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Abstract: Human-body models imitating a part of human body have been used for medical training. But those models
seem not to suit training because they cannot be felt to be similar to actual humans. Therefore, the simulator being felt
like a real human is required for the medical trainees being able to assess patient’s physical and emotional conditions,
since medical care procedures are vital to watch out patient’s pains given by the care treatment itself to avoid failures
leading the patients to dangerous conditions．Based on the needs for medical training by using human-like robot, we
have developed a simulator for injection training called “patient robot.” Patient robot has to behave like humans to make
the medical training effective, so we introduced a visual servoing system into the patient robot so that the patient robot can
gaze at a trainee’s face like humans or turn away its face form the medical procedures. We executed some experiments
of gazing at a rotating object using visual servoing, in which actual object’s positions, patient robot’s gazing point and
pose-tracking data have been measured. We confirmed patient robot can track real human faces.
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1. INTRODUCTION
Nowadays, some human-body models called “phan-

tom” imitating parts of human body have been developed,
most of them are used for technical training for particu-
lar training objective. Those phantoms do not suit for
medical trainings such as injection—the medical proce-
dure that should be conducted with a sense of carefully
monitoring the patients’ body condition to avoid medi-
cal accidents—since the phantoms are just parts of body
and then cannot be felt to be humans alive. What is
important for nurse to prevent medical accidents is the
constant awareness to monitor patients’ physical condi-
tions. Medical workers—especially beginners—may fall
themselves in a state of concentration too much on med-
ical procedures without paying attention to the patients’
condition, which may change quickly and dangerously.
Therefore constant awareness of the patients’ state is im-
portant, which is the reason human-like patient robot is
required instead of phantoms. On-line monitoring train-
ing through patient robot helps the trainees notice sudden
change of patients’ conditions, preventing medical mal-
practices before dropping in irrecoverable situation.

Therefore, we have developed a new simulator called
“patient robot” as shown in Fig.1. To offer safe and ef-
fective nursing training, the patient robot must present its
mental activity through expressions and body behaviors
since nurses are required to monitor the patients’ condi-
tions during nursing procedures. On the other hand the
robot can monitor the nurse students’ action, e.g., in-
jection, to evaluate their ability from the view point of
patients. Moreover, the patient robot should behave au-
tonomously and naturally like humans to make the injec-
tion training effective. In order to implement human-like
behavior, we added a new function of visual servoing to
the robot’s behavior.

In the field of robot vision, a control method called
visual servoing has attracted attention [1]-[4]. Visual ser-
voing is a method of controlling robots’ motion through

Fig. 1 Patient robot

visual information in feedback loop. Thus this method is
expected to help the robot to adapt changing or unknown
environments.

A fixed-hand-eye system—a robotic system for visual
servoing where eye cameras are set at the robot’s hand
with fixed orientation—has some disadvantages, making
the observing ability deteriorated depending on the rela-
tive geometry between the camera and the seroving tar-
get. Such as: the robot cannot observe the object well
when it is near the cameras (Fig.2 (a)), small intersection
of the possible sight space of the two cameras (Fig.2 (b)),
and the image of the object cannot appear in the center of
both cameras, thus we could not get clear image informa-
tion of target, reducing the pose measurement accuracy
(Fig.2 (c)). To solve the problems above, Eye-Vergence
system that gives the cameras an ability to rotate them-
selves to focus target at center of the images has been
thought to be effective that enables eye-camera’s orien-
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Fig. 3 Advantage of Eye-vergence system

tation change in case of Eye-Vergence system being in-
stalled into patient robot.

There has not seemed that such rotatable hand-eye sys-
tem for training robot in medical field has been devel-
oped. Thus it is possible to change the pose of the cam-
eras in order to observe the object better, as it is shown in
Fig.3, enhancing the measurement accuracy in trigono-
metric calculation and avoiding peripheral distortion of
camera lens by observing target at the center of lens.
Moreover, recent researches on visual servoing are lim-
ited generally in a swath of tracking an object while keep-
ing a certain constant distance [5], [6], [7].

In this paper, we propose visual servoing system that
enables patient robot recognize and track human face. In
the following sections, a Model-based Matching method
and human recognition technique using GA search are
specifically introduced, and human’s face is detected by
using orientation expression of quaternion, making the
patient robot’s motion resemble real humans motions, i.g.
looking into the opponent’s face to estimate his/her emo-
tions.

2. PATIENT ROBOT

The patient robot we developed is shown in Fig. 1. We
mounted the robot’s head with two CCD cameras as eyes
to observe the nurse being trained and installed some ser-
vomotors inside the head for generating face expression,
as shown in Fig.4. The moving parts of patient robot’s
body are shown in Fig.5. Left arm is made by arm model
for blood drawing training, and the artificial vein letting
imitated blood flow inside is buried in the arm. Since
checking the state of patient periodically is necessary to
avoid danger during nursing, the robot detects student’s
face with eye-cameras to evaluate whether the nurse is
paying attentions to the state of patient while injecting[8].

Fig. 4 Structure of robot’s head

Fig. 5 Structure of robot’s body
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3. ON-LINE TRACKING

3.1 Kinematics of Stereo Vision
A perspective projection is used as projection transfor-

mation. The coordinate systems of left and right cameras
and object (here we take a solid column model as an ex-
ample) in Fig.6 represent world coordinate system ΣW ,
model coordinate system ΣM , camera coordinate sys-
tems ΣCR and ΣCL, image coordinate systems ΣIR and
ΣIL. A point i on a solid model of the target object can
be described using these coordinates and homogeneous
transformation matrices. At first, a homogeneous trans-
formation matrix from ΣCR to ΣM is defined as CRT M .
And an arbitrary point i on the target object in ΣCR and
ΣM is defined as CRri and Mri. Then CRri is,

CRri =CR T M
Mri. (1)



The position vector of i point in right image coordinates,
IRri is described by using projection matrix P of camera
as,

IRri = P CRri. (2)

Using a homogeneous transformation matrix of fixed val-
ues defining the kinematical relation from ΣCL to ΣCR,
CLT CR, CLri is,

CLri =CL T CR
CRri. (3)

By the same way as we have obtained IRri, ILri is de-
scribed by the following Eq.(4) through projection matrix
P .

ILri = P CLri (4)

Then position vectors projected in the ΣIR and ΣIL of
arbitrary point i on target object can be described as IRri

and ILri. Here, position and orientation, i.e. pose of the
origin of ΣM based on ΣCR, are represented as φ =
[tx, ty, tz, φ, θ, ψ]T , in which φ, θ, and ψ are roll, pitch
and yaw angles respectively, and then Eq. (2) and Eq. (4)
are rewritten as,

{
IRri = fR(φ, Mri)
ILri = fL(φ, Mri).

(5)

This relation connects the arbitrary points on the object
and projected points on the left and right images with the
variables φ representing the human face’s pose, which is
considered to be unknown in this paper. When evaluating
each left and right point i above mentioned, the matching
problem of corresponding point in left and right images is
arisen, and it is sometimes difficult to be solved. There-
fore, to avoid this problem, the 3-D model-based match-
ing that treats the points of the object model as a set, is
chosen instead of point-based corresponding.

3.2 3-D Object Pose Tracking
In this paper, patient robot recognizes human face to

decide the transition of each process automatically. This
method is given by using Model-Based Matching(MBM)
method and genetic algorithm(GA)[9]. In action patterns
of patient robot of the previous system, the border of each
process had been decided by operator of the robot. Since
each process must relate to the recognition of human face,
we propose 3-D object pose recognition method[10] of
patient robot by using two CCD cameras as robot’s eyes.

4. PATIENT ROBOT SYSTEM
We have built a model of patient robot to design a dy-

namics of it. The parameters are shown in Table 1. In
this report we built a simplified model since it is difficult
to solve a solution of inverse kinematics. Specifically we
cut the injection of link 3 and we built the model in a case
of qi = 0(i = 1, 2, 3, 4) so that an end-effector of link 4
becomes vertical to the ground. Each links are defined
as i. The model is shown in Fig.7. A body is defined as
q1,2,3,4 and head is defined as q5,6,7.
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5. POSITION-BASED CONTROLLER
5.1 Desired-trajectory Generation

In Fig.8, the world coordinate frame is denoted by
ΣW , the target coordinate frame is denoted by ΣM , and
the desired and actual end-effector coordinate frame is
denoted by ΣHd, ΣH respectively. The desired relation
between the target and the end-effector is given by Homo-
geneous Transformation as HdT M , the relation between
the target and the actual end-effector is given by HT M ,
then the difference between the desired end-effector pose
ΣHd and the actual end-effector pose ΣH is denoted as
HT Hd, which can be described by:

HT Hd(t) = HT M (t)HdT−1
M (t) (6)

(6) is a general representation of pose tracking error
that satisfies arbitrary object motion W T M (t) and ar-
bitrary visual servoing objective HdT M (t). The rela-
tion HT M (t) can be estimated by 1-step GA [5], having
been presented as an on-line model-based pose estima-
tion method that will be introduced in next subsection.
Let ΣM̂ denote the detected object, it is natural there
should always exist an error between the actual object
ΣM and the detected one ΣM̂ . So in visual servoing,
(6) will be rewritten based on ΣM̂ that includes the error
MT M̂ , as

HT Hd(t) = HT M̂ (t)HdT−1

M̂
(t). (7)

Differentiating (7) with respect to time yields

H Ṫ Hd(t) = H Ṫ M̂ (t)M̂T Hd(t)

+HT M̂ (t)M̂ Ṫ Hd(t). (8)

Differentiating Eq. (8) with respect to time again

H T̈ Hd(t) = H T̈ M̂ (t)M̂T Hd(t)

+2H Ṫ M̂ (t)M̂ Ṫ Hd(t)

+HT M̂ (t)M̂ T̈ Hd(t), (9)



Table 1 Physical parameters of the patient robot

Joint Base link1 link2 link3 link4 link5 link6 link7
Length(m) 0.58 0.08 0.205 0.270 0.3x, 0.3z 0.070 0.035 0.035

Center of mass (m) 0.0 −0.04 0.1025 0.135 0.15x, 0.15z 0.0 0.0175 0.0175
mass (Kg) N/A 3.0 3.0 3.0 1.0 1.0 1.0 1.0
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Fig. 8 Motion of the end-effector and object

where M̂T Hd, M̂ Ṫ Hd, M̂ T̈ Hd are given as the desired
visual servoing objective. HT M̂ , H Ṫ M̂ , H T̈ M̂ can be
observed by cameras. As shown in Fig. 8, there are
two errors that we have to decrease in the visual servoing
process. First one is the error between the actual object
and the detected one, MT M̂ , and the other one is the er-
ror between the desired end-effector and the actual one,
HT Hd.

5.2 Hand & Eye Visual Servoing Controller
5.2.1 Hand Visual Servoing Controller

Based on the above analysis of the desired-trajectory
generation, the desired hand velocity W ṙd is calculated
as,

W ṙd = KPp

W rH,Hd + KVp

W ṙH,Hd, (10)

where W rH,Hd,
W ṙH,Hd can be calculated from HT Hd

and H Ṫ Hd. KPp
and KVp

are positive definite matrix to
determine PD gain.

The desired hand angular velocity W ωd is calculated
as,

W ωd = KPo

W RH
H∆ε + KVo

W ωH,Hd, (11)

where H∆ε is a quaternion error [11] calculated from the
pose tracking result, and W ωH,Hd can be computed by
transforming the base coordinates of HT Hd and H Ṫ Hd

from ΣH to ΣW . Also, KPo
and KVo

are suitable feed-
back matrix gains. The desired hand pose is defined as
W ψT

d = [W rT
d ,W εT

d ]T

The desired joint variable qd and q̇d is obtained by

qd = f−1(W ψT
d ) (12)

q̇d = J+(q)
[

W ṙd
W ωd

]
(13)

where f−1(W ψT
d ) is the inverse kinematic function

and J+(q) is the pseudoinverse matrix of J(q), and
J+(q) = JT (JJT )−1.

The hardware control system of the velocity-based
servo system of PA10 is expressed as

τ = KSP (qd − q) + KSD(q̇d − q̇) (14)

where KSP and KSD are symmetric positive definite
matrices to determine PD gain.

5.2.2 Eye-vergence Visual Servoing Controller
In this paper, we use two pan-tilt cameras for eye-

vergence visual servoing. For camera system, q5 is tilt
angle for both right and left eyes, q6 and q7 are pan an-
gles.

HxM̂ , HyM̂ , HzM̂ express position of the detected ob-
ject in the hand coordinate. The desired angle of the cam-
era joints are calculated by:

q5d = atan2(HyM̂ , HzM̂ ) (15)

q6d = atan2(−dCR + HxM̂ ,H zM̂ ) (16)

q7d = atan2(dCL + HxM̂ ,H zM̂ ) (17)

where dCR = dCL = 35[mm] that is the camera location.
Because the motion of camera motor is an open loop,

we can only make it rotate a certain degree without get-
ting the actual angle during the rotation, which put us in
a situation that we cannot get the accurate camera angle.
So the desired camera angles are input in every 33[ms],
and the input is limited to a certain value.

6. EXPERIMENT
Two experiments to confirm patient robot’s tracking

ability have been done. Each experiment is shown below.

6.1 Rotating Object Tracking
Having had the patient robot track human face model

rotating at a constant cycle T = 30, 40[s] in an experi-
mental environment as shown in Fig.9, and then the ac-
tual object’s position, patient robot’s gazing point and fit-
ness values have been measured. Patient robot’s gazing
point is defined by the center of image as shown in Fig.10.
Fitness function is shown in the following formula.

Fsite(φ) =





( ∑

IRri∈SR,in(φ)

p(IRri) −
∑

IRri∈SR,out(φ)

p(IRri)
)

+
( ∑

ILri∈SL,in(φ)

p(ILri) −
∑

ILri∈SL,out(φ)

p(ILri)
)


 /2
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= {FR,site(φ) + FL,site(φ)} /2 (18)

p(IRri) is the brightness value in the right image area
IRri, and p(ILri) is the brightness value in the left im-
age area ILri. In order to evaluate facial ratings and the
surrounding luminance value change, as shown Fig.11,
search model is composed of surface areas comprised of
SR,in and SL,in and stripe areas comprised of SR,out and
SL,out.

The results are shown in Fig.12 ∼ Fig.17. Fig.12,
Fig.15 show y-position of actual object and gazing point.
Fig.13, Fig.16 show z-position of actual object and gaz-
ing point. Fig.14, Fig.17 show time profile of fitness
value.

As shown in Fig.12, 13, 15 and 16, gazing point is
attenuated sometime, however, Fig.14 and Fig.17 show
high fitness value. Therefore, patient robot can track the
rotating model.

6.2 Tracking To Real Human
In this experiment, having had the patient robot track

a living human face, and then control error as shown
Fig.10 between object position and gazing point and fit-
ness value have been plotted. Human facing the front
moved about 0.5[m] side to side and returned started po-
sition.

The results are shown in Fig.18 ∼ Fig.20. Fig.18 and
Fig.19 show control error. Fig.20 shows fitness value.

As the results of Fig.18 and Fig.19, control error is
only up to about 60[mm], so that patient robot can follow
real human face. There are two points fitness value in-
crease greatly in Fig.20. It is considered that the face was
slowed down because these points are changing human
move direction.

According to these results, we confirmed patient robot
can track the object.

7. CONCLUSION
We have proposed a eye-vergence visual servoing sys-

tem for patient robot that can track the nurse trainee’s
face. The obtained experimental data show that the eye-
vergence system can improve pose tracking performance
to follow human’s face.
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