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Abstract—Continuous catching and releasing experiment of
several fishes makes the fishes find some escaping strategies such
as staying stationary at corner of the pool. To make fish-catching
robot intelligent more than fishes’ adapting and escaping abilities
from chasing net attached at robot’s hand, we thought something
that goes beyond the fishes’ adapting intelligence will be required.
Here we propose a chaos-generator comprising Neural-Network-
Differential-Equation(NNDE) and an evolving mechanism to have
the NNDE generate chaotic trajectories as many as possible. We
believe that the fish could not be adaptive enough to escape
from chasing net with chaos motions that have many different
chaos, since unpredictable chaotic motions of net may go beyond
the fishes’ adapting abilities to the net motions. In this report
we introduce the chaos generating system by NNDE, which can
produce many kinds of chaos theoretically, and then analyze the
chaos with Lyapunov number, Poincare return map and initial
value sensitivity.

I. INTRODUCTION

In recent years, visual tracking and servoing in which
visual information is used to direct the end-effector of a
manipulator toward a target object has been studied in some
researches [1], [2]. A new trend of machine intelligence [3]
that differs from the classical AI has been applied intensively
to the field of robotics and other research areas like intelligent
control system. Typically, the animal world has been used
conceptually by robotics as a source of inspiration for machine
intelligence. For the purpose of studying animal behavior and
intelligence, the model of interaction between animals and
machines is proposed in researches like [4]. In our previous
research, the fish emotional behavior has also been examined
and the robot with adaptive ability to react to the fish status
has been conceived. Another crucial characteristic of machine
intelligence is that the robot should be able to use input
information from sensor to know how to behave in a changing
environment and furthermore can learn from the environment
for safety like avoiding obstacle. As known universally that the
robot intelligence has reached a relatively high level, still the
word “intelligence” is an abstract term, so the measurement
of the intelligence level of a robot has become necessary.
A practical and systematic strategy for measuring machine
intelligence quotient (𝑀𝐼𝑄) of human-machine cooperative
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Fig. 1. Fish Catching system PA10

systems is proposed in [5]. In our approach to pursue intelli-
gent robot, we will evaluate the intelligence degree between
fishes and the robot by Fish-Catching operation. We think
that the system combined with chaos be smarter than the fish
when the robot can beat the fish by catching it successfully
even after the fish finds out some escaping strategy. As we
did not find the research about the intelligence comparison
between animal and robot, we mainly dedicate ourselves to
constructing a smart system that is more intelligent than the
fish. We consider that the competitive relation can be very
meaningful as one way to discuss robotic intelligence. So
we not only employ the inspiration of animal’s behavior for
robot intellectualization, we can also conceive a robot that can
exceed the animal intelligence. By evolutionary algorithms [6],
Visual Servoing and Object Recognizing based on the input
image from a CCD camera mounted on the manipulator has
been studied in our laboratory(Fig.1) [7], and we succeeded in
catching a fish by a net attached at the hand of the manipulator
based on the real-time visual tracking under the method of
Gazing GA [8] to enhance the real-time searching ability.

We have learned that it is not effective for fish catching to
simply pursue the current fish position by visual servoing with
velocity feedback control. Actually, the consistent tracking is
sometimes impossible because the fish can alter motion pattern
suddenly maybe under some emotional reasons of fear. Those
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behaviors are thought to be caused by emotional factors and
they can also be treated as a kind of innate fish intelligence,
even though not in a high level.

While observing the fishes’ adapting behavior to escape in
the competitive relations with the robot, that is continuous
catching/releasing experiments, we found that we can define a
“Fish’s Intelligent Quotient”(FIQ)[9] representing decreasing
velocity of fish number caught by the net through continuous
catching/releasing operation. Through this measure we can
compare the innate intelligence of the fish and the artificial
intelligence of the robot.

It has been well known that many chaotic signals exist in
our body, for example, in nerves, in motions of eye-balls and
in heart-beating periods [10], [11].

Therefore we thought that imitating such animal’s internal
dynamics and putting chaos into robots have something mean-
ingfulness to address fishes’ intelligence. We embed chaos into
the Robot Dynamics in order to supplement the deficiency of
our Fish-Catching system.

Therefore what we have to pay attention to the fishes’ nature
that the fish does conceive always escaping strategy against
new stressing situation. This means that robot’s intelligence
to override the fishes’ thinking ability needs infinite source
of idea of catching motions. To generate such catching mo-
tion, we propose in this report Neural-Network-Differential-
Equation(NNDE) that can produce neural chaos and inherently
have a possibility to be able to generate infinite varieties of
chaos, derived from the neural network’s ability to approx-
imate any nonlinear function as accurate as with desirable
precision[12], [13].

II. FISH TRACKING AND CATCHING

The problem of recognition of a fish and detection of its
position/orientation is converted to a searching problem of
𝒓(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]𝑇 in order to maximize 𝐹 (𝒓(𝑡)), where
𝐹 (𝒓(𝑡)) represents correlation function of images and fish-
shaped matching model. 𝐹 (𝒓(𝑡)) is used as a fitness function
of GA [8]. To recognize a target in a dynamic image input by
video rate, 33 [fps], the recognition system must have real-
time nature, that is, the searching model must converge to
the fish in the successively input raw images. An evolutionary
recognition process for dynamic images have been realized
by such method whose model-based matching by evolving
process in GA is applied at least only one time to one raw
image input successively by video rate. We named it as “1-
Step GA” [7]. When the converging speed of the model to
the target in the dynamic images should be faster than the
swimming speed of the fish in the dynamic images, then the
position indicated by the highest genes represent the fish’s
position in the successively input images in real-time. We have
confirmed that the above time-variant optimization problem to
solve 𝒓(𝑡) maximizing 𝐹 (𝒓(𝑡)) could be solved by “1-Step
GA”. 𝒓(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]𝑇 represents the fish’s position in
Camera Frame whose center is set at the center of catching net,
then 𝒓(𝑡) means position deviation from net to Fish, means
𝒓(𝑡) = Δ𝒓(𝑡) The desired hand velocity at the 𝑖-th control

period �̇�𝑖𝑑 is calculated as

�̇�𝑖𝑑 = 𝑲𝑃Δ𝒓𝑖 +𝑲𝑉 (Δ𝒓𝑖 −Δ𝒓𝑖−1) (1)

where Δ𝒓𝑖 denotes the servoing position error detected by 1-
Step GA [7]. 𝑲𝑃 and 𝑲𝑉 given are positive definite matrix
to determine PD gain. Now we add chaos items to (1) above,
and we also need to redefine the meaning of �̇�𝑖𝑑.

The simple PD servo control method given by (1) is
modulated to combine a visual servoing and chaos net motion
into the controller as follows,

Δ𝒓𝑖 = 𝑘1 ⋅Δ𝒓𝑖𝑓𝑖𝑠ℎ + 𝑘2 ⋅Δ𝒓𝑖𝑐ℎ𝑎𝑜𝑠 (2)

Here Δ𝒓𝑖𝑓𝑖𝑠ℎ =
[
Δ𝑥𝑖

𝑓𝑖𝑠ℎ Δ𝑦𝑖𝑓𝑖𝑠ℎ
]
, is the tracking error

of fish from the center of camera frame, and Δ𝒓𝑖𝑐ℎ𝑎𝑜𝑠 =[
Δ𝑥𝑖

𝑐ℎ𝑎𝑜𝑠 Δ𝑦𝑖𝑐ℎ𝑎𝑜𝑠
]

denotes a chaotic oscillation in 𝑥− 𝑦
plane around the center camera frame. Therefore the hand
motion pattern can be determined by the switch value 𝑘1 and
𝑘2. 𝑘1 = 1 and 𝑘2 = 0 indicate visual servoing, and 𝑘1 = 0
and 𝑘2 = 1 indicate the net will track chaotic trajectory made
by NNDE being explained later in this report. The desired
joint variable �̇�𝑑 is determined by inverse kinematics from �̇�𝑑
by using the Jacobian matrix 𝑱(𝒒), and is expressed by

�̇�𝑑 = 𝑱+(𝒒)�̇�𝑑 (3)

where 𝑱+(𝒒) is the pseudo inverse matrix of 𝑱(𝒒). The robot
used in this experimental system is a 7-Link manipulator,
Mitsubishi Heavy Industries PA-10 robot.

III. PROBLEM OF FISH-CATCHING

In order to check the system reliability in tracking and catch-
ing process, we kept a procedure to catch a fish and release
it immediately continuously for 30 minutes. We released 5
fishes (length is about 40[mm]) in the pool in advance, and
once the fish got caught, it would be released to the same
pool at once. The result of this experiment is shown in Fig.2,
in which vertical axis represents the number of fishes caught
in successive 5 minutes and horizontal axis represents the
catching time. We had expected that the capturing operation
would become smoother as time passing on consideration that
the fish may get tired. But to our astonishment, the number of
fishes been caught decreased gradually.

The reason of decreased catching number may lie in the
fish learning ability. For example, the fish can learn how to
run away around the net as shown in Fig.3(a) by circular
swimming motion with about constant velocity, having made
a steady state position error that the net cannot reach to the
chasing fish. Or the fish can stay in the opposite corner against
the net in the pool shown in Fig.3(b). And also, the fish can
keep staying within the clearance between the edge of the
pool and the net shown in Fig.3(c) where the net is inhibited
to enter.

To solve these problems, and to achieve more intelligent fish
catching systems, we thought chaos behavior of the net with
many chaotic varieties can be a possible method to overcome
those fishes’ escaping intelligence, since huge variety of chaos
trajectories seems to be unpredictable for the fish to adapt
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Fig. 2. Result of catching number

(a) Motion (1) of a fish

(b) Motion (2) of a fish (c) Motion (3) of a fish

Fig. 3. Fish motion

them. This strategy to overcome fishes’ adaptive intelligence
is based on a hypothesis that unpredictability of the motion of
the chasing net produced by plural chaos can made the fishes’
learning logic confuse, getting the fish catching robot have
made intelligence than the fishes’. Then we propose Neural-
Network-Differential-Equation to generate chaos as many as
possible.

IV. FISH INTELLIGENCE QUOTIENT

To evaluate numerically how fast the fish can learn to
escape the net, we adapted Linear Least-Square approxima-
tion to the fish-catching decreasing tendency, resulting in
𝑦 = −2.429𝑡 + 20.7 as shown in Fig.2. The decreasing
coefficient −2.429 represents adapting or learning velocity of
the fishes as a group when the fishes’ intelligence is compared
with robotic catching. We named the coefficient as “Fish’s
Intelligence Quotient”(FIQ). The larger minus value means
high intelligence quotient of the fish, zero does equal, and
plus does less intelligent than robot’s. To overcome the fishes’
intelligence, more intelligent robotic system needs to track
and catch the fish effectively, in other words it comes to the
problem on how to use the item Δ𝒓𝑖𝑐ℎ𝑎𝑜𝑠 in (2) effectively to
exceed the fish intelligence.

V. VALIDITY OF CHAOS

In 1982, some experiments revealed that mollusk neuron
cells and plant cells have irregular excitement and show
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Fig. 4. Block diagram of Chaos Generation

chaotic nature if gave them periodic current stimulation. In
addition, also chaotic response for periodic current stimulation
had been clarified in the axon of the cuttlefish in 1984. From
these studies, it became clear that the chaos is associated with
biology. In the late 1980s, the relationship between chaos and
function of the nervous system have been discussed. Mpitosos
and colleagues examined the pattern of rhythmic firing of
motor neurons of sea cucumber and showed that frequency
variation of continuous discharge relates to the rhythm of
the movement with chaotic behavior. Thus, chaos exists in
biological behavior. It is decided whether the nerve cell of the
organism is excited by a stimulation signal, and this is because
it follows the theory of the chaos. Therefore, animal behavior
and strategies can be estimated from point of chaos, and
maybe apply to catch fish. There has been presented chaoses
with a simplified model of Hodgkin-Huxley (H-H) model or
BVP(Bonhoeffer-van der Pol) model. Using one chaos model
to produce unpredictable motion add to catching-net behaviors
seems to be effective, however we thought single chaos model
is not adequate to overcome fishes’ escaping idea since the
fishes change their behavior continuously.

VI. NEURAL-NETWORK-DIFFERENTIAL-EQUATION

Lorenz and Rossler models renowned as chaos genera-
tion comprise three differential equations, producing three-
dimensional chaotic trajectory in phase space. Since a Neural-
Network(N.N.) has been proven to have an ability to approx-
imate any non-linear functions with arbitrarily high accuracy,
we thought it is straightforward to make a differential equation
including N.N. so that it can generate plural chaoses by chang-
ing N.N.’s coefficients. We define next nonlinear differential
equation including N.N. function 𝒇(𝒑(𝑡)) as

�̇�(𝑡) = 𝒇(𝒑(𝑡)). (4)

𝒑(𝑡) = [𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)]
𝑇 is state variable. The nonlinear

function of 𝒇(𝒑(𝑡)) in (4) is constituted by N.N.’s connections,
which is exhibited in left part of Fig.4 where the N.N. and
integral function of outputs of N.N. and the feedback of
the integrated value to the inputs of N.N. constitute nonlin-
ear dynamical equation, (4). We call it as Neural-Network-
Differential-Equation.
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VII. CHAOS VERIFICATION METHODS

Since there have been no simple criterion to determine
whether irregular oscillation is a chaos or not, we have to
apply plural evaluations over the irregularities of trajectories
produced by NNDE. The followings are criteria being used
for judging the chaotic characters.

A. Lyapunov exponent

As one of criteria to evaluate a chaos’ character of expan-
sion in time domain, Lyapunov exponent expressed by the
following equation is well known,

𝜆 = lim
𝑁→∞

1

𝑁

𝑁−1∑

𝑖=0

log ∣𝑓 ′(𝑥𝑖)∣, (5)

where positive value can represent that the irregular oscillation
diverts from a standard trajectory, which expands like a
function of 𝑒𝑎𝑡 (𝑎 > 0).

B. Poincare section

The trajectories of the motion made by neural-network-
based nonlinear function (4) is examined by using the Poincare
section to verify further whether the resulted trajectories can
be identified as chaos. Next, the Poincare section is explained.
First of all, we examine an simple closed curve in three
dimensions as shown in Fig5. The plane “A” that intersects
with this closed trajectory pointed by “P” is defined as the
Poincare section.

Pn

Pn+1

Pn+2

A

X n

X n+1

. . . . .

Fig. 5. Poincare section

Fig. 6. poincare return map

The intersecting points are named as 𝑃𝑛, 𝑃𝑛+1,𝑃𝑛+2,⋅ ⋅ ⋅ ,
and corresponding x-axis position on A are 𝑥𝑛

,𝑥𝑛+1,𝑥𝑛+2,⋅ ⋅ ⋅ , which are all pointed to the Poincare
Return Map as 𝑥𝑛,𝑥𝑛+1,⋅ ⋅ ⋅ as shown in Fig.6. With the
poincare return map of Fig.6 representing a shape of “Λ”,
the closed curve has the structure of stretching and folding.
This structure is a basic character of chaos. Looking at
the left half of Fig.6, we can see the inclination coefficient
𝑑𝑥𝑛+1/𝑑𝑥𝑛 > 1 and right half has 𝑑𝑥𝑛+1/𝑑𝑥𝑛 < −1,
representing that left half has expansion and the other does
contraction.

Individual Combination of Connection weight of N.N. 

:::
q1 q2 qn

10011 : : :1 01001 : : :1 11010 : : :0

Fig. 7. Gene of GA

VIII. CHAOS GENERATE SYSTEM

Fig.4 represents the block diagram to find chaos by using
GA and Lyapunov number. This GA is not 1-Step GA,
described in Chapter II but used as a normal GA’s procedure
that evolves genes representing neural network coefficient’s
volume. The trajectory 𝒑(𝑡) in time domain obtained from
Neural-Network-Differential-Equation is used for the calcu-
lation of Lyapunov number. Here, 𝑳 = [𝜆1, 𝜆2, 𝜆3]

𝑇 is a
Lyapunov number. Using this 𝑳 for the evolution of GA,
fitness function is defined as follows,

𝑔 = 𝑘1 ⋅ 𝜆1 − 𝑘2 ⋅ ∣𝜆2∣ − 𝑘3 ⋅ 𝜆3. (6)

This fitness function incorporated the chaotic property of the
Lyapunov spectrum, which is one of factors to be essential
for generating chaos trajectory. Here, because we discuss
three-dimensional chaotic attractor in phase space, there are
3 Lyapunov numbers. The relationship between positive and
negative Lyapunov spectrum is (+, 0,−), which means re-
sulted time trajectory of (4) may be thought to be chaos.
Parentheses indicate the sign of the Lyapunov spectrum. In
other words, 𝜆1 is positive, 𝜆2 is also positive or negative
small values, 𝜆3 is negative case, the fitness function of (6)
appears to have relatively large positive value when 𝜆1 > 0,
𝜆2 ≈ 0, 𝜆3 < 0. In addition 𝑘1, 𝑘2 and 𝑘3 are coefficients.
The gene of GA is defined as shown in Fig.7, with connection
weights of N.N. being 𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]

𝑇 . In this report we
adopted a network of 3 × 6 × 3 as shown in Fig.4, then the
number of connections and their coefficients is 48, i.e., n=48.
The bit length of q is 16 bits. Because the gene is expressed in
binary, converted to decimal and normalized into a range from
0 to 1. Then, generating a trajectory 𝒑(𝑡) based on a given gene
having been determined by GA at one previous generation and
calculating Lyapunov number, and evolving new generation of
gene are repeated. This GA’s evolution can find 𝒒 to have a
highest value of 𝑔 defined by (6), that means possible chaos
trajectory.

IX. VERIFICATION RESULTS

So far we have found four chaos patterns with different
neural coefficients explored by GA mentioned in the previous
section. We named them with a serial number as chaos
01∼chaos 04. The followings are the introduction of those
chaos with each individual character.
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A. Chaos 01

Fig. 8. Generated chaos trajectory 01

1) Lyapunov number: Lyapunov numbers are 𝜆1 =
0.014585, 𝜆2 = −0.003314 and 𝜆3 = −0.165381. These are
corresponding to the Lyapunov spectrum of chaos,(+, 0,−).

2) Sensitivity to initial value: Two time-profile of trajecto-
ries with minutely different initial value are shown in Fig.9.
The trajectories of (𝑥1(𝑡), 𝑦1(𝑡), 𝑧1(𝑡)) are the results that
originated from the initial values of 𝑥1(0) = 1.00, 𝑦1(0) =
1.00, 𝑧1(0) = 1.00 and (𝑥2(𝑡), 𝑦2(𝑡), 𝑧2(𝑡)) are from 𝑥2(0) =
1.01, 𝑦2(0) = 1.01, 𝑧2(0) = 1.01. Trajectories of 𝑥1 and 𝑥2

are shown in Fig.9 .
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Fig. 9. Generated trajectory 01 of x (300[s] to 1100[s])

We can see from Fig.9 that the two trajectories with minute
difference of initial values divert often about 800 seconds
having passed, this means the slight different initial values
make large separation with each other, indicating sensitivity
of initial value, which is one of the character of chaos. As
for y and z coordinates, they are similar, omitted to spare the
space.

3) Poincare return map: Chaos 01’s poincare return map
is shown in Fig.10. One dimensional map can be seen in
Fig.10, from which we can understand that the map represents
expanding (left half of the Fig.10) and contracting (right half)
that are essential characters to generate chaos.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

1+nr

nr

Fig. 10. Poincare return map of Chaos01

Therefore, the property of chaos 01 has been confirmed
from the viewpoint of Lyapunov number, an sensitivity of
initial value , and the Poincare return map.

B. Chaos 02

Fig. 11. Generated chaos Trajectory 02

We searched second chaos by similar produce like chaos 01.
Up to now we have found other three chaos, 02, 03, 04, where
Lyapunov numbers are listed in Table 1, including chaos 01
also.

TABLE I
LYAPUNOV NUMBER

chaos01 chaos02 chaos03 chaos04
𝜆1 0.014585 0.01919 0.015934 0.01208
𝜆2 -0.003314 0.00733 -0.002172 -0.00143
𝜆3 -0.165381 -0.10379 -0.123026 -0.075448

We confirmed all chaos trajectories have the Lyapunov
spectrum of chaos, (+, 0,−).

X. SENSITIVITY OF NEURON’S WEIGHT

We have noticed weight coefficient of N.N. that generated
chaos 03 are almost similar to chaos 04’s. That is, only one
weight coefficient is different, that is “𝑞1” in Fig.12. We think
“𝑞1” is related to the generation of chaos. So we increased the
weight slightly from“-1” and compare their trajectories.
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Fig. 12. Neural Network for nonlinear function generation

The range of 𝑞1 is −1.0 ≤ 𝑞1 ≤ 1.0 and 𝑞1 is increased from
-1.0 by 0.1. In the case of −1.0 ≤ 𝑞1 ≤ −0.4, 0.1 ≤ 𝑞1 ≤ 0.2
and 0.8 ≤ 𝑞1 ≤ 1.0, we cannot consider the trajectory to
be semi-periodic trajectories. On the other hand, the range of
−0.3 ≤ 𝑞1 ≤ 0.0 and 0.3 ≤ 𝑞1 ≤ 0.7 made chaos trajectories
as shown in Fig.14 and 16. The other cases indicate that the
trajectories are expanded to infinity. This result indicated that
continuous changing of 𝑞1 can make various chaos, stemming
from continuity of real variables.

Fig. 13. Weight = -0.7 Fig. 14. Weight = 0.0

Fig. 15. Weight = 0.2 Fig. 16. Weight = 0.7

Fig. 17. Weight = 0.9

The Lyapunov number of each trajectory is shown as
follows.

TABLE II
LYAPUNOV NUMBER

������𝜆
𝑞1 -0.7 0.0 0.2 0.7 0.9

𝜆1 0.007314 0.016477 0.008571 0.004668 0.003386
𝜆2 -0.004319 0.002719 -0.038939 0.011399 -0.046857
𝜆3 -0.030184 -0.106123 -0.061084 -0.136963 -0.048269

XI. CONCLUSION

This paper proposed chaos generating system composed
of Neural Network and GA’s evolving ability to change the
Neural-Network-Differential-Equation to be able to generate
chaos. This chaos generating system has exploited the neural
network’s nature of approximation of any nonlinear function
with any desired accuracy. A chaos motion can make fishes
confuse, so we think it is effective for fish catching. We
will utilize this chaos motion for overcoming fishes’ escaping
ability from chasing net for now, and confirm the effectiveness.
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