
Application of Strongly Stable Generalized Predictive Control

to Temperature Control of an Aluminum Plate

Junki Nishizaki1, Satoshi Okazaki1, Akira Yanou1 and Mamoru Minami1

1Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

(Tel: +81-86-251-8924; E-mail: nishizaki@suri.sys.okayama-u.ac.jp)

Abstract: This paper explores an application of strongly stable generalized predictive control (GPC) to temperature

control of an aluminum plate. The proposed method gives the same output response as the closed-loop response of GPC

designed in advance, even if the feedback loop is cut. The effectiveness of the proposed method is verified by applying to

temperature control of an aluminum plate.
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1. INTRODUCTION

This paper proposes a design method of strongly stable

generalized predictive control (GPC) focused on closed-

loop characteristics. GPC technique is first proposed by

Clarke and others in 1987 [1]. The control method has

features that the objective function includes prediction

and control horizons, and control signals are computed by

receding horizons. With these features, the control strat-

egy has been accepted by many of practical engineers and

applied widely in industry [2].

In applying to industry, safety is most important. For

safety, it is desirable to design a controller itself to be

stable in addition to the closed-loop stability, that is, a

strongly stable controller is needed. The strongly stable

controller keeps the boundedness of control input even

when the feedback loop is cut by an accident. So far many

papers concerning on the stability of GPC have been pub-

lished, but most of the papers are devoted to obtain design

methods ensuring the stability of closed-loop system and

several design schemes have been established [3][4], al-

though less attention is paid to the design of strongly sta-

ble GPC.

Hence to obtain a strongly stable GPC, we can use

GPC with the closed-loop stability designed by an exist-

ing method. And in this paper we will propose a method

to design a strongly stable GPC by coprime factoriza-

tion [5]. GPC can be extended by coprime factorization,

and the extended controller can be designed to be sta-

ble by selecting newly introduced parameter [6][7]. That

is, strongly stable system, which means both the closed-

loop system and its controller are stable, can be obtained.

Although the authors have considered the design method

of strongly stable system using coprime factorization, the

steady state of output has not been considered when feed-

back loop was cut. In the case that the controlled plant is

stable, the steady state of output of strongly stable system

is stable even if feedback loop is cut. But for safety, it is

desirable that the steady state of output becomes as close

to the steady state of closed-loop output as possible even

if feedback loop was cut. Therefore this paper explores a

design method of strongly stable GPC focused on closed-

loop characteristics by algebraic calculation of newly in-

troduced parameter in the extended GPC. The proposed

method has the feature that the steady state of output be-

comes the same as the steady state of closed-loop output

even if feedback loop was cut.

2. PROBLEM STATEMENT

Consider a single-input single-output system:

A[z−1]y(t) = z−kmB[z−1]u(t), (1)

where y(t) and u(t) denote output and input, km is time

delay. A[z−1] and B[z−1] are n-order and m-order poly-
nomials respectively. Firstly the prediction of y(t) is con-
sidered for the deviation system of the plant Eq. (1). The

steady state values y∞ of y(t) and u∞ of u(t) are derived
as follows.

A[z−1]y∞ = z−kmB[z−1]u∞ (2)

From this equation, the deviation system of the plant

Eq.(1) is obtained.

A[z−1]ỹ(t) = z−kmB[z−1]ũ(t) (3)

Where the deviations ỹ(t) and ũ(t) are defined as ỹ(t) =
y(t) − y∞ and ũ(t) = u(t)− u∞. Assuming that y∞ is

equal to be the reference signal w, the prediction for Eq.
(3) can be derived by the following Diophantine equation.

To separate the future values and past values of u(t) in
Eq. (3), Ej [z

−1]B[z−1] is separated as

1 = A[z−1]Ej [z
−1] + z−jFj [z

−1],

Ej [z
−1]B[z−1] = Rj [z

−1] + z−jSj [z
−1],

where Ej [z
−1], Fj [z

−1] are polynomials with degree
j − 1 and n − 1, and Ej [z

−1] is monic. Rj [z
−1] and

Sj [z
−1] are polynomials with degree of j − 1 and n3 =

max{m, l} − 1.

Ej [z
−1] = 1 + e1z

−1 + ...+ ej−1z
−(j−1),

Fj [z
−1] = f j

0 + f j
1z

−1 + ...+ f j
n−1z

−(n−1),

Rj [z
−1] = r0 + r1z

−1 + ...+ rj−1z
−(j−1),

Sj[z
−1] = s0 + sj1z

−1 + ...+ sjm3
z−n3 .

In order to find j-ahead prediction ˆ̃y(t + j|t), j-ahead
output ỹ(t+ j) is derived as,

ỹ(t+ j) = Rj [z
−1]ũ(t+ j − km) + hj(t),
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where

hj(t) = Fj [z
−1]ỹ(t) + Sj [z

−1]ũ(t− km).

Because it is assumed that there exists no perturbation,

j-ahead prediction is given as ˆ̃y(t+ j|t) = ỹ(t+ j). The
performance index for the deviation system Eq. (3) is

considered.

J =

N2
�

j=N1

{ỹ(t+ j)}2 + λ
Nu
�

j=1

{ũ(t+ j − 1)}2 (4)

N1 and N2 are prediction horizon,Nu is control horizon

and λj (j = 1, · · · , N2) is weighting factor on control

inputs. For simplicity it is assumed that N1 = km =
1, Nu = N2.

Minimizing the performance index J on ũ, the control
law is derived. Here we define ˆ̃y, ũ , h, and matrixR.

ˆ̃y = [ỹ(t+ 1|t), ỹ(t+ 2|t), · · · , ỹ(t+N2|t)]
T

(5)

ũ = [ũ(t), ũ(t+ 1), · · · , ũ(t+N2 − 1)]
T

(6)

h = [h1(t), h2(t), · · · , hN2
(t)]

T
(7)

R =



















r0 0 · · · 0

r1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

rN2−1 · · · · · · r1 r0



















Then the prediction ˆ̃y and the objective function J of Eq.
(4) are given as vector form:

ˆ̃y = Rũ+ h (8)

J = ˆ̃y
T
ˆ̃y + λũT ũ

= (Rũ+ h)T (Rũ+ h) + λũT ũ (9)

Solving the linear equation ∂J/∂û= 0 of ũ and extract-
ing the first element of ũ, the control input u(t) to mini-
mize J is obtained as

u(t) =
Fp[z

−1] + (1 + z−1Sp[z
−1])K

1 + z−1Sp[z−1]
w

−
Fp[z

−1]

1 + z−1Sp[z−1]
y(t), (10)

where

[p1, · · · , pN2
] = −[1, 0, · · · , 0](RTR+ λI)−1RT ,

Fp[z
−1] =

N2
�

j=1

pjFj [z
−1], K =

A[1]

B[1]
,

Sp[z
−1] =

N2
�

j=1

pjSj [z
−1].

Then the closed-loop system is given by

y(t) =
z−1B[z−1]{Fp[z

−1] + (1 + z−1Sp[z
−1])K}

T [z−1]
w,

(11)

where T [z−1] = A[z−1] + z−1Dp[z
−1] and DP [z

−1] =
A[z−1]Sp[z

−1] +B[z−1]Fp[z
−1].

3. PROPOSED METHOD

For coprime factorization approach, the family of sta-

ble rational functions is considered.

RH∞ = {G(z−1) =
Gn[z

−1]

Gd[z−1]
},

whereGd[z
−1] is stable polynomial. Transfer function of

the plant is given in the form of a ratio of rational func-

tions in RH∞,

G(z−1) = N(z−1)/D(z−1) (12)

y(t) = G(z−1)u(t) = N(z−1)D−1(z−1)u(t) (13)

where N(z−1) and D(z−1) are rational functions in
RH∞ and coprime each other. Then all the stabilizing

compensator is given in Youla-Kucera parameterization.

u(t) = C1(z
−1)w − C2(z

−1)y(t) (14)

C1(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1)

C2(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

·(X(z−1) + U(z−1)D(z−1))

where U(z−1) and K(z−1) are rational functions in
RH∞ and are design parameters. X(z−1) and Y (z−1)
are also in RH∞ and are the solutions of the following

Bezout equation.

X(z−1)N(z−1) + Y (z−1)D(z−1) = 1 (15)

If T [z−1] in Eq. (11) is designed to be stable, comparing
Eq. (1) to Eq. (13), N(z−1) and D(z−1) can be chosen
as follows;

N(z−1) =
z−1B[z−1]

T [z−1]
, D(z−1) =

A[z−1]

T [z−1]

X(z−1) and Y (z−1) can be given as

X(z−1) = Fp[z
−1], Y (z−1) = 1 + z−1Sp[z

−1]

DesigningK(z−1) = Fp[z
−1]+(1+z−1Sp[z

−1])K and

U(z−1) = 0, Eq. (14) expresses the controller Eq. (10).
And the closed-loop transfer function Eq. (11) is also

expressed as,

y(t) = N(z−1)K(z−1)w (16)

In order to extend the controller Eq. (10) by using

U(z−1) �= 0, this paper considers the steady state of
system in the case that feedback loop is cut by accident.

When the feedback loop is cut, the relation of the refer-

ence signal and the output is given as follows.

D(z−1)(Y (z−1)− U(z−1)N(z−1))y(t) =

N(z−1)K(z−1)w

To make y(t) track to w in the steady state, the design

parameter is newly designed as,

U(z−1) = −D−1(1)X(1) (17)

By using the aboveX(z−1), Y (z−1), N(z−1), D(z−1),
K(z−1) andU(z−1), the new controller is obtained. And
the closed-loop transfer function is equal to Eq. (16).

Moreover, in the case that the strongly stable system is

obtained, the system output can track to the reference sig-

nal even if the feedback loop is cut.
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Fig. 1 The aluminum plate thermal process

4. ALUMINUM PLATE MODEL

When the aluminum plate thermal process is trans-

formed into mathematical model, elicitation process of

state equations is shown in following. State variables are

set like this form

x1 = T1 − T6

x2 = T2 − T6

x3 = T3 − T6

x4 = T4 − T6

x5 = T5 − T6

T1, T2, T3, T4, T5, and T6 are temperature in each part

of the almuminum plate and ambient temperature. Three

laws were used in the development of the mathematical

model.

Fourier’s law of heat conduction is given as,

q[W/m2] = −λ[W/mK](dθ/dn)[K/m]

where q is heat flow ratio, λ is coefficient of thermal
conductivity, (dθ/dn) is temperature cant of heat current.
Newton’s law of cooling is given as,

q[W/m2] = α[W/m2K](θs − θf )[K]

where α is coefficient of thermal conductivity(current:10
∼ 600[W/m2K]). Equation among heat capacity, ob-
jects and their specific heat is,

dQ[J ] = c[J/kgK]m[kg]dθ[K]

where c is specific heat andm is mass. From these laws,

lumped parameter system is given. Each part of the sys-

tem is

mc
d(T1 − T6)

dt
= −(α(T1 − T6)(S1 + S2 + 2S3)

+λ
T1 − T2

d2
S2)

mc
d(T2 − T6)

dt
= −(α(T2 − T6)(2S4 + 2S5)

+λ
T2 − T1

d3
S2 + λ

T2 − T3

d3
S2)

mc
d(T3 − T6)

dt
= u1 − (α(T3 − T6)(S1 + 2S3)

+λ
T3 − T2

d2
S2 + λ

T3 − T4

d2
S2)

mc
d(T4 − T6)

dt
= −(α(T4 − T6)(2S4 + 2S5)

+λ
T4 − T3

d3
S2 + λ

T4 − T5

d3
S2)

mc
d(T5 − T6)

dt
= −(α(T5 − T6)(S1 + S2 + 2S3)

+λ
T5 − T4

d2
S2)

Therefore

mc
dx1

dt
= −(α(S1 + S2 + 2S3) + λ

S2

d2
)x1 + (λ

S2

d2
)x2

mc
dx2

dt
= (λ

S2

d3
)x1 − (α(2S4 + 2S5) + λ

S2

d3
)x2

+(λ
S2

d3
)x3

mc
dx3

dt
= (λ

S2

d2
)x2 − (α(S1 + 2S3) + λ

S2

d2
)x3

+(λ
S2

d2
)x4 + u1

mc
dx4

dt
= (λ

S2

d3
)x3 − (α(2S4 + 2S5) + λ

S2

d3
)x4

+(λ
S2

d3
)x5

mc
dx5

dt
= (λ

S2

d2
)x4 − (α(S1 + S2 + 2S3) + λ

S2

d2
)x5

From these equations, state equation of single input sin-

gle output five degree prosess is obtained.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (18)

A =
1

mc
·













a11 a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45
0 0 0 a54 a55













where

a11 = −(α(S1 + S2 + 2S3) + λ
S2

d2
)

a12 = λ
S2

d2
, a21 = −λ

S2

d3

a22 = −(α(2S4 + 2S5) + λ
S2

d3
)

a23 = λ
S2

d3
, a32 = λ

S2

d2

a33 = −(α(S1 + 2S3) + λ
S2

d2
)

a34 = λ
S2

d2
, a43 = λ

S2

d3

a44 = −(α(2S4 + 2S5) + λ
S2

d3
)
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a45 = λ
S2

d3
, a54 = λ

S2

d2

a55 = −(α(S1 + S2 + 2S3) + λ
S2

d2
)

B =
1

mc
·













0
0
1
0
0













C =
�

0 0 1 0 0
�

x =
�

x1 x2 x3 x4 x5

�T

Aluminum plate parameters are shown in the follow-

ing.

Density of aluminum: 4500[kg/m3]
Specific heat of aluminum: 0.917[kJ/kgK]
Heat transfer coefficient: 25[W/m2K]
Thermal conductivity: 238[W/mK]
Wide of plate: 250[mm]
Thick of plate: 10[mm]
Longitudinal of plate: 120[mm]
Peak watt of heater: 40[W ]

Then we can derive the following plant parameters as

aluminum plate thermal process.

A[z−1] = 1− 3.02z−1 + 3.452z−2 − 1.849z−3

+0.4615z−4 − 0.04282z−5

B[z−1] = 0.04862z−1 − 0.118z−2 + 0.1017z−3

−0.03644z−4 + 0.004634z−5

5. EXAMPLE

The numerical simulation and the experiment result

for the aluminum plate thermal process are compared. In

the comparison, the feedback loop is cut after 500 [sec].

GPC parameters are set to be N1 = 1, N2 = 2, Nu = 2,
λ(j) = 0.02. And reference signal is w = 4, which
means the temperature increase from ambient tempera-

ture. From Fig. 2 to Fig. 5, it shows that GPC Eq. (10) is

applied to the aluminum plate thermal model (Fig. 2 and

Fig. 3) and its experimental device (Fig. 4 and Fig. 5).

And from Fig. 6 to Fig. 9, these also give the simulation

result (Fig. 6 and Fig. 7) and the experimental result (Fig.

8 and Fig. 9). From their results, it is found that the pro-

posed method can give the same output as GPC Eq. (10)

in the simulation and also track to the reference signal in

the experimental result. From Fig. 10 to Fig. 13, it shows

that GPC Eq. (10) is applied to the aluminum plate ther-

mal model (Fig. 10 and Fig. 11) and the experimental

device (Fig. 12 and Fig. 13) in the case that the feedback

loop is cut after 500 [sec]. Although both simulation and

experimental result show the derived system is stable, the

output in the steady state becomes large value. So it is not

desirable for safety. On the other hand, from Fig. 14 to

Fig. 17, these also give the simulation result (Fig. 14 and

Fig. 15) and the experimental result (Fig. 16 and Fig. 17)

in the case that the feedback loop is cut after 500 [sec].

Both results show the proposed method can give stable

system, and also the system output tries to keep remain-

ing the closed-loop output. Therefore it can be seen that

the proposed method is effective to design safety system.

Fig. 2 Simulation result of output by GPC

Fig. 3 Simulation result of input by GPC

Fig. 4 Experimental result of output by GPC

Fig. 5 Experimental result of input by GPC
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Fig. 6 Simulation result of output by proposed method

Fig. 7 Simulation result of input by proposed method

Fig. 8 Experimental result of output by proposedmethod

Fig. 9 Experimental result of input by proposed method

Fig. 10 Simulation result of output by GPC in cutting

the feedback loop

Fig. 11 Simulation result of input by GPC in cutting the

feedback loop

Fig. 12 Experimental result of output by GPC in cutting

the feedback loop

Fig. 13 Experimental result of input by GPC in cutting

the feedback loop
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Fig. 14 Simulation result of output by proposed method

in cutting the feedback loop

Fig. 15 Simulation result of input by proposed method

in cutting the feedback loop

Fig. 16 Experimental result of output by proposed

method in cutting the feedback loop

Fig. 17 Experimental result of input by proposedmethod

in cutting the feedback loop

6. CONCLUSION

This paper explored an application of strongly stable

generalized predictive control to temperature control of

an aluminum plate, and a design method of strongly sta-

ble GPC focused on closed-loop characteristics is pro-

posed. The proposed method has the feature that the

steady state of output becomes the same as the steady

state of closed-loop output even if feedback loop is cut.

The effectiveness of the proposed method is shown by

the numerical simulations and experimental results. The

proposed method will be extended to multi-input multi-

output systems or nonlinear systems as future works.
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