreover, in position-based visual ser-
voing, the robot controller and object pose recognition are separeted as independent unit. So
MFF compensation suits to be applied in position-based visual servoing, since the robot mo-
tion is feedforwarded to the recognition unit to compensent the fictional motion caused by the
hand-eye camera’s dynamical motion.

There are some researches on position-based visual servoing that used extended kalman
filters to predict the target’s pose in the real world(5)(8). They considered from the view point of
the object real motion, but did not pay attention to the fictional motion caused by the hand-eye
camera’s dynamical motion. In this paper, we separate the target motion seen from the camera
into two parts: one is the real motion from the target itself, the other is the fictional motion
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caused by the hand-eye camera’s dynamical motion. The fictional motions is compensated
during on-line recognition by MFF, then the recognition dynamics can be improved and stable
visual servoing can be achieved.

We will show three experiments in this paper to evaluate the effectiveness of our system
through full 6-DoF visual servoing experiments using 7-link manipulator. The first one is step
response, in which the convergence time is about 10[s] that shows a good ability compared
with the other researches; the second is time-varying path control experiment; and the third is
visual servoing to a moving target that is fixed on a mobile robot. Time-varying path control
visual servoing was firstly proposed by William J. Wilson etc.(5), in which the target object is
static, and a trajectory with respect to the object is given to direct the manipulator. After(5),
few researches discussed about this kind of visual servoing. Since the object is static, only
fictional motions caused by the hand-eye camera’s dynamical motions exist in the system, so
our proposed on-line recognition by MFF method is specifically effective in this case that we
will show in this paper. Through these experiments, we will confirm the effectiveness of our
system to enhance dynamics of recognition that gave further stability and precision to the total
visual servoing system.

2. On-line Evolutionary Recognition

2.1. Background of 3-D Object Recognition
There is a variety of approaches for 3D target object pose estimation, and they can

be classified into three general categories: (1) feature-based, (2) appearance-based, and (3)
model-based.

Feature-based approaches use local features like points, line segments, edges, or regions
to match against the incoming video input to update estimating pose. Feature-based tech-
niques are naturally less sensitive to occlusions than other methods, as they are based on
local correspondences. Some researches apply this method to head pose estimation based
on tracking of small facial features like the corners of the eyes or mouth(11). Appearance-
based approach is based on a technique to minimize sum-of-squared difference calculated
by reference image and input image, e.g., Gauss-Newton method(12), Varying Gauss-Newton
method(13), Second-order Minimization method(14)(15), which can avoid to calculate Hessian
matrix while keeping high convergence rate. These methods hereditarily utilize linearization
of the sum-of-squared difference to be optimized, confining the tracking ability to be locally
valid(16), restricted by optimizing assumption that the local area include only single peak,
which may hinder fast motion tracking. Furthermore these methods lack discussions concern-
ing the convergence in time domain, where the tracking problem should be treated as time
varying optimization since the target object to be tracked may move in an operational space.
Model-based approach is to use a model to search a target object in the image, and the model
is composed based on how the target object can be seen in the input image(17)(18). Our method
is included in this category.

2.2. 3-D Model-based Matching
First, we give the definitions of coordinate systems used in this paper. The world coordi-

nate frame is represented as ΣW , the target coordinate frame is ΣM , the end-effector coordinate
frame is ΣE and the camera coordinate frame is ΣCR, as shown in Fig. 1. Here, the left camera
is fixed parallel with the right one, so they are considered as one coordinate frame is ΣCR. ΣE

is assumed the same as ΣCR since the camera is mounted on the robot’s end-effector.
We use a model-based matching method to recognize a target object in a 3-D searching

area. A solid models is located in ΣE , its position and orientation are determined by six
parameters, ψ = [rT , εT ]T , where r = [x, y, z]T , ε = [ε1, ε2, ε3]T . Here, the target’s orientation
is represented by unit quaternion(20), which has an advantage that can represent the orientation
of a rigid body without singularities. The unit quaternion, viz. Euler parameters, defined as

Q = {η, ε}, (4)
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where

η = cos
θ

2
, ε = sin

θ

2
k, (5)

here, k(‖k‖ = 1) is the rotation axis and θ is the rotation angle. η is called the scalar part of
the quaternion while ε is called the vector part of the quaternion. They are constrained by

η2 + εT ε = 1. (6)

In (6) η can be calculated by ε, so we just use three parameters ε to represent an orientation.
The left and right input images from the stereo cameras are directly matched by the left

and right searching models, which are projected from 3-D model onto 2-D image plane. The
matching degree of the model to the target can be estimated by a fitness function F(ψ) by
using the color information of the target. Please refer to(19) for a detailed definition of F(ψ).
When the searching models fit to the target objects being imaged in the right and left images,
F(ψ) gives the maximum value. Therefore the 3-D object’s position/orientation measurement
problem can be converted to a searching problem of ψ that maximizes F(ψ). We solve this
optimization problem by 1-step GA method that will be explained in the next section.

2.3. GA-based On-line Recognition “1-step GA"
Theoretically optimal pose ψmax(t) that gives the highest peak of F(ψ(t)) is defined as

ψmax(t) =
{
ψ(t)
∣∣∣ max
ψ∈L

F(ψ(t))
}
, (7)

where L represents 6-DoF searching space of x, y, z, ε1, ε2, ε3.
An individual of GA is defined as ψ j

i (t), which means the i-th gene (i = 1, 2, · · · , p) in the
j-th generation, to search ψmax(t). The genes of GA individual representing ψ j

i (t) is defined by
binary strings, which are generated randomly in the initial population, with a given individual
number p. Denote ψGA

max(t) to be the maximum among the p genes of ψ j
i (t) in GA process,

ψGA
max(t) =

{
ψ j

i (t)
∣∣∣ max
ψ j

i ∈L
F(ψ j

i (t))
}
. (8)

In fact we cannot always guarantee the best individual of GA ψGA
max(t) should coincide

with the theoretically optimal pose ψmax(t), because the number of GA’s individuals is not
infinite. The difference between ψmax(t) and ψGA

max(t) is denoted as

δψ(t) = ψmax(t) − ψGA
max(t). (9)

And the difference between F(ψmax(t)) and F(ψGA
max(t)) is denoted as

ΔF(δψ(t)) = F(ψmax(t)) − F(ψGA
max(t)), (10)

Since F(ψmax(t))≥F(ψGA
max(t)), we have

ΔF(δψ(t))≥0. (11)

Based on the definition of ΔF(δψ(t)) in (10), in this research, we let GA’s work in the
following way:

(a)GA evolves to minimize ΔF(δψ(t)).

(b)The elitist individual of GA is preserved at every generation (elitist gene preservation strat-
egy).

(c)ψGA
max(t) does keep the same value in the evolving when the evolved new gene with different

value gives the same value of ΔF.

Here, we present two assumptions.
[Assumption 1] ΔF(δψ(t)) is positive definite.
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Fig. 3 The invariant set of the
solutions of ΔḞ(δψ(t)) = 0.

Fig. 4 The changing of ΔF(δψ(t) with
respect to time t in the whole GA’s evolution.

This means the distribution of F(ψ(t)) satisfies ΔF(δψ(t)) = 0 if and only if δψ(t) =
0, which indicates there is a single minimum in the searching space L. ΔF is multipeak
distribution having peaks and bottoms with limited number.

[Assumption 2] Ḟ(ψGA
max(t))≥0.

Differentiating (10) by time t, we have

ΔḞ(δψ(t)) = Ḟ(ψmax(t)) − Ḟ(ψGA
max(t)). (12)

We defined F(ψmax(t)) = 1 representing that the true pose of the target object gives the
highest peak. Therefore, the time differentiation of F(ψmax(t)) will be Ḟ(ψmax(t)) = 0. Thus,
from (12) and [Assumption 2], we have

ΔḞ(δψ(t)) = −Ḟ(ψGA
max(t))≤0. (13)

ψGA
max(t) represents current best GA solution. [Assumption 2] means GA can change its

best gene ψGA
max(t) to always reduce the value of ΔF regardless of dynamic image or static one,

which indicates that the convergence speed to the target in the dynamically continuous images
should be faster than the moving speed of the target object.

We cannot guarantee that the above two assumptions always hold, since they depend
on some factors such as object’s shape, object’s speed, definition of F(ψ(t)), parameters of
GA and viewpoint for observing, lightening environment, et al.. However, we can make
efforts to improve the environment and correlation function and so on. Providing above two
assumptions be satisfied, (11) and (13) hold, then ΔF(δψ(t)) is so-called Lyapunov function.
The objective here is to verify that δψ(t) asymptotically stable, resulting in it converges to 0
by using the Lyapunov function of ΔF(δψ(t)), meaning ψGA

max(t)−→ψmax(t), (t→∞), and the
following shows how to verify it.

Since ΔḞ(δψ(t)) is only negative semi-definite, in the view of LaSalle theorem, δψ(t)
asymptotically converges to the invariant set of the solutions δψ satisfying ΔḞ(δψ(t)) = 0.
Considering the following expression,

ΔḞ(δψ(t)) =
∂ΔF
∂δψ

· δψ̇ = 0, (14)

the first part ∂ΔF/∂δψ describes partial differentiation of ΔF with respect to δψ, implying
steepest descending direction of ΔF in the space of δψ; the second part δψ̇ describes the
difference between the moving speed of the target object and the evolution speed of the best
gene of GA, by the definition in (9).

Equation (14) shows the invariant set of the solutions of ΔḞ(δψ(t)) = 0 includes (1): P1,
the solution set of ∂ΔF/∂δψ = 0; (2): P2, the solution set of δψ̇ = 0; and (3): P3, the solution
set satisfying ∂ΔF/∂δψ � 0, δψ̇ � 0, but their inner product is 0.

As shown in Fig. 3, P1 includes the points of δψ that give the local maximum or minimum
values of the function ΔF including 0. The number of these points is finite by [Assumption 1]
denoted by p, that is

P1 = {0, δψ1, δψ2, · · · , δψp−1}. (15)
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The evolving process of GA may stay temporarily at the same ΔF value. If the target
object is static, it means the best gene of GA stop at some moments for the reason that the
limited individuals of GA could not improve a current solution that gives a smaller fitness
function value ΔF during some generations. And when the target object is moving, δψ̇ = 0
means at these moments that the evolution speed of the best gene of GA is equal to the moving
speed of the target object, by (9). The number of these points is assumed to be possibly finite,
denoted by q. Thus, we describe the set of P2 as

P2 = {0, δψG1, δψG2, · · · δψG(q−1)}. (16)

Notice that there is another solution set of δψ: P3. In this case, the vector of ∂ΔF/∂δψ
is vertical to the vector of δψ̇ since the calculation (ΔF/δψ) · δψ̇ in (14) means inner cross
product, which means GA evolves in the direction that keeps a same fitness function value
ΔF. This GA’s evolution way is forbidden in this research for the GA’s work rule (c) that we
have stated above. Then, P3 is null. So the invariant set that δψ(t) asymptotically converges
to is

P = P1

⋃
P2. (17)

Here, δψ1, δψ2, · · · , δψp−1 in P1 are all unstable, because we define “F(ψ(t)) is positive
definite and satisfies ΔF(δψ(t)) = 0 if and only if δψ(t) = 0” in [Assumption 1], which means
ΔF(δψi) > 0 (i = 1, 2, · · · , p−1), and only δψ = 0 gives minimum value of ΔF(δψ(t)), so only
δψ = 0 is stable. And in P2, all the points are unstable except the point 0, for the reason that
GA always has possibility to get out of these points by its evolving nature, which has been
denoted in the GA’s work way (a) that GA evolves to minimize ΔF(δψ(t)).

Therefore, 0 is the only stable point in the invariant set of P, that is, δψ(t) will finally
converges to 0. The image of the changing of ΔF(δψ(t)) with respect to time t in the whole
GA’s evolution is shown in Fig. 4.

The above verification shows δψ(t)→0, which means

ψGA
max(t)−→ψmax(t), (t→∞) (18)

Let tε denotes a convergence time, then

|δψ(t)| = |ψmax(t) − ψGA
max(t)|≤ε, (ε > 0, t≥tε) (19)

In (19), ε is tolerable extent that can be considered as a observing error. Thus, it is possible
to realize real-time optimization, because ψGA

max(t) can be assumed to be in the vicinity of the
theoretically optimal ψmax(t) after tε .

Above discussion is under the condition of continious time. Here, when we consider evo-
lution time of each generation of GA denoted by Δt. The GA’s evolving process is described
as

ψ j
i (t)

evolve−→ ψ j+1
i (t + Δt). (20)

Obviously, this time-discrete evolution with the interval of timeΔt may enlarge the recognition
error δψ(t). Should this undesirable influence of Δt be considered, the tolerable pose error ε
will expand to ε′ as,

|δψ(t)|≤ε′, (ε′ > ε > 0). (21)

Since the GA process to recognize the target’s pose at the current time is executed
only one time with the period of Δt as the current quasi-optimal pose ψGA

max(t) is output syn-
chronously, we named this on-line recognition method as “ 1-step GA”. We have confirmed
that the above real-time optimization problem could be solved by “1-step GA” through several
experiments to recognize swimming fish(3) and human face(21).
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Fig. 5 Coordinate system

3. Hand-eye Motion Compensation

The motion of the target being seen from the hand-eye camera is affected by both the
motion of the target in the real world and the ego motion of the hand-eye camera (that is, the
motion of the end-effector). Here we describe such a relationship, which can distinguish these
two motions in a mathematical formulation.

3.1. Analysis of target’s motion in ΣE

The target coordinate system is represented as ΣM (see Fig. 5). Take ΣW as the reference
frame. Denote the vector from the origin of ΣW (OW ) to the origin of ΣE (OE) expressed in ΣW

as W rE , the vector from OW to the origin of ΣM (OM) expressed in ΣW as W rM , and the vector
from ΣE to ΣM expressed in ΣE as E rM . The following relations hold:

E rM =
E RW (q)(W rM −W rE(q)), (22)

where E RW is a rotation matrix determined by q. Differentiating (22) with respect to time, we
have

E ṙM =
E RW (q)(W ṙM −W ṙE) + S(EωW )E RW (q)(W rM −W rE(q)). (23)

The angular velocities of ΣE and ΣM with respect to ΣW are represented by WωE and
WωM , and the angular velocity of ΣM with respect to ΣE is represented by EωM . Then the
following relation holds:

EωM =
E RW (q)(WωM −W ωE). (24)

The 3-D pose of the target expressed in ΣE is defined as

EψM =

⎡⎢⎢⎢⎢⎣
E rM
EεM

⎤⎥⎥⎥⎥⎦ , (25)

Then the velocity of the target’s 3-D pose is defined as

Eψ̇M =

⎡⎢⎢⎢⎢⎣
E ṙM
E ε̇M

⎤⎥⎥⎥⎥⎦ , (26)

where the time derivation of target’s position E ṙM is given by (23). The relation between the
time derivative of EεM and the body angular velocity EωM is given by the following equation,
(20)

E ε̇M =
1
2

(EηM I − S(EεM))EωM , (27)

where EωM is given by (24).
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Moreover, the camera velocity, which is considered as the end-effecter velocity, can be
expressed using the Jacobian matrix J(q) = [JP

T (q), JO
T (q)]T ,

W ṙE = JP(q)q̇, (28)

WωE = JO(q)q̇, (29)

S(EωW ) = −E RW (q)S(WωE)W RE(q) = −E RW (q)S(JO(q)q̇)W RE(q). (30)

Substituting (28), (29), (30) to (23), (27), and rewriting EψM as ψ, Eψ̇M as ψ̇ for abbrevi-
ation, the target velocity ψ̇M can be described as:

ψ̇ =

⎡⎢⎢⎢⎢⎣ ṙ
ε̇

⎤⎥⎥⎥⎥⎦ (31)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−E RW (q)JP(q)+E RW (q)

S(W RE(q)r)JO(q)
− 1

2 (ηI − S(ε))E RW (q)JO(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ q̇+

⎡⎢⎢⎢⎢⎣
E RW (q) 0

0 1
2 [ηI−S(ε)]E RW (q)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

W ṙM
WωM

⎤⎥⎥⎥⎥⎦

= J M(q,ψ)q̇ + JN(q,ψ))W φ̇M

=
[

J M(q,ψ) JN(q,ψ))
] ⎡⎢⎢⎢⎢⎣ q̇

W φ̇M

⎤⎥⎥⎥⎥⎦

= JA(q,ψ)

⎡⎢⎢⎢⎢⎣ q̇
W φ̇M

⎤⎥⎥⎥⎥⎦ (32)

The matrix J M in (32) describes how target pose change in camera coordinate with re-
spect to the joint velocity of the manipulator q̇. The matrix JN describes how target pose
change in camera coordinate with respect to the changing pose of the target itself in ΣW .

Then the 3-D pose of the target at future time t+Δt can be predicted based on the motion
of the end-effecter and the motion of the target object itself at time t, presented by

ψ̂(t + Δt) = ψ̂(t) + ˆ̇ψΔt = ψ̂(t) + ĴA(q, ψ̂)
[

q̇ W φ̇M

]T
Δt. (33)

(33) shows ĴA is a function of q and ψ̂. Here we use ψ̂ since it is the result of recognition at
time t by using model-based matching in which errors exist, derived from sensing dynamics,
while q and q̇ can be observable correctly from the robot manipulator. Then the errors are
included in ĴA from ψ̂(t) will lead to incorrect prediction and cause the tracking errors at
the time t + Δt. It seems as a difficulty in 3-D pose prediction since the errors may increase
drastically due to such a vicious circle as we can see in (33) that may amplify the errors in
ψ̂(t) to those of ψ̂(t + Δt). However, the on-line optimization method, “1-Step GA” combined
with the above prediction have an ability to prevent the pose tracking error from increasing by
correcting the pose estimation through exploring nature of GA in heuristic searching behavior.

W φ̇M expresses the velocity of the target object in the real world. This prediction part
has been discussed widely by researches, for example,(8) using kalman filter,(22) using neural
network. Paper(22) presented our previous research that using a neural network system to
predict the velocity of a swimming fish, which enabled a robot arm to catch fish without time
delay.

In this paper, we do not deal with the two predictions shown (33) at one time. Since we
have confirmed the second prediction: prediction based on the velocity of the target object in
the real world in(22), this paper will mainly deal with the prediction of the target velocity in ΣE

based on the joint velocity q̇, so we rewrite (33) as

ψ̂(t + Δt) = ψ̂(t) + Ĵ M(q, ψ̂)q̇Δt (34)
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Fig. 6 Motion feed-forward tracking system Fig. 7 MFF Compensation. Notice ΣE and ΣO are relative
coordinates, here we suppose the end-effector
is moving and the target is static.

3.2. “1-step GA + MFF” method
Here, we use p individuals for searching. The best one in p individuals in j−th generation

at time jΔt represented by ψ j
max( jΔt), is denoted as ψ̂

j
( jΔt) from here, which represents the

measured pose of the target object, ψ̂
j
is described by

ψ̂
j
=
{
ψ j

i ( jΔt)
∣∣∣ max

i=1,2,···,p
F(ψ j

i ( jΔt))
}
, (35)

We define the individual of GA as ψ� j
i in the case of using MFF method to predict to

distinguish from ψ j
i used in the case of not using MFF method. And the best gene in p

individuals of ψ� j
i is defined by ψ̂

� j
to make a difference to ψ̂

j
. ψ̂
� j

is described by

ψ̂
� j
=
{
ψ� j

i ( jΔt)
∣∣∣ max

i=1,2,···,p
F(ψ� j

i ( jΔt))
}
. (36)

Using the prediction of (33), the pose of the individuals ψ� j+1
i in the next generation can

be predicted based on the current pose ψ̂
� j

, presented by

ψ� j+1
i = ψ� j

i + Ĵ M(q, ψ̂
� j

)q̇ Δt, (i = 1, 2, · · · , p). (37)

The estimation system of the proposed method is shown in Fig. 6. The proposed MFF
method can predict the motion of the target projected to the cameras based on the ego motion
of the robot. So when the individuals of GA got converged, the whole group of genes ψ� j

i , (i =
1, 2, · · · , p) will move together with the motion of the target in the image, never loose it even
under a camera’s ego motion of robot manipulator. Thus, recognition by hand-eye cameras
will be independent of the dynamical motion of the manipulator, then robust recognition can
be expected as the same performance as using fixed cameras.

4. Controller

4.1. Desired-trajectory generation
The desired relative relationship of ΣM and ΣE is given by Homogeneous Transformation

as EdTM(t), the difference of the desired camera pose ΣEd and the actual camera pose ΣE is
denoted as ETEd. ETEd can be described by

ET̂Ed(t) = ET̂M(t) EdT−1
M (t), (38)

Notice that (38) is a general deduction that satisfies arbitrary object motion WTM(t) and arbi-
trary objective of visual servoing EdTM(t).

Differentiating (38) with respect to time yields

EṪEd(t) = E ˙̂TM(t)EdT−1
M (t) + ET̂M(t)EdṪ

−1
M (t). (39)
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Fig. 8 Block diagram of the visual servoing system

Here, EdTM(t), EdṪM(t) are given as the desired visual servoing objective. ET̂M(t) is
mearsured by cameras using the on-line recognition method proposed in Section 2. E ˙̂TM(t) is
then calculated by

E ˙̂TM(t) = (ET̂M(t) −E T̂M(t − Δt))/Δt, (40)

which is output periodically with a time of Δt regardless the object is moving or not.

4.2. Servoing controller
The aforementioned real-time recognition system is depicted at the lower side of the

block diagram of the visual servoing system in Fig. 8. Based on the above analysis of the
desired-trajectory generation, the desired hand velocity W ṙd is calculated as,

W ṙd = KPp
W rE,Ed + KVp

W ṙE,Ed, (41)

where W rE,Ed,
W ṙE,Ed are given by transforming ETEd and EṪEd from ΣE to ΣW . KPp and KVp

are positive definite matrix to determine PD gain.
The desired hand angular velocity Wωd is calculated as,

Wωd = KPo
W RE

EΔε + KVo
WωE,Ed, (42)

where EΔε is the quaternion error that from the recognition result directly, and WωE,Ed can
be calculated by transforming ETEd and EṪEd from ΣE to ΣW . Also, KPo and KVo are suitable
feedback matrix gains.

The desired joint variable q̇d is obtained by

q̇d = J+(q)

⎡⎢⎢⎢⎢⎣
W ṙd
Wωd

⎤⎥⎥⎥⎥⎦ . (43)

where J+(q) is the pseudoinverse matrix of J(q), and J+(q) = JT (J JT )−1. The hardware
control system of the velocity-based servo system of PA10 is expressed as

τ = KS P(q̇d − q̇) + KS I

∫ t

0
(q̇d − q̇)dt (44)

where KS P and KS I are symmetric positive definite matrix to determine PI gain(Table 1).

5. Experiment of Visual Servoing

To verify the effectiveness of the proposed visual servoing system, we conduct the ex-
periment of visual servoing to a 3D marker that is composed of a red ball, a green ball and a
blue ball. The radiuses of these three balls are set as 30[mm].
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Fig. 9 Step response experiment. (a) Initial pose of Pa10. (b) Visual servoing to a static
3-D marker.

Fig. 10 Hand pose error of step response without using MFF

5.1. Experimental Condition
A photograph of our experimental system is shown in Fig. 15. The robot used in this

experimental system is a 7-Link manipulator, Mitsubishi Heavy Industries PA-10 robot. Two
cameras are mounted on the robot manipulator’s end-effector. The image processing board,
CT-3001, receiving the image from the CCD camera is connected to the DELL WORKSTA-
TION PWS650 (CPU: Xeon, 2.00 GHz) host computer.

The initial pose of the end-effector is defined as ΣE0 , and given by

WTE0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −918
−1 0 0 0
0 −1 0 455
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (45)

position unit: [mm].
The parameters of GA is set as that shown in Table.2.

5.2. Experimental Results
5.2.1. Step Response Experiment Here, a static object is set as EψM = [−70[mm],
70[mm], 1000[mm], 0.1,−0.2, 0.12]T , where the value of orientation 0.1 in quaternion expres-
sion is about 12[deg]. The objective of visual servoing is given by a fixed relation between ΣE

and ΣM , as

EψMd = [0[mm], 10[mm], 900[mm], 0, 0, 0]T . (46)

The initial pose of the robot manipulator is shown in Fig. 9(a), and the moved robot manipu-
lator to satisfy EψMd is shown in Fig. 9(b).
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Fig. 11 Hand pose error of step response by using MFF

To show the effectiveness of the proposed MFF method, we perform the step response
experiment with MFF method (that is “1-step GA +MFF” method) and without MFF method
(that means using “1-step GA ” only) separately. Fig. 10 shows the difference of the desired
hand pose and the actual hand pose in ΣE0 without using MFF method. Fig. 11 shows the hand
difference with using MFF method. Since we use quaternion to express the orientation of an
object, so there is no orientation unit and we denote here as [ ]. In Fig. 10, the end-effector
is unstable from 6[s] to 28[s]. Since the hand began to move, the object in camera frame was
moving together with the end-effector, then the recognition dynamics became worse, which
cause the vibration in this period. The end-effector cost 30[s] to be converged to the desired
pose in the case of not using MFF compensation.

On the other hand, as shown in Fig. 11, such vibrations existing in Fig. 10 had been
suppressed. The end-effector position costs about 20[s] to converge to the desired position,
and the orientation costs about 10[s] by using MFF method.

Step response is usually used to evaluate the ability of a visual servoing system. Here,
we list some similar visual servoing researches and their convergence times in Table 3. By
comparing the convergence speed with these researches, our system shows a good ability in
visual servoing task.
5.2.2. Time-varying Path Control Experiment The visual servoing described in this
section is that the object remains stationary and the robot is commanded to move through a
reference path with respect to it.

Here, a static object is set as EψM = [0[mm], 70[mm], 1300[mm], 0, 0, 0]T . The desired
end-effector’s time-varying trajectory is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ed xM(t) = 100sin( 2π
T t)[mm]

EdyM(t) = 70[mm]
EdzM(t) = 1300[mm]
Edε1M(t) = 0
Edε2M(t) = 0
Edε3M(t) = 0

(47)

The desired motion of the end-effector with respect to a static object is shown in Fig. 12.
First, we set the motion period of the manipulator T as 60[s]. Fig. 13 shows the errors

of the desired hand pose and the actual hand pose in ΣE0 without using MFF method. Fig. 14
shows the hand errors with using MFF method. The stereo cameras were shaking because

Table 1 Gain Parameters

Link Number [L1 L2 L3 L4 L5 L6 L7 ]
KS P [3200 3200 1400 1400 1000 1000 1000]
KS I [1362 1362 596 596 596 426 426]
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Fig. 12 (a)A photograph of time-varying visual servo. (b)Coordinate system of (a).

Table 2 GA Parameters

Population size 20 individuals
Selection rate 0.5

Crossover Two-point
Mutation rate 0.10
Elitist model yes

of the dynamics of the robot manipulator. Thus, the fictional motion of the target object
coming from the moving camera was difficult to recognize. As shown in Fig. 2, the incorrect
recognition affects the hand motion directly, and will cause the feedback system unstable.
The increased errors shown in Fig. 13 indicated the system became unstable as time passing.
Compared with Fig. 13, the errors in Fig. 14 were limited in a range, which means the system
was under a stable control.

We compare the visual servoing with and without MFF method by changing the servo-
ing speed of end-effector, that is, changing the period as T = 60, 40, 20[s]. The figures for
comparisons under T = 40[s] and T = 20[s] are not shown here for brevity. Table 4 shows
the mean value of the fitness function F defined as F̄ and the rms (root-mean-square) value
of all components of E0 ψ̃ defined as E0Δψ̃ = [E0Δx̃, E0Δỹ, E0Δz̃, E0Δε̃1,

E0Δε̃2,
E0Δε̃3]T in each

situation of T = 60, 40, 20[s]. We can see that without using MFF, F̄ gets lower, and E0Δψ̃

gets bigger to about 96[mm] in Δx̃M , and 0.045 in Δε̃2M (corresponding to 7[deg]) when T is
20[s], which means the motion of the end-effector became more unstable. On the other hand,
by using MFF, both F̄ and E0Δψ̃ are not changed much, about 51[mm] in Δz̃M and 0.019 in
Δε̃2M (corresponding to 2[deg]), which indicates the motion of the end-effector kept stable,
even the hand-eye cameras move faster and faster.

This time-varying path control experiment has confirmed the effectiveness of the pro-
posed MFF method. By using MFF method, the affect on recognition from the motion of the
camera itself is compensated and the recognition dynamics is improved, therefore, the stability
of the visual servoing system is increased.
5.2.3. Visual Servoing To A Moving Object In this experiment, the target object is fixed
on a mobile robot, as shown in Fig. 15. Fig. 16 shows the coordinate system corresponding

Table 3 Review of Literature

Reference Convergence time of step response
(9) about 9.9[s] when the desired position is parallel to

the image plane, else, about 49.5[s].
(10) in x,y, roll,pitch, yaw 30s, in z position about 70s
(6) about 60s.
(7) about 150s.
(23) is about 200s.
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Fig. 13 Hand pose error of time-varying visual servoing without MFF method when
t = 60s

Fig. 14 Hand pose error of time-varying visual servoing with MFF method when
t = 60s

to Fig. 15. The coordinate system of the mobile robot is represented as ΣR. Here, the motion
of the mobile robot is rotation around the z axis of ΣR by

θd[deg] = asin(
2π
T

)t, (48)
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Table 4 Results of time-varying visual servoing

Condition F̄ E0Δx̃[mm] E0Δỹ[mm] E0Δz̃[mm] E0Δε̃1
E0Δε̃2

E0Δε̃3
T = 60s, without MFF. 0.8416 73.92 92.06 37.25 0.035 0.029 0.025
T = 60s, with MFF. 0.9032 51.00 52.85 21.46 0.020 0.020 0.014
T = 40s, without MFF. 0.7822 80.39 82.94 37.92 0.032 0.041 0.034
T = 40s, with MFF. 0.9052 43.78 51.48 18.16 0.019 0.018 0.014
T = 20s, without MFF. 0.7241 96.39 76.48 31.63 0.022 0.045 0.043
T = 20s, with MFF. 0.9068 51.04 56.46 21.43 0.022 0.019 0.015

Fig. 15 A photograph of visual servo system

Fig. 16 Coordinate system of visual servoing

where we set a = 8[deg],T = 40[s]. The voltage of the right and left wheel is given by

VR = kp(θd − θ) + kv(θ̇d − θ̇), (49)

VL = −VR, (50)

where kp and kv are suitable feedback PD control gains.
The effectiveness of the proposed visual servoing are evaluated by comparing the actual

hand pose with the desired hand pose through visual servoing to the moving target object. We
also do the same experiment in the case of without using MFF method and with MFF method
separately. Here, the objective of visual servoing is a fixed relative pose between ΣM and ΣE ,
defined as EdψM = [0[mm], 10[mm], 700[mm], 0, 0, 0]T .

Figs. 17(a) to (f) is the experimental results in the case of not using MFF method, which
show the actual motion of the end-effector with respect to the fixed frame of ΣE0 , defined as
E0ψE , compared with the desired hand pose E0ψEd. Figs. 18(a) to (f) show the experimental
results of E0ψE and E0ψEd in the case of using MFF method. In the period of the trajectory
of E0ψEd is a straight line, the mobile robot did not move, visual servoing to a static object
was performed firstly. Then the desired trajectory in Fig. 17 and Fig. 18(a),(e) began to
turn to curved line of sin/cos function, the mobile robot started to move. Comparing Figs.
17(a),(e) with Fig. 18(a),(e), the time-delay of hand motion in the case of using MFF method
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Fig. 17 Hand pose error of visual servoing without MFF. method

Fig. 18 Hand pose error of visual servoing with MFF. method

was smaller than that without using MFF method. The errors of hand motion in the other
(b),(c),(d),(f) figures were also smaller in the case of using MFF method.

6. Conclusion

This paper deals with position-based 6-DoF visual servoing. We propose a MFF method
to compensate the fictional motion of the target based on the joint velocity of manipulator,
and extract the real motion of the target for the robot to recognize during visual servoing. The
on-line optimization method, “1-Step GA” is combined with MFF metnod to prevent the pose
tracking error from increasing by correcting the pose estimation through exploring nature of
GA in heuristic searching behavior. Visual recognition preciseness is improved, and the visual
servoing become more stable by our proposal “1-step GA +MFF ”method. The effectiveness
of our proposed visual servoing system has been confirmed through experiments by a 7-link
hand-eye manipulator.
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