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Abstract: This paper proposes a design method of extended self-tuning generalized predictive
control (GPC) with computation reduction focused on closed-loop characteristics. The authors
have extended GPC by coprime factorization and proposed the extended controller for con-
structing a strongly stable system. Moreover, the proposed controller is able to be designed
to make the same steady state output as pre-designed system’s steady state output even if
feedback loop is cut. Although self-tuning controller is one of the control methods for systems
with uncertainty, there is a problem that the computation of self-tuning GPC increases as design
engineer takes long prediction horizon in the design parameters. Therefore this paper considers
computation reduction for extended self-tuning GPC focused on closed-loop characteristics. The
validity of the proposed method is shown by numerical simulation.
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1. INTRODUCTION

Generalized Predictive Control (GPC) has been proposed
by Clarke et al. [1987]. The control law is derived by
minimizing an objective function. The objective function
includes three design parameters, named as prediction
horizon, control horizon and weighting factor of control
input. The control input is calculated repeatedly by re-
ceding each horizon to future time. The control strategy
has been acceptable to many of practical engineers and
applied widely in industry (Camacho and Bordons [1995]).
Although safety is most important in applying to industry,
it is desirable to make the controller stable in addition
to the closed-loop stability because the output of open-
loop system with unstable feedforward controller becomes
divergent if the feedback loop is cut. That is, a strongly
stable controller is essential and the stable controller can
keep the boundedness of its output even when the feedback
loop is cut by an accident. It means that the system
output can also keep its boundedness in the case that the
controlled plant is stable.

So far many papers concerning on the stability of GPC
have been published by Demircioglu and Clarke [1992],
Kouvaritakis et al. [1997], Gossner et al. [1997], and most
of the papers are devoted to obtain the design methods
ensuring the stability of closed-loop system although less
attention is paid to the design of strongly stable GPC.
Hence in order to obtain a strongly stable GPC, we
used conventional GPC designed by an existing method
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and it was extended by coprime factorization (Vidyasagar
[1988]). Then the extended GPC can be designed to derive
a stable controller by using newly introduced parameter
(Inoue et al. [1999], Yanou et al. [2009]), that is, strongly
stable system can be obtained. But the steady state of
system output in the case that feedback loop was cut has
not been considered in the methods. When the controlled
plant is stable, the steady state of strongly stable system’s
output is bounded even if feedback loop is cut. And it is
desirable for safety that the open-loop steady state output
becomes as close to the closed-loop steady state output
as possible even if feedback loop was cut. Therefore, a
new design method has been proposed for strongly stable
GPC focused on closed-loop characteristics by Okazaki
et al. [2011]. The method has the feature that the open-
loop steady state output becomes equal to the closed-loop
steady state output even if feedback loop was cut.

In the case of designing the self-tuning controller, its com-
putation should be reduced in the viewpoint of system
cost, implementation and so on. In this paper, the cal-
culation amount can be reduced by solving Diophantine
equation for derivation of an output prediction equation
only once (Saudagar et al. [1995]). And this paper explores
a design method of extended self-tuning GPC with com-
putation reduction focused on closed-loop characteristics.
In view point of safety, it is suitable for temperature
controller in process control that the output fluctuation
remains small value if the feedback loop is cut by an
accident. And it is also desirable to apply self-tuning
controller in order to maintain the control performance for
characteristic variation of controlled plant with aged dete-
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rioration. Therefore the temperature control of aluminum
plate model is selected as a numerical example for the
verification of the effectiveness of the proposed method.

2. PROBLEM STATEMENT

We consider a single-input single-output system.

A[z−1]y(t) = z−kmB[z−1]u(t) (1)

Where y(t) and u(t) denote output and input, km is
time delay. A[z−1] and B[z−1] are n-order and m-order
polynomials respectively.

A[z−1] = 1 + a1z
−1 + a2z

−2 + . . .+ anz
−n

B[z−1] = b0 + b1z
−1 + b2z

−2 + . . .+ bmz
−m

In the first step the output prediction for the deviation
system of (1) is calculated. The steady state values y∞
and u∞ for y(t) and u(t) are derived as follows.

A[z−1]y∞ = z−kmB[z−1]u∞ (2)

By using (2), the deviation system of (1) is obtained as
follows.

A[z−1]ỹ(t) = z−kmB[z−1]ũ(t) (3)

The deviations ỹ(t) and ũ(t) are defined as ỹ(t) = y(t)−y∞
and ũ(t) = u(t)−u∞. Assuming that y∞ is equal to be the
reference signal w, the prediction of ỹ(t) can be derived by
the following Diophantine equation.

1 =A[z−1]EN [z−1] + z−NFN [z−1] (N ≥ N2) (4)

Where [N1, N2] is prediction horizon in the design parame-
ters,N is an integer, EN [z−1] and FN [z−1] are polynomials
with degree N − 1 and n− 1,

EN [z−1] = 1 + e1z
−1 + ...+ eN−1z

−(N−1)

FN [z−1] = f j0 + f j1z
−1 + ...+ f jn−1z

−(n−1)

In GPC (Clarke et al. [1987], Inoue et al. [1999], Okazaki
et al. [2011]), although (4) is repeatedly solved for j =
N1, · · · , N2 to derive the output prediction, this paper
solves it for j = N according to Saudagar et al. [1995].
Therefore the computation of the control law is especially
reduced in the case of designing adaptive controller.

In order to separate the future and past values of u(t) in
(3), EN [z−1]B[z−1] for j = N1, · · · , N2 is separated as

EN [z−1]B[z−1] =Rj [z
−1] + z−jSj [z

−1]

Rj [z
−1] and Sj [z

−1] are polynomials with degree of j − 1
and n3 = N +m− 1− j as follows.

Rj [z
−1] = r0 + r1z

−1 + ...+ rj−1z
−(j−1)

Sj [z
−1] = s0 + sj1z

−1 + ...+ sjm3
z−n3

Then j-ahead output ỹ(t+ j) is derived by using FN [z−1],
Rj [z

−1] and Sj [z
−1].

ỹ(t+ j) =Rj [z
−1]ũ(t+ j − km) + hj(t)

Where

hj(t) = FN [z−1]ỹ(t) + Sj [z
−1]ũ(t− km)

Assuming that there is no perturbation, j-ahead prediction
ˆ̃y(t + j|t) is given as ˆ̃y(t + j|t) = ỹ(t + j). The objective
function for the deviation system (3) is defined to derive
the control law.

J =

N2∑

j=N1

{ỹ(t+ j)}2 + λ

Nu∑

j=1

{ũ(t+ j − 1)}2 (5)

[1, Nu] and λ are control horizon and weighting factor
on control inputs in the design parameters respectively.
For simplicity, it is assumed that N1 = km = 1 and
Nu = N2 in this paper. And the objective function can
also be rewritten by the following vector form.

J = ˆ̃y
T
ˆ̃y + λũT ũ (6)

The control law will be derived by minimizing the objective
function J on ũ. Here ˆ̃y, ũ, h and R are defined.

ˆ̃y =
[

ˆ̃y(t+ 1|t), ˆ̃y(t+ 2|t), · · · , ˆ̃y(t+N2|t)
]T

ũ= [ũ(t), ũ(t+ 1), · · · , ũ(t+N2 − 1)]
T

h= [h1(t), h2(t), · · · , hN2
(t)]

T

R=












r0 0 · · · 0

r1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

rN2−1 · · · · · · r1 r0












The output prediction vector ˆ̃y and the objective function
J are given as the following vector forms.

ˆ̃y =Rũ+ h (7)

J = (Rũ+ h)T (Rũ+ h) + λũT ũ (8)

Then the control input u(t) minimizing J is obtained by
solving ∂J/∂û= 0 and extracting the first element of ũ,

u(t) =
Fp[z

−1] + (1 + z−1Sp[z
−1])K

1 + z−1Sp[z−1]
w

− Fp[z
−1]

1 + z−1Sp[z−1]
y(t) (9)

Where

[p1, · · · , pN2
] = −[1, 0, · · · , 0](RTR+ λI)−1RT

Fp[z
−1] =

N2∑

j=1

pjFN [z−1], K =
A[1]

B[1]

Sp[z
−1] =

N2∑

j=1

pjSj [z
−1]

The closed-loop system from (1) and (9) is given by

y(t) =
z−1B[z−1]{Fp[z

−1] + (1 + z−1Sp[z
−1])K}

T [z−1]
w (10)

And the closed-loop characteristic T [z−1] is given as fol-
lows.

11th IFAC ALCOSP
July 3-5, 2013. Caen, France

52



ID Title Pages

712984
Extended	Self-tuning	Generalized	Predictive	Control	with	Computation	Reduction	Focused	on	Closed-loop

Characteristics
6

http://fulltext.study/article/712984

http://FullText.Study


