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Abstract: Continuous catching and releasing experiment of several fishes makes the fishes find some escaping strategies
such as staying stationary at corners of the pool. To make fish-catching robot intelligent more than fishes’ adapting
and escaping abilities from chasing net attached at robot’s hand, we thought something that goes beyond the fishes’
adapting intelligence would be required. Here we propose a chaos-generator comprising Neural-Network-Differential-
Equation(NNDE) and an evolving mechanism to have the NNDE generate plural differential equations as many as possible
that can yield different kind of chaos. We believe that the fish could not be adaptive enough to escape from chasing net
with many different chaotic trajectories, since unpredictable chaotic motions of net may go beyond the fishes’ adapting
abilities. In this paper we introduce chaos-generating system by NNDE, which has a possibility to yield uncountable kinds
of chaos theoretically, then analyze the chaos with Lyapunov number, Poincare return map and initial value sensitivity.
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1. INTRODUCTION

In recent years, visual tracking and servoing in which
visual information is used to direct the end-effector of a
manipulator toward a target object has been studied in
some researches [1],[2]. A new trend of machine intel-
ligence [3] that differs from the classical AI has been
applied intensively to the field of robotics and other re-
search areas like intelligent control system. Typically,
the animal world has been used conceptually by roboti-
cists as a source of inspiration for machine intelligence.
For the purpose of studying animal behavior and intelli-
gence, the model of interaction between animals and ma-
chines is proposed in researches like [4]. A crucial char-
acteristic of machine intelligence is that the robot should
be able to use information input from sensor to know
how to behave in a changing environment and further-
more can learn from the environment like avoiding ob-
stacle. As known universally that the robot intelligence
has reached a relatively high level, still the word “intelli-
gence” is an abstract term, so the measurement of the in-
telligence level of a robot has become necessary. A prac-
tical and systematic strategy for measuring machine intel-
ligence quotient (𝑀𝑀𝑀𝑀𝑀𝑀) of human-machine cooperative
systems is proposed in [5], which evaluates a complex-
ity of machine’s procedures. Contrarily to this approach,
we measure a robot’s intelligence through a comparison
animal’s adaptivity with the robot’s.

In our approach to pursue intelligent robot, we will
evaluate the intelligence degree between fishes and the
robot by Fish-Catching operation. In our previous re-
search, the fish emotional behavior has also been exam-
ined and the robot with adaptive ability to react to the
fish status has been conceived. We think that the system
combined with chaos could be smarter than the fish when
the robot can go beyond the fish by catching it success-
fully even after the fish finds out some escaping strategy.
As we did not find researches about the intelligence com-
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parison between animal and robot, we mainly dedicate
ourselves to constructing a smart system that is more in-
telligent than the fish. We consider that the competitive
relation can be very meaningful as one way to improve
robotic intelligence. So we not only employ the inspi-
ration of animal’s behavior for robot intellectualization,
we can also conceive a robot that can exceed the animal
intelligence.

By evolutionary algorithms [6], Visual Servoing and
Object Recognizing based on the input image from a
CCD camera mounted on the manipulator has been stud-
ied in our laboratory(Fig.1) [7], and we succeeded in
catching a fish by a net attached at the hand of the ma-
nipulator based on the real-time visual tracking under
the method of Gazing GA [8] to enhance the real-time
searching ability.

We have learned that it is not effective for fish catching
to simply pursue a escaping fish by visual servoing with
velocity feedback control. Actually, the consistent track-
ing is sometimes impossible because the fish alter motion
pattern suddenly maybe under some emotional reasons
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of fear, thought to be a kind of innate intelligence, even
though not in a high level. While observing the fishes’
adapting behavior to escape in the competitive relations
with the robot, that is continuous catching/releasing ex-
periments, we found that we can define a “Fish’s Intel-
ligent Quotient”(FIQ)[9] representing decreasing veloc-
ity of fish number caught by the net through continuous
catching/releasing operation. Through this measure we
can compare the innate intelligence of the fish and the
artificial intelligence of the robot.

It has been well known that many chaotic signals exist
in our body, for example, in nerves, in motions of eye-
balls and in heart-beating periods [10],[11]. Therefore
we thought that imitating such animal’s internal dynam-
ics and putting chaos into robots have something mean-
ingful to address fishes’ intelligence. We embed chaos
into the Robot Dynamics in order to supplement the de-
ficiency of our Fish-Catching system, having resulted in
proving fishes’ astonishing ability to be able to adapt even
to the chaotic net motion and that fishes become ignoring
the net motion of single chaos.

Therefore what we have to pay attention to the fishes’
nature that the fish does conceive always escaping strat-
egy against new stressing situation. This means that
robot’s intelligence to override the fishes’ thinking abil-
ity needs infinite source of idea of catching motions. To
generate such catching motion, we propose in this re-
port Neural-Network-Differential-Equation(NNDE) that
can produce neural chaos and inherently have a possi-
bility to be able to generate infinite varieties of chaos,
derived from the neural network’s ability to approximate
any nonlinear function as accurate as with desirable pre-
cision[12][13].

2. RANDOM AND CHAOS

A random number is unpredictable. It seems that it is
impossible to generate the random number by computer
program, because computer program is just able to output
a sequence of numbers by prescribed programs, resulting
in the output number be essentially predictable. Actu-
ally, the random number generation routine in computer
is called pseudorandom number, it is not real random
number with genuine unpredictability. That means the
pseudorandom number is predictable. A function to gen-
erate a “random number” prepared in a standard language
like “C++” is based on the linear congruential method al-
most without exception, producing pseudorandom num-
ber of cyclic oscillation with huge cycle. This method
is proposed by Lehmer, D.H. around 1948, and it’s so
easy and efficient for generating pseudorandom-numbers,
named “linear congruential method” with the following
recurrence formula [16].

𝑋𝑋𝑛𝑛 = 𝑎𝑎𝑋𝑋𝑛𝑛−1 + 𝑐𝑐 (mod 𝑀𝑀), 𝑛𝑛 ≥ 1 (1)

This equation can output integer pseudorandom-numbers
sequence 𝑋𝑋0, 𝑋𝑋1, 𝑋𝑋2, ⋅ ⋅ ⋅. The 𝑀𝑀 is called modulus of
congruence expression. 𝑎𝑎 and 𝑐𝑐 are positive integers. 𝑎𝑎
is called multiplier, 𝑐𝑐 is called increment. So, the remain-
der value, coming from 𝑎𝑎𝑋𝑋𝑛𝑛−1 + 𝑐𝑐 divide by 𝑀𝑀 , is set
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to 𝑋𝑋𝑛𝑛. In eq.(1) there is a period, this period is no larger
than 𝑀𝑀 . If 𝑀𝑀 , 𝑎𝑎, and 𝑐𝑐 are chosen well combination,
the maximum cycle 𝑀𝑀 can be obtained. In the case of
the maximum period, all the integer numbers not smaller
than 0 and not larger than 𝑀𝑀 − 1 appear in somewhere.
No matter 𝑋𝑋0, there appears the same sequence of num-
bers after all, and this is a periodic function.

Chaos has the character of unpredictability. This hap-
pens by negligible differences of initial positions bear
unpredictable huge difference between the solved trajec-
tories. This means that deterministic equation of chaos
can generate unpredictability. The Bernoulli shift is men-
tioned as a typical example that realizes the character of
the chaos. The Bernoulli shift is expressed by consider-
ing the variable 𝑋𝑋𝑖𝑖 is a real number and by substituting
𝑎𝑎 = 2, 𝑐𝑐 = 0 or−1,𝑀𝑀 = 1 into (1).

𝑋𝑋𝑛𝑛 =

{
2𝑋𝑋𝑛𝑛−1 (mod 1), 𝑛𝑛 ≥ 1, (0 ≤ 𝑋𝑋𝑛𝑛−1 ≤ 0.5)
2𝑋𝑋𝑛𝑛−1 − 1 (mod 1), 𝑛𝑛 ≥ 1, (0.5 < 𝑋𝑋𝑛𝑛−1 ≤ 1)

(2)

That is, chaos and pseudorandom numbers can be gen-
erated by the same equation. As mentioned above, we
consider that chaos and random numbers have relations
of intersection.

3. FISH TRACKING AND CATCHING

The problem of recognition of a fish and detection of
its position/orientation is converted to a searching prob-
lem of 𝒓𝒓(𝑡𝑡) = [𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡)]𝑇𝑇 that maximizes 𝐹𝐹 (𝒓𝒓(𝑡𝑡)),
where 𝐹𝐹 (𝒓𝒓(𝑡𝑡)) represents correlation function of images
and fish-shaped matching model. 𝐹𝐹 (𝒓𝒓(𝑡𝑡)) is used as a
fitness function of GA [8]. To recognize a target in a dy-
namic image input by video rate, 33 [fps], the recognition
system must have real-time nature, that is, the searching
model must converge to the fish in the successively input
raw images. An evolutionary recognition process for dy-
namic images have been realized by such method whose
model-based matching by evolving process in GA is ap-
plied at least only one time to one raw image input suc-
cessively by video rate. We named it as “1-Step GA” [7].
When the converging speed of the model to the target in
the dynamic images should be faster than the swimming
speed of the fish in the dynamic images, then the posi-
tion indicated by the highest genes represents the fish’s
position in the successively input images in real-time.

We have confirmed that the above time-variant op-
timization problem to solve 𝒓𝒓(𝑡𝑡) maximizing 𝐹𝐹 (𝒓𝒓(𝑡𝑡))

- 898 -



could be solved by “1-Step GA”.
𝒓𝒓(𝑡𝑡) = [𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡)]𝑇𝑇 represents the fish’s position in

Camera Frame whose center is set at to be the center of
catching net, then 𝒓𝒓(𝑡𝑡) means position deviation from net
to Fish, means 𝒓𝒓(𝑡𝑡) = Δ𝒓𝒓(𝑡𝑡).

The desired hand velocity at the 𝑖𝑖-th control period �̇�𝒓𝑖𝑖𝑑𝑑
is calculated as

�̇�𝒓𝑖𝑖𝑑𝑑 = 𝑲𝑲𝑃𝑃Δ𝒓𝒓𝑖𝑖 +𝑲𝑲𝑉𝑉 (Δ𝒓𝒓𝑖𝑖 −Δ𝒓𝒓𝑖𝑖−1) (3)

where Δ𝒓𝒓𝑖𝑖 denotes the servoing position error detected
by 1-Step GA [7]. 𝑲𝑲𝑃𝑃 and 𝑲𝑲𝑉𝑉 given are positive def-
inite matrix to determine PD gain. Now we add chaos
items to (3) above, and we also need to redefine the mean-
ing of �̇�𝒓𝑖𝑖𝑑𝑑. The simple PD servo control method given by
(3) is modulated to combine a visual servoing and chaos
net motion by redefinding Δ𝒓𝒓𝑖𝑖 as,

Δ𝒓𝒓𝑖𝑖 = 𝑘𝑘1 ⋅Δ𝒓𝒓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓 + 𝑘𝑘2 ⋅Δ𝒓𝒓𝑖𝑖𝑐𝑐𝑓𝑐𝑐𝑐𝑐𝑓𝑓 (4)

Here Δ𝒓𝒓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓 =
[
Δ𝑥𝑥𝑖𝑖

𝑓𝑓𝑖𝑖𝑓𝑓𝑓 Δ𝑦𝑦𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓
]
is the tracking

error of fish from the center of camera frame, and
Δ𝒓𝒓𝑖𝑖𝑐𝑐𝑓𝑐𝑐𝑐𝑐𝑓𝑓 =

[
Δ𝑥𝑥𝑖𝑖

𝑐𝑐𝑓𝑐𝑐𝑐𝑐𝑓𝑓 Δ𝑦𝑦𝑖𝑖𝑐𝑐𝑓𝑐𝑐𝑐𝑐𝑓𝑓
]

denotes a chaotic
oscillation in 𝑥𝑥 − 𝑦𝑦 plane around the center of camera
frame. Therefore the hand motion pattern can be deter-
mined by the switch value 𝑘𝑘1 and 𝑘𝑘2. 𝑘𝑘1 = 1 and 𝑘𝑘2 = 0
indicate visual servoing, and 𝑘𝑘1 = 0 and 𝑘𝑘2 = 1 indicate
the net will track chaotic trajectory made by NNDE being
explained later in this paper. The desired joint variable �̇�𝒒𝑑𝑑

is determined by inverse kinematics from �̇�𝒓𝑑𝑑 by using the
Jacobian matrix 𝑱𝑱(𝒒𝒒), and is expressed by

�̇�𝒒𝑑𝑑 = 𝑱𝑱+(𝒒𝒒)�̇�𝒓𝑑𝑑 (5)

where 𝑱𝑱+(𝒒𝒒) is the pseudoinverse matrix of 𝑱𝑱(𝒒𝒒). The
robot used in this experimental system is a 7-Link manip-
ulator, Mitsubishi Heavy Industries PA-10 robot.

4. PROBLEM OF FISH-CATCHING

To compare fishes’ escaping intelligence and robot’s
catching one, we kept a procedure to catch a fish and re-
lease it immediately continuously for 30 minutes. We
released 5 fishes (length is about 40[mm]) in the pool in
advance, and once the fish got caught, it would be re-
leased to the same pool at once. The result of this ex-
periment is shown in Fig.3, in which vertical axis repre-
sents the number of fishes caught in successive 5 minutes
and horizontal axis represents the catching time. We had
expected that the capturing operation would become eas-
ier as time passing on consideration that the fish may get
tired. But to our astonishment, the number of fishes been
caught decreased gradually.

The reason of decreased catching number may lie in
the fishes’ learning ability. For example, the fish can learn
how to run away around the net as shown in Fig.4(a) by
circular swimming motion with about constant velocity,
having made a steady state position error that the net can-
not reach to the chasing fish with even constant speed.
Or fish can stay in the opposite corner against the net in
the pool shown in Fig.4(b). And also, the fish can keep
staying within the clearance between the edge of the pool
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Fig. 4 Fish motion

and the net shown in Fig.4(c) where the net is inhibited
to enter. To overcome these fishes’ escaping intelligence,
and to achieve more intelligent fish catching systems, we
thought chaotic motion of the net with many varieties
can be a possible method to overcome those fishes’ es-
caping intelligence, since huge variety of chaos trajecto-
ries seems to be unpredictable for the fish to adapt them.
Then we propose Neural-Network-Differential-Equation
to generate chaos as many as possible.

5. FISH INTELLIGENCE QUOTIENT

To evaluate numerically how fast the fish can learn to
escape the net, we adapted Linear Least-Square approxi-
mation to the fish-catching decreasing tendency, resulting
in 𝑦𝑦 = −0.486𝑡𝑡 + 20.7 as shown in Fig.3. The decreas-
ing coefficient −0.486 represents adapting or learning ve-
locity of the fishes as a group when the fishes’ intelli-
gence is compared with robot’s catching. We named the
coefficient as “Fish’s Intelligence Quotient”(FIQ). The
larger minus value means high intelligence quotient of
the fish, zero does equal, and plus does less intelligent
than robot’s. To overcome the fishes’ intelligence, more
intelligent robotic system needs to track and catch the fish
effectively, in other words it comes to the problem on how
to use the item Δ𝒓𝒓𝑖𝑖𝑐𝑐𝑓𝑐𝑐𝑐𝑐𝑓𝑓 in (4) effectively to exceed the
fish intelligence.
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6. VALIDITY OF CHAOS

In 1982, some experiments revealed that mollusk neu-
ron cells and plant cells have irregular excitement and
show chaotic nature if gave them periodic current stim-
ulation. In addition, also chaotic response with peri-
odic current stimulation being given had been clarified
in the axon of the cuttlefish in 1984. From these stud-
ies, it became clear that the chaos is associated with bi-
ology. In the late 1980s, the relationship between chaos
and function of the nervous system have been discussed.
Mpitosos and colleagues examined the pattern of rhyth-
mic firing of motor neurons of sea cucumber and showed
that frequency variation of continuous discharge relates
to the rhythm of the movement with chaotic behavior.
Thus, chaos exists in biological behavior. Whether the
nerve cell of the organism excited by a stimulation signal
seems to depend on nonlinearity of neurons’ connection.
Therefore, animal behavior and strategies can be evalu-
ated from view point of chaos, and it may be applicable
to fish catching.

There has been presented chaoses with a sim-
plified model of Hodgkin-Huxley (H-H) model or
BVP(Bonhoeffer-van der Pol) model. Using this BVP
chaos model to produce unpredictable net motion we has
been applied to fish-catching confirming the chaos has
improved the robot’s catching ability for a while thus it it
could increase robot’s intelligence. However often con-
tinuous catching/releasing experiment the fish finally has
been able to ignore the chaos net motion. Therefore we
thought single chaos model is not adequate to overcome
fishes’ escaping idea since the fishes change their behav-
ior continuously. This is why we thought that plural or if
possible as many chaos generators have to be prepared so
the many chaos can go beyond the fishes’ adapting intel-
ligence.

7. NEURAL-NETWORK-
DIFFERENTIAL-EQUATION

Lorenz and Rossler models renowned as chaos gen-
eration comprise three differential equations, produc-
ing three-dimensional chaotic trajectory in phase space.
Since a Neural-Network(N.N.) has been proven to have
an ability to approximate any nonlinear functions with ar-
bitrarily high accuracy[19],[20], we thought it is straight-
forward to make a differential equation including N.N. so
that it can generate plural chaoses by changing N.N.’s co-
efficients. We define next nonlinear differential equation
including N.N. function 𝒇𝒇(𝒑𝒑(𝑡𝑡)) as

�̇�𝒑(𝑡𝑡) = 𝒇𝒇(𝒑𝒑(𝑡𝑡)). (6)

𝒑𝒑(𝑡𝑡) = [𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡), 𝑝𝑝3(𝑡𝑡)]
𝑇𝑇 is state variable. The non-

linear function of 𝒇𝒇(𝒑𝒑(𝑡𝑡)) in (6) is constituted by N.N.’s
connections, which is exhibited in left part of Fig.5 where
the N.N. and integral function of outputs of N.N. and the
feedback of the integrated value to the inputs of N.N. con-
stitute nonlinear dynamical equation, (6). We call it is
Neural-Network-Differential-Equation.
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8. CHAOS VERIFICATION

Since there have been no simple criterion to determine
whether an irregular oscillation be a chaos or not, we have
to apply plural evaluations over the irregularities of tra-
jectories produced by NNDE. The followings are criteria
being used for judging the chaotic characters.

8.1 Lyapunov exponent
As one of criteria to evaluate a chaos’ character of ex-

pansion in time domain, Lyapunov exponent expressed
by the following equation is well known,

𝜆𝜆 = lim
𝑁𝑁→∞

1

𝑁𝑁

𝑁𝑁−1∑
𝑖𝑖=0

log ∣𝑓𝑓 ′(𝑥𝑥𝑖𝑖)∣, (7)

where positive value can represent that the irregular oscil-
lation diverts from a standard trajectory, which expands
like a function of 𝑒𝑒𝑎𝑎𝑎𝑎 (𝑎𝑎 𝑎 0).

8.2 Poincare section
The trajectories of the motion made by neural-

network-based nonlinear function (6) is examined by us-
ing the Poincare section to verify further whether the re-
sulted trajectories can be identified as chaos. Next, the
Poincare section is explained. First of all, we exam-
ine an simple closed curve in three dimensions in Fig6.
The plane “A” that intersects with this closed trajectory
pointed by “P” is defined as the Poincare section.

The intersecting point are named as 𝑃𝑃𝑛𝑛,
𝑃𝑃𝑛𝑛+1,𝑃𝑃𝑛𝑛+2,⋅ ⋅ ⋅, and corresponding x-axis position
on A are 𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1,𝑥𝑥𝑛𝑛+2,⋅ ⋅ ⋅, which are all pointed to
the Poincare Return Map as 𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛+1,⋅ ⋅ ⋅ as shown in
Fig.7. With the poincare return map of Fig.7 representing
a shape of “Λ”, the closed curve has the structure of
stretching and folding. Looking at the left half of Fig.7,
we can see the inclination coefficient 𝑑𝑑𝑥𝑥𝑛𝑛+1/𝑑𝑑𝑥𝑥𝑛𝑛 𝑎 1
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Fig. 8 Gene of GA

and right half has 𝑑𝑑𝑑𝑑𝑛𝑛+1/𝑑𝑑𝑑𝑑𝑛𝑛 < −1, representing that
left half has expansion and the other does contraction.

9. CHAOS GENERATE SYSTEM

Figure.5 represents a block diagram to find chaos
by using GA and Lyapunov number. This GA is not
used 1-Step GA described in Chapter 3 but used as
a normal GA’s procedure that evolves genes represent-
ing neural network coefficient’s value. The trajectory
𝒑𝒑(𝑡𝑡) in time domain obtained from Neural-Network-
Differential-Equation is used for the calculation of Lya-
punov number. Here, 𝑳𝑳 = [𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3]

𝑇𝑇 is a Lya-
punov number, corresponding to state variables 𝒑𝒑(𝑡𝑡) =
[𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡), 𝑝𝑝3(𝑡𝑡)]

𝑇𝑇 in (6). Using this 𝑳𝑳 for the evolu-
tion of GA, fitness function, 𝑔𝑔, is defined as follows,

𝑔𝑔 = 𝑘𝑘1 ⋅ 𝜆𝜆1 − 𝑘𝑘2 ⋅ ∣𝜆𝜆2∣ − 𝑘𝑘3 ⋅ 𝜆𝜆3. (8)

This fitness function incorporates the chaotic property of
the Lyapunov spectrum, which is one of factors to be
essential for generating chaos trajectory. Here, because
we discuss three-dimensional chaotic attractor in phase
space, there are 3 Lyapunov exponents. The relation-
ship between positive and negative Lyapunov spectrum
is (+, 0,−), which means that time trajectory of (6) pos-
sibly be chaos. Parentheses indicate the sign of the Lya-
punov spectrum. In other words, 𝜆𝜆1 is positive, 𝜆𝜆2 is
also positive or negative small values, 𝜆𝜆3 is negative case,
the fitness function of (8) appears to have relatively large
positive value when 𝜆𝜆1 > 0, 𝜆𝜆2 ≈ 0, 𝜆𝜆3 < 0, 𝑘𝑘1, 𝑘𝑘2,
𝑘𝑘3 is positive coefficients. The gene of GA is defined as
shown in Fig.8, with connection weights of N.N. being
𝒒𝒒 = [𝑞𝑞1, 𝑞𝑞2, . . . , 𝑞𝑞𝑛𝑛]

𝑇𝑇 . In this report we adopted a net-
work of 3×6×3 as shown in Fig.5, then the line number
of connections and coefficient are 48, i.e., n=48. Because
the gene is expressed in binary, converted to decimal and
normalized into a range from 0 to 1. Then, generating
a trajectory 𝒑𝒑(𝑡𝑡) based on a given gene having been de-
termined by GA at one previous generation and calculat-
ing Lyapunov number, and evolving new generation of
gene are repeated. This GA’s evolution can find 𝒒𝒒 to have
a highest value of 𝑔𝑔 defined by (8), that means possible
chaos trajectory.

10. VERIFICATION OF CHAOS

So far we have found four chaos patterns with different
neural coefficients explored by GA mentioned in the pre-
vious section. We named them with a serial number as
chaos01∼chaos04. The followings are the introduction
of those chaos about each individual character.

Fig. 9 Generated chaos trajectory 01
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Fig. 10 Generated trajectory 01 of x (300[s] to 1100[s])
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Fig. 11 Generated trajectory 01 of y (300[s] to 1100[s])

-10000

-8000

-6000

-4000

-2000

0

300 375 450 525 600 675 750 825 900 975 1050
Time[s]

z

z2 z1

Fig. 12 Generated trajectory 01 of z (300[s] to 1100[s])

10.1 Chaos01

10.1.1 Lyapunov number
Lyapunov numbers are 𝜆𝜆1 = 0.014585, 𝜆𝜆2 =

−0.003314 and 𝜆𝜆3 = −0.165381. These are correspond-
ing to the Lyapunov spectrum of chaos,(+, 0,−).

10.1.2 Sensitivity to initial value
Two time-profile of trajectories with minutely dif-

ferent initial value are shown in Fig.10, Fig.11
and Fig.12. The trajectories of (𝑑𝑑1(𝑡𝑡), 𝑦𝑦1(𝑡𝑡), 𝑧𝑧1(𝑡𝑡))
are the results originated from the initial values of
𝑑𝑑1(0) = 1.00, 𝑦𝑦1(0) = 1.00, 𝑧𝑧1(0) = 1.00 and
(𝑑𝑑2(𝑡𝑡), 𝑦𝑦2(𝑡𝑡), 𝑧𝑧2(𝑡𝑡)) are from 𝑑𝑑2(0) = 1.01, 𝑦𝑦2(0) =
1.01, 𝑧𝑧2(0) = 1.01. Trajectories of 𝑑𝑑1 and 𝑑𝑑2 are shown
in Fig.10 and 𝑦𝑦1,𝑦𝑦2 are shown in Fig.11 and 𝑧𝑧1,𝑧𝑧2 are
shown in Fig.12.

We can see from Figs.10∼12 that the two trajectories
with minute difference of initial values divert often 800
seconds having passed, this mean the slight different ini-
tial values make large separation with each other, indicat-
ing sensitivity of initial value, which is one of the charac-
ter of chaos.
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Fig. 13 Poincare return
map of Chaos01

Fig. 14 Generated chaos
trajectory 02

Fig. 15 Generated chaos
trajectory 03

Fig. 16 Generated chaos
trajectory 04

10.1.3 Poincare return map
Chaos01’s poincare return map is shown in Fig.13.

One dimensional map can be seen in Fig.13, from which
we can understand that the map represents expanding
(left half of the Fig.13) and contracting (right half) that
are essential character to happen to generate chaos.

Therefore, the chaos property of chaos01 is able to be
confirmed from the viewpoint of Lyapunov number, an
sensitivity of initial value, and the Poincare return map.
It is similar from chaos 01 to chaos 04.

10.2 Chaos02∼Chaos04

Chaos02, Chaos03 and Chaos04 are shown in Fig.14,
Fig.15 and Fig.16.

11. CONCLUSION

This paper proposed chaos generating system com-
posed of Neural Network and GA’s evolving ability to
change the Neural-Network-Differential-Equation to be
able to generate multiple chaos to make robot’s intelli-
gence overcome the fishes’ one. This chaos generating
system has exploited the neural network’s nature of ap-
proximation of any nonlinear function with any desired
accuracy. We will utilize this chaos motion for overcom-
ing fishes’ escaping ability from chasing net in the future.
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