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Abstract—Based on the analysis of the interaction between a
manipulator’s hand and a working object, a model representing
the constrained dynamics of the robot is first discussed. The
constraint forces are expressed by an algebraic function of
states, input generalized forces, and constraint condition, and
then direct position / force controller without force sensor is
proposed based on the algebraic relation. To give the grinding
system the ability to adapt to any object shape being changed
by the grinding, we added estimating function of the constraint
condition in real time for the adaptive position / force control,
which is indispensable for our method instead of not using
force sensor. Evaluations through continuous shape-grinding
experiment by fitting the changing constraint surface with spline
functions, indicates that reliable position / force control and
shape-grinding work can be achieved by this proposed controller.

I. INTRODUCTION

Many researches have discussed on the force control of
robots for contacting tasks. Most force control strategies are to
use force sensors [1]-[3] to obtain force information, where the
reliability and accuracy are limited since the work-sites of the
robot are filled with noise and thermal disturbances, reducing
the sensor’s reliability. On top of this, force sensors could lead
to the falling of the structure stiffness of manipulators, which
is one of the most essential defects for manipulators executing
grinding tasks. To solve these problems, some approaches
using no force sensor have been presented [4],[5]. To ensure
the stabilities of the constrained motion, those force and
position control methods have utilized Lyapunov’s stability
analysis under the inverse dynamic compensation [6]-[8].
Their force control strategies have been explained intelligibly
in books [9],[10] and recently interaction control for six-
degree-of-freedom tasks has been compiled in a book [11].

Those former classical robot controlling approaches can be
classified into two broad categories [8]: impedance control
and hybrid (force/position) control. In impedance control,
a prescribed dynamic relation is sought to be maintained
between the robot end-effector’s force exerting to a object con-
straining the end-effector and position displacement toward
the direction vertical to the object’s surface [12]. In hybrid
control, the end-effector’s force is explicitly controlled in
selected directions and the end-effector’s position is controlled
in the remaining (complementary) directions [1].

The hybrid control approaches can be further classified into
three main categories: 1) explicit (model based) hybrid control
of rigid robots in elastic contact with a compliant environment,
e.g., [13],[14], in which the end-effector force is controlled by

directly commanding the joint torques of the robot based on
the sensed force error; 2) implicit (position/velocity based)
hybrid control of rigid robots in elastic contact with a com-
pliant environment, e.g., [15], in which the end-effector force
is controlled indirectly by modifying the reference trajectory
given into an inner loop joint position/velocity controller
based on the sensed force error; and 3) explicit (model based)
hybrid control of rigid robots in hard contact with a rigid
environment, e.g., [1],[3].

According to these classified categories, our force/position
control approach named as Constraint-Combined Control,
which will be detailly introduced later should be classified
into category 3). In all the former force/position controlling
methods of hybrid control of category 1) and 2), the contact
surface’s compliant characteristics must be properly taken into
account since it will affect force control procedure. As a result,
when contact constraint force is analyzed, process the end-
effector contacting with constraint surface is being expressed
as a motion equation with spring model, which is a differential
function with time-varying.

However, the work-piece being ground by our grinding
robot in this paper is iron, of which the spring constant is
so huge that we can ignore the deformation of the work-
piece caused by the contacting force with robot’s end-effector.
So the contact process of the grinder can be just thought as
non-dynamical process but a kinematical one, there is no mo-
tion occurred in vertical direction against contacting surface.
Therefore, in our research we don’t use the time-differential
motion equation to analyze contacting vertical process to the
work-piece, on the contrary, we consider an algebraic equation
as the constraint condition to analyze this contact vertical
force. Constraint-combined Force Controller based on this
algebraic equation has the ability to achieve the force control
without time delay, moreover, force error will not be affected
by the dynamical motion along to the surface in horizonal
direction. In explicit hybrid control field in category 3), some
former researches have noticed this “just an immediate contact
result but no motion occurred” problem and try to solve it by
using force or torque sensor. But since force or torque sensor
is so costly, we consider a new force / position control method
without using sensors. Therefore, with these differences from
those former force control methods, we can announce that
Constraint-Combined force / position control method without
using sensors introduced in this paper can be thought to be
essentially different from methods proposed so far.
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Eq.(1), which has been pointed out by Hemami [16] in
the analysis of biped walking robot, denotes also algebraic
relation between the input torque τ of the robot and exerting
force to the working object Fn, when robot’s end-effecter
being in touch with a surface in 3-D space:

Fn = a(x1,x2) − A(x1)τ , (1)

where, x1 and x2 are state variables. a(x1,x2) and A(x1) are
scalar function and vector one defined in following section.

A strategy to control force and position proposed in this
paper is also based on Eq.(1). Contrarily to Peng’s Method
[7] to use Eq.(1) as a force sensor, we used the equation
for calculating τ to achieve a desired exerting force Fnd.
Actually, the strategy is based on two facts of Eq.(1) that have
been ignored for a long time. The first fact is that the force
transmission process is an immediately process being stated
clearly by Eq.(1) providing that the manipulator’s structure is
rigid. Contrarily, the occurrence of velocity and position is
a time-consuming process. By using this algebraic relation,
it’s possible to control the exerting force to the desired one
without time lag. Another important fact is the input gener-
alized forces have some redundancy against the constrained
generalized forces in the constrained motion. Based on the
above analyses, we had confirmed our force / position control
method can realize the grinding task through real grinding
robot [17], [18].

In this paper, position and force control performances of our
new controller [17] are confirmed by grinding experiments,
especially on the view point that the force control space and
the position control space are divided into orthogonal spaces
being complement each other, that is, force space is defined by
range space of A and the other is null space of A, (I−A+A).

The problem to be solved in our approach is that the
mathematical expression of algebraic constraint condition
should be defined in the controller instead of the merit of not
using force sensor. Grinding task requires on-line estimation
of changing constraint condition since the grinding is the
action to change the constraint condition in nature. In this
paper, we estimate the object’s surface using the grinder as a
touch sensor. In order to give the system the ability to grind
any working object into any shape, we focus on how to update
the constraint condition in real time, obtaining the result that
spline function is best for on-line shape estimation. Based
on the above preparation we constructed a continuous shape-
grinding experiment to evaluate the proposed shape-grinding
system, resulting in having proven the validity of our system
to have the performance to adapt for grinding to desired-shape
without force sensor.

II. ANALYSIS OF GRINDING TASK

Generally speaking, the grinding power is related to the
metal removal rate(weight of metal being removed within unit
time), which is determined by the depth of cut, the width of
cut, the linear velocity of the grinding wheel, the feed rate
and so on. There are many empirical formulae available for
the determination of grinding power, and the desired force

Generalized Surface

Grinding Wheel

Link l

Link l-1

Link 1

Fig. 1. A Grinding Robot

trajectory can then be planned according to the power. The
normal grinding force Fn is exerted in the perpendicular
direction of the surface. It is a significant factor that affects
ground accuracy and surface roughness of workpiece. The
value of it is also related to the grinding power or directly to
the tangential grinding force as

Ft = KtFn, (2)

where, Kt is an empirical coefficient, Ft is the tangential
grinding force. The axial grinding force Fs is proportional
with the feed rate, and is much smaller than the former force.

Eq. (2) is based on the situation that position of the grinding
cutter is controlled like currently used machining center. But
when a robot is used for the grinding task, the exerting force
to the object and the position of the grinding cutter should be
controlled simultaneously. The Fn is generally determined by
the constrained situation, and it is not suitable to apply Eq.
(2) to grinding motion by the robots.

III. MODELLING

A. Constrained Dynamic Systems

Hemami and Wyman have addressed the issue of control
of a moving robot according to constraint condition and
examined the problem of the control of the biped locomotion
constrained in the frontal plane. Their purpose was to control
the position coordinates of the biped locomotion rather than
generalized forces of constrained dynamic equation involved
the item of generalized forces of constraints. And the con-
strained force is used as a determining condition to change the
dynamic model from constrained motion to free motion of the
legs. In this paper, the grinding manipulator shown in Fig. 1,
whose end-point is in contact with the constrained surface,
is modelled according Eq. (3) with Lagrangian equations of
motion in term of the constraint forces, refering to what
Hemami and Arimoto have done:

d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (3)

where, Jc and Jr satisfy,

Jc =
∂C

∂q
/ ‖ ∂C

∂r
‖= ∂C

∂r

∼
Jr / ‖ ∂C

∂r
‖,

∼
Jr=

∂r

∂q
, JT

r =
∼
Jr

T

ṙ/ ‖ ṙ ‖,
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r is the l position vector of the hand and can be expressed as
a kinematic equation ,

r = r(q). (4)

L is the Lagrangian function, q is l(≥ 2) generalized coor-
dinates, τ is l inputs. The discussing robot system does not
have kinematical redundancy. C is a scalar function of the
constraint, and is expressed as an equation of constraints

C(r(q)) = 0, (5)

Fn is the constrained force associated with C and Ft is the
tangential disturbance force.

Eq. (3) can be derived to be

M(q)q̈+H(q, q̇)+G(q)= τ +JT
c (q)Fn−JT

r (q)Ft, (6)

where M is an l × l matrix, H and G are l vectors.
The state variable x is constructed by adjoining q and q̇:
x = (xT

1 ,xT
2 )T =(qT , q̇T )T . The state-space equation of the

system are
ẋ1 = x2,

ẋ2 = −M−1(H(x1,x2) + G(x1))
+M−1(τ + JT

c (x1)Fn − JT
r x1)Ft), (7)

or in the compact form
ẋ = F (x, τ , Fn, Ft), (8)

Using the inverted form of combination from Eq. (5) and
Eq.(8) (this part had been detailedly introduced in [19] by
us), Fn can be expressed as

Fn = Fn(x, τ , Ft), (9)

or in a more detailed form

Fn = [(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 ‖ ∂C

∂r
‖

{−[
∂

∂q
(
∂C

∂q
)q̇]q̇+(

∂C

∂q
)M−1(H(q, q̇)+G(q)+Jr

T Ft)}

−[(
∂C

∂q
)M−1(

∂C

∂q
)T ]−1 ‖ ∂C

∂r
‖ {(∂C

∂q
)M−1}τ

4
= a(x1,x2) + A(x1)JT

r Ft − A(x1)τ , (10)

where, a(x1,x2) is a scalar representing the first term in the
expression of Fn, and A(x1) is an l vector to represent the
coefficient vector of τ in the same expression. Eq. (8) and
Eq. (9) compose a constrained system that can be controlled,
if Fn = 0, describing the unconstrained motion of the system.

Substituting Eq. (10) into Eq. (7), the state equation of the
system including the constrained force (as Fn > 0 ) can be
rewritten as

ẋ1 = x2,

ẋ2 = −M−1[H(x1,x2) + G(x1) − JT
c (x1)a(x1,x2)]

+M−1[(I − JT
c A)τ + (JT

c A − I)JT
r Ft], (11)

Solutions of these dynamic equation always satisfy the con-
strained condition Eq. (5).

B. Shape grinding

In the past, we did the grinding experiment one time when
working surface is flat to verify the feasibility of this force-
sensorless position/force control method [17]. At that time, we
just could do flat grinding work in experiment which is shown
in Fig. 4. And then we did the continuous shape grinding
simulations to try to extend the grinding ability of our grinding
robot [19]. Now in this paper, the continuous shape grinding
experiment which has been done by the proposed force
sensorless position/force control method will be introduced.

To make the grinding task to be different from the former
flat grinding experiment, we want to grind the work-piece into
the one with different kinds of shapes, for example, grinding
the flat surface into a curved one, just like Fig. 3. In Fig. 3,
we can find that the desired working surface is prescribed (it
can be decided by us.), which means the desired constrained
condition Cd is known, so

Cd = y − fd(x) = 0 (12)

But the constrained condition C(j) (j = 1, 2, ···, d−1) changed
by the previous grinding which is in the Dynamic System of
Fig. 2 is hard to defined as an initial condition. So we define

C(j) = y − f (j)(x) = 0 (13)

where, y is the y position of manipulator’s end-effector
in the coordinates Σw depicted in Fig. 3 and we assume
C(1) is known, that is to say, f (1)(x) is initially defined.
f (j)(x) is the working surface remained by i-th grinding.
And f (j)(x) is a function passing through all points, (x1,
f (j)(x1)), (x2, f (j)(x2)), · · ·, (xp, f (j)(xp)), these observed
points representing the (j)-th constraint condition obtained
from the grinding tip position since we proposed previously
the grinding tip used for the touching sensor of ground new
surface. Here we assume f (j)(x) could be represented by
a polynomial of (p − 1)-th order of x. Given the above p
points, we can easily decide the parameters of polynomial
function y = f (j)(x). If the current constrained condition
can be got successfully, which means the current working
surface f (j)(x) can be detected correctly, the distance from
the current working surface to the desired working surface

Cd

C(j)
C(2)
C(1)

…

work-piece desired working surface

Åh

current working surface

link1

link2

grinder
Üw
x

y

Fig. 3. The model of shape grinding
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Fig. 2. Shape-grinding position / force control system

which is expressed as ∆h(j) shown in Fig. 3 can be obtained
easily.

∆h(j)(xi) = fd(x)
∣∣
x=xi

− f (j)(x)
∣∣
x=xi

(14)

In this case, we can obviously find that the desired constrained
force should not be a constant. It should be changed while
∆h(j) changes. So we redefine the desired constrained force
F

(j)
nd as a function of ∆h(j), shown as follows:

F
(j)
nd (xi) = k

′
∆h(j)(xi) (15)

where k
′

is a constant, and k
′
= 1000 in our experiment.

IV. FORCE AND POSITION CONTROLLER

A. Controller using predicted constraint condition

Reviewing the dynamic equation(Eq. (3)) and constraint
condition(Eq. (5)), it can be found that as l > 1, the number of
input generalized forces is more than that of the constrained
forces. From this point and Eq. (10) we can claim that there
is some redundancy of constrained force between the input
torque τ , and the constrained force Fn. This condition is
much similar to the kinematical redundancy of redundant
manipulator. Based on the above argument and assuming that,
the parameters of the Eq. (10) are known and its state variables
could be measured, and a(x1,x2) and A(x1) could be
calculated correctly, which means that the constraint condition
C = 0 is prescribed. As a result, a control law is derived and
can be expressed as

τ = −A+(x1)
{

Fnd−a(x1,x2) − A(x1)JT
RFt

}

+(I − A+(x1)A(x1))k, (16)

where I is a l×l identity matrix, Fnd is the desired constrained
forces, A(x1) is defined in Eq. (10) and A+(x1) is the
pseudoinverse matrix of it, a(x1,x2) is also defined in Eq.
(10) and k is an arbitrary vector which is defined as

k =
∼
Jr

T

(q)
{

Kp(rd − r) + Kd(ṙd − ṙ)
}

, (17)

where Kp and Kd are gain matrices for position and the
velocity control by the redundant degree of freedom of A(x1),
rd(q) is the desired position vector of the end-effector along
the constrained surface and r(q) is the real position vector
of it. Eq. (17) describes the 2-link rigid manipulator’s arm
compliance, we have to set Kp and Kd with a reasonable
value, otherwise high-frequency response of position error
will appear. The controller presented by Eq. (16) and Eq.
(17) assumes that the constraint condition C = 0 be known
precisely even though the grinding operation is a task to
change the constraint condition. This looks like to be a
contradiction, so we need to observe time-varying constraint
conditions in real time by using grinding tip as a touch sensor.

The time-varying condition is estimated as an approxi-
mate constrained function by position of the manipulator
hand, which is based on the estimated constrained surface
location. The estimated condition is denoted by Ĉ = 0(in
this paper, “∧” means the situation of unknown constraint
condition). Hence, a(x1,x2) and A(x1) including ∂Ĉ/∂q
and ∂/∂q(∂Ĉ/∂q) are changed to â(x1,x2) and Â(x1) as
shown in Eq. (19), Eq. (20). They were used in the later
simulations of the unknown constrained condition. As a result,
a controller based on the estimated constrained condition is
given as

τ̂ = −Â
+
(x1)

{
Fnd−â(x1,x2) − Â(x1)JT

RFt

}

+(I − Â
+
(x1)Â(x1))k, (18)

mc
−1‖ ∂Ĉ

∂r
‖{−[

∂

∂q
(
∂Ĉ

∂q
)q̇]q̇ + (

∂Ĉ

∂q
)M−1(h + g)}
4
= â(x1,x2) (19)

mc
−1‖ ∂Ĉ

∂r
‖{(∂Ĉ

∂q
)M−1} 4

= Â(x1) (20)

Figure 2 illustrates a control system constructed according
to the above control law that consists of a position feedback
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control loop and a force feedfoward control. It can be found
from Eq. (10) and Eq. (18) that the constrained force always
equals to the desired one explicitly if the estimated constraint
condition equals to the real one, i.e., C = Ĉ and Ft = 0.
This is based on the fact that force transmission is an instant
process. In the next section, we will introduce a prediction
method which is used to get Ĉ in current time.

 

Fig. 4. The experiment when the constraint is known

for force control, then it happens that A(q)(∂C/∂q)T / ‖
∂C/∂r ‖= I(identical matrix).

B. On-line Estimation of Constraint

As it is stated in former section, we had done the grinding
experiment when working surface is flat and known, and now
curve shape-grinding is proposed to be solved in our research.
But how to predict the unknown constraint surface is the nodus
and key point. Here, an unknown constrained condition is
estimated as following,

Assumptions
1. The end point position of the manipulator during perform-
ing the grinding task can be surely measured and updated.
2. The grinding task is defined in x − y plane.
3. When beginning to work, the initial condition of the end-
effector is known and it has touched the work object.
4. The chipped and changed constraint condition can be
approximated by connections of minute sections.

1) On-line estimation method: Some relations between
position value and time value are written here, in this section,
you’d better remember these relations because it will help you
understand the concept of “on-line estimation method”.

xi−1 = x(ti−1) = x(t0 + (i − 1)∆t), (21)

xi = x(ti) = x(t0 + i∆t), (22)

xi+1 = x(ti+1) = x(t0 + (i + 1)∆t). (23)

Before on-line estimation method is introduced, let’s take

(x0; y0)
(xd; yd)

(xi; yi)(xiÄ1; yiÄ1)

(xi+1; yi+1)

j Ä th grinding surface

link 1

link 2

grinder

f j(xi) = yi = 0:5173

Fig. 5. Situation of known constraint surface model

a look at the situation of known flat constraint surface. For
example, just like the grinding surface shown in Fig. 5, the
expression of this surface is straight linear equation

f j(xi) = yi = 0.5173(i = 0, 1, 2, 3...n), (24)

and point (xi, yi) is the current position of grinding robot’s
end-effector. As a result, points before (xi, yi) have been
already ground by grinder when t <= t0 + i∆t. In the next
moment, when time ti+1 = t0+(i+1)∆t, constraint condition

Cj
i+1 = y − f j(xi) = 0 (25)

can be used for calculation of deriving torque τ . And also,
grinder will move to next point (xi+1, yi+1) with no hesitation
driven by the input torque τ . By “no hesitation”, I mean on
this known surface, grinder has no where to go but point
(xi+1, yi+1), since this whole grinding surface f j(xi) = yi =
0.5173(i = 0, 1, 2, 3...n) is determined obviously.

However, we all know that the grinding surface on work-
piece after ground will turn into some kind of irregular shape
that no mathematic equation can express. what should we do
to obtain the future constraint condition Cj

i+1 if the grinding
surface is unknown? Like the situation shown in Fig. 6, the
grinding surface is not a simple straight line or some curve
line which can be defined and expressed by some certain curve
equation, after current time ti = t0 + i∆t, where should the
grinder go? Grinding robot has no idea since input torque τ
can not be derived without constraint condition Cj

i+1.

(x0; y0)
(xd; yd)

(xi; yi)
(xiÄ1; yiÄ1)

(xi+1; yi+1)

j Ä th grinding surface

link 1

link 2

grinder

f j(xi) = yi =?

Fig. 6. On-line estimation model

To solve this problem, we consider that some kind of
on-line estimation function should be utilized to imitate the
unknown grinding surface, in order to obtain an unknown
constraint condition ˆ

Cj
i+1, which can be used to calculate the

input torque τ̂ .
Therefore, now let’s take a look at Fig. 6, in current time

ti = t0 + i∆t, end-effector of grinding robot is at position
(xi, yi), so far, point (xi−1, yi−1) and point (xi, yi) have
become known because they were just ground by the grinder
in the moment ti−1 = t0 + (i − 1)∆t and ti = t0 + (i)∆t
and the information of point (xi−1, yi−1) and (xi, yi) can
be derived through the position of robot’s end-effector. Now
build an estimation function going through these two points,
for example, a quadratic spline function

f j
i (xi) = fspline(xi) = yi = αi(x − xi−1)2+

βi(x − xi−1) + γi
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x ∈ [xi−1, xi](i = 0, 1, 2, 3...n), (26)

we can figure out the coefficients αi, βi and γi uniquely
according to the information of points (xi−1, yi−1), (xi, yi)
and derivation at point (xi, yi) as follows.

(xiÄ1; yiÄ1)
(xi; yi)

f ji (xiÄ1) = yiÄ1 f ji (xi) = yi

f j
0

i+1(xi) = f
j0

i (xi)

Ii+1 = [xi; xi+1]

Ii = [xiÄ1; xi]

Fig. 7. Fitting by quadratic spline curve

Firstly, let f j
i (xi) satisfy the following conditions shown in

Fig. 7.
(A)Go through two ends of the interval

yi−1 = f j
i (xi−1) (27)

yi = f j
i (xi) (28)

(B)First-order differential of the spline polynomials are
equal at the end-point of adjoined function.

df j
i+1(x)
dx

∣∣∣
x=xi

=
df j

i (x)
dx

∣∣∣
x=xi

f j′

i+1(xi) = f j′

i (xi) (29)

Inputting (26) into (27), (28) and (29), we can obtain:

γi = yi−1, (i = 1, 2, · · ·, n) (30)
βi+1 = 2ui − βi, (i = 1, 2, · · ·, n − 1) (31)

αi =
βi+1 − βi

2hi
, (i = 1, 2, · · ·, n − 1) (32)

Where, hi = xi − xi−1, ui = yi−yi−1
hi

. From the above-

mentioned result, the constrained conditional expression Ĉ
j

i+1

can be updated step by step.
Make an expansion of the interval between point

(xi−1, yi−1) and point (xi+1, yi+1) on the grinding surface
which is shown in Fig. 8, we can see the first half of grinding
surface before the current position - point (xi, yi) is shown
by black line, which means this part has been already ground,
and second half after piont (xi, yi) is shown by break point
line, which means this part has not been ground yet. Now let’s
pay our attention on the interval between point (xi, yi) and
point (xi+1, yi+1), which means this part has been estimated
by quadratic spline function. With the estimation function the
next point (xi+1, yi+1) can easily be found to be known, and
then this point can be the position where grinder should go in
the next moment when ti+1 = t0+(i+1)∆t, At the same time,
this imitative function can be used as the on-line estimation
function to obtain the unknown constraint condition

Ĉj
i+1 = y − f j

i (x) = y − [αi(x − xi−1)2 + βi(x − xi−1)

+γi] = 0, (xi ≤ x ≤ xi+1) (33)

during the period when grinder goes from point (xi, yi) to
point (xi+1, yi+1), which means in this unknown interval

Current position of grinder

grinder
Ground surface

Unground surface

ttitiÄ1 ti+1

(xi+1; yi+1)

(xiÄ1; yiÄ1)
(xi; yi)

Time interval that              is usedĈji+1

Fig. 8. The expansion of interval between point (xi−1, yi−1) and point
(xi+1, yi+1) on the on-line estimation model

on the grinding surface, the future unground part (xi, yi) to
(xi+1, yi+1) can be ground by this on-line estimation method
based on the information obtained from already ground part
(xi−1, yi−1) to (xi, yi). So, in the situation of unknown
constraint surface, using this on-line estimation method point
to point, the problem for grinding robot that it doesn’t know
where it should go in future time can be solved theoretically.

V. EXPERIMENT

A. Experiment purpose and devices

In this section, we will introduce a curve surface shape-
grinding experiment on an iron work-piece with this proposed
position/force control method. During this experiment, con-
straint condition Ĉj

i+1 which has been explained before is
always changing because of the changing constraint working
surface. Based on the previous simulation result[19], we
choose Quadratic spline function to estimate the changing
constraint surface and build the constraint condition Ĉj

i+1. Fig.
3 shows the experiment’s grinding task. In Fig. 3, we can find
that the desired surface is known(it can be determined by us,
here we use Eqn. 34 to be this desired surface)

fd(xi) = 0.5173 + 0.015 cos(5πxi +
π

2
)[m]

(0.0m ≤ xi ≤ 0.2m) (34)

and also the initial flat surface is known(Eqn. 35)

f1(xi) = 0.5173[m] (0.0m ≤ xi ≤ 0.2m) (35)

TABLE I
PARAMETERS OF GRINDING ROBOT

link 1 link 2
mass of link [kg] m1 = 12.28 m2 = 7.64
length of link [m] l1 = 0.3 l2 = 0.5

gravity center of link [m] a1 = 0.24 a2 = 0.25
general coordinates [rad] q1 q2

input torque [N] τ̂1 τ̂2

Here we notice that although the initial constraint surface
f1(xi) and desired constraint surface fd(xi) are known al-
ready, those functions f j(xi) who can express the constraint
working sufaces between f1(xi) and fd(xi) are unknown.
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Therefore, we utilize the quadratic spline function to estimate
them.

f j(xi) = fspline(xi) (0.0m ≤ xi ≤ 0.2m) (36)

The initial constraint surface to be ground is defined as
(x, y) = (0.0, 0.5173) ∼ (0.2, 0.5173)[m] in time 5.0[s], and
the desired velocity along the surface is 0.04[m/s]. The desired
force, Fnd, is set as

F j
nd(xi) = k

′
∆hj(xi)[N ] (k = 1000) (37)

∆h(xi) indicates the distance between the current surface and
desired surface, shown in Fig. 3.

∆hj(xi) = fd(xi) − f j(xi) = fd(xi) − fspline(xi) (38)

Grinding robot’s parameters are listed in Table. I, and there
are two motors(produced by YASKAWA Ltd.) mounted on
those two links used in torque control mode whose output
torque can be designated by the input voltage to the amplifier
to each motor, where motor of AC(400[W ], 200[V ]) drives
link 1, motor of AC (200[W ], 200[V ]) drives link 2. Link
1’s Torque/Voltage is 0.42[Nm/V], link 2’s Torque/Voltage is
0.21[Nm/V].

Fig. 9. Performance of shape-grinding experiment
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Fig. 10. Comparison of actual and estimated shape during 10 times’
experiment

B. Experiment results

In this section, we will show and introduce the final 10
times’ shape-grinding experiment result. It takes 5 seconds
for each time, so in total there are 50 seconds had been used
to do this experiment. Fig. 9 shows the performance of this
grinding robot during 10 times’ shape grinding experiment.
The left figure of Fig. 10 shows the 10 times’ working surfaces
ground by robot’s grinder, which is mounted on the tip of
grinding robot’s hand, and meanwhile the right one in Fig. 10
has recorded the surfaces’ functions which are estimated by
quadratic spline function. Compare these two figures, we can
tell that the estimated trajectory has almost the same value of
the real ground surfaces.

Desired shape of this experiment has been recorded and
shown in Fig. 11. Here we set the desired shape as a curve

with a deepest position 150mm, and the work-piece used in
this shape-grind experiment is an iron board, which is very
hard to grind, so if we want to grind the whole curve shape,
experiment should be done by almost 300 times. But to verify
the effectiveness of this force-sensorless position/force control
method, 10 times’ successful experiment will do if we can
obtain an obvious small curve shape after grinding work.
Therefore, although this very deep desired curve shape has
been set, it is just used as a generator of desired grinding
force Fnd through Eqn. 37.
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Fig. 11. Desired shape of grinding experiment
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Fig. 12. Distance between current grinding surface and desired surface
during 10 times’ grinding experiment

The distance between current grinding surface and desired
surface during 10 times’ grinding experiment, expressed by
∆hj(xi) is shown in Fig. 12. The desired grinding force Fnd

calculated by Eqn. 37 is shown by the left figure in Fig. 13.
From this figure, we can see that the desired grinding force’s
value is bigger than 10N sometimes, and smaller than 0N at
the beginning point, so to make sure that stable touch between
grinder and work-piece can be obtained in order to do this
grinding experiment safely, in the controller system we set a
threshold to select those safe and useful value to be utilized,
which is shown by the right figure in Fig. 13.
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Fig. 13. Desired constraint force Fnd decided by ∆h in 10 times’
experiment
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Fig. 14. Change of torque τ̂1,2 during 10 times’ experiment

The input torques τ̂1,2 calculated with the unknown con-
straint condition Ĉ are shown in Fig. 14. Since the unknown
constraint condition Ĉ is built by quadratic spline estimation
method, the viberation of quadratic spline function’s coeffi-
cient Ai(shown in Fig. 15) is affecting the input torques τ̂1,2

during the whole experiment time. Fig. 16 shows the real
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Fig. 16. Real constraint force Fn measured by force sensor

constraint grinding force measured by a force sensor. After
10 times grinding, we can see the iron board has been ground
a lot in Fig. 17, and also a small curve shape has been ground
out although the iron board is very hard to grind. The deepest
position on this small curve is about 0.5mm, so according
to this grinding speed, we believe that if the grinding robot
to be told to do this shape-grinding experiment more than 50
times, we can get a much bigger curve shape with a more
than 2mm’s deepest position.

Through this 10 times’ continuous shape-grinding ex-
periment result, the effectiveness and feasibility of force-
sensorless position/force control method can be verified.

Fig. 17. The appearance of ground work-piece

VI. CONCLUSIONS

Constraint dynamic equation of manipulator is expressed
as an explicit function of the manipulator’s state and inputs.
Manipulator’s hand tip is used as a position sensor, to supply
those necessary information for this proposed force and po-
sition control methodology. Hence, the system is controlled
without any force or torque sensor. The control law presented
is constructed by using the dynamical redundancy of con-
straint systems. The controller designed by this control law
can be used for simultaneous force and position control.

Simulation has been done to verify the effectiveness of
four constraint condition estimation methods[19], and the
quadratic spline function is chosen to estimate the unknown
constraint surface in shape-grinding experiment. 10 times’
shape-grinding experimnet has been done based on the pro-
posed force and position control law without force or torque
sensor. Although there are still some problems left in the
grinding robot, but the force-sensorless position/force control
method and continuous shape-grinding practicability has been
verified through the experiment result. In the future, we
believe that this force-sensorless position/force control method
can be utilized in many robotic control fields.
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