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Abstract Based on the analysis of interaction between

manipulator’s hand and working object, a model repre-

senting the constrained dynamics of robot is first discussed.

The constraint forces are expressed by algebraic function

of states, input generalized forces, and constraint condition,

and then a decoupling control method of force and position

of manipulator’s hand tip is proposed. In order to give the

grinding system the ability to adapt to any object shape

being changed by the grinding, estimating function of the

constraint condition in real time for the adaptive force/

position control was added, which is indispensable for the

proposed method without using force sensor. This paper

explores whether the performance of the proposed con-

troller is independent of alloy work-piece models or not.

The experimental result is shown to verify the feature of

the decoupling control of force and position of the tip.

Keywords Continuous shape-grinding � Force/

position hybrid control � Model-independent control �
Spline approximation

1 Introduction

Many researches have discussed the force control of robots

for contacting tasks. Most force control strategies use force

sensors [1–3] to obtain force information, where the reli-

ability and accuracy are limited since the work sites of the

robot are filled with noise and thermal disturbances,

reducing the sensor’s reliability. On top of this, force

sensors could lead to the falling of the structure stiffness of

manipulators, which is one of the most essential defects for

manipulators executing grinding tasks. To solve these

problems, some approaches without using any force sen-

sors have been presented [4, 5]. To ensure the stabilities of

the constrained motion, those force and position control

methods have utilized Lyapunov’s stability analysis under

the inverse dynamic compensation [6–8]. Their force

control strategies have been explained intelligibly in books

[9, 10] and recently interaction control for six-degree-of-

freedom tasks has been compiled in a book [11].

A work-piece model being ground by our grinding robot

in this paper is alloy, whose spring constant is so huge to

the extent that we can ignore the deformation of the work-

piece model caused by the contacting force with robot’s

end effector. So the contact process of the grinder can be

just thought as non-dynamical process but a kinematical

one, and no motion occurred in the vertical direction.

Therefore, in our research, we do not use the time-differ-

ential motion equation to analyze the contacting vertical

process to the work-piece model; on the contrary, we

consider an algebraic equation as the constraint condition

to analyze this contact vertical force. Constraint-combined

force controller based on this algebraic equation has the

ability to achieve the force control without time delay;

moreover, force error will not be affected by the dynamical

motion along the surface in the horizontal direction. In
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model-based hybrid control field, some former researches

have noticed this ‘‘just an immediate contact result but no

motion occurred’’ problem and tried solving it using force

or torque sensor. But since force or torque sensor is so

costly, we consider a model-independent force/position

control method without using sensors. Therefore, with

these differences from those former force control methods,

constraint-combined and model-independent force/position

control method without using sensors introduced in this

paper is essentially different from methods proposed so far.

For example, recently although robot machining system for

grinding, polishing and milling was developed [12], the

system uses just position control of robot tip through

scanned surface profile, not considering force control.

Hamelin et al. [13] have considered underwater direct-

drive grinding robot to repair dike and dam periodically for

operability. This research focused on trajectory-tracking

performance and it did not mention about force control

although a constant grinding force was applied on work-

piece. Song et al. [14] proposed a robot belt grinding

system using force/position hybrid control method. Their

method uses force sensor to control contact force, different

from our system.

The problem to be solved in our approach is that the

mathematical expression of algebraic constraint condition

should be defined in the controller instead of the merit of

not using force sensor. In order to make the performance of

proposed controller independent of target work-piece

model, grinding task requires on-line estimation of

changing constraint condition since grinding is the action

to change the constraint condition in nature. In this paper,

we estimate the object’s surface using the grinder as touch

sensor. In order to give the system the ability to grind any

working object into any shape, we focus on how to update

the constraint condition in real time, obtaining the result

that spline function is best for on-line shape estimation.

Based on the above preparation, we explored a contin-

uous shape-grinding experiment to evaluate the proposed

shape-grinding system, which aims for grinding to desired

shape without force sensor.

2 Modeling

2.1 Constrained dynamic systems

Hemami and Wyman [15] have addressed the issue of

control of a moving robot according to constraint condi-

tion. They examined the problem of the control of the

biped locomotion constrained in the frontal plane. Their

purpose was to control the position coordinates of the biped

locomotion rather than generalized forces of constrained

dynamic equation, which involves the item of generalized

forces of constraints. And the constrained force is used as a

determining condition to change the dynamic model from

constrained motion to free motion of the legs. In this paper,

the end-point of the grinding manipulator shown in Fig. 1

is in contact with the constrained surface. The manipulator

is modeled according to (1) with Lagrangian equations of

motion in terms of the constraint forces, referring to what

Hemami and Arimoto have done:

d

dt

oL

o _q

� �
� oL

oq

� �
¼ sþ Jc

TðqÞFn � Jr
TðqÞFt; ð1Þ

where Fn is the constrained force associated with constraint

C, Ft is the tangential grinding force, Jc ¼ JcðqÞ and Jr ¼
JrðqÞ are their coefficient vectors and defined as:

Jc ¼
oC

oq
= k oC

or
k¼ oC

or
Jr

�
= k oC

or
k;

Jr

�
¼ or

oq
; JT

r ¼ Jr

�
T _r= k _r k;

r is the l position vector of the hand and can be expressed

as a kinematic equation

r ¼ rðqÞ: ð2Þ

L is the Lagrangian function, q is l(C2) generalized

coordinates, s is l inputs. The discussing robot system does

not have kinematical redundancy. C is a scalar function of

the constraint and is expressed as an equation of constraints

CðrðqÞÞ ¼ 0; ð3Þ

(1) can be derived as

MðqÞ€qþHðq; _qÞþGðqÞ ¼ sþJT
c ðqÞFn�JT

r ðqÞFt; ð4Þ

where M is an l 9 l matrix, H and G are l vectors. The

state variable x is constructed by adjoining q and _q : x ¼
ðxT

1 ; x
T
2 Þ

T ¼ ðqT; _qTÞT: The state-space equation of the

system is

Fig. 1 Grinding robot system
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_x1 ¼ x2;

_x2 ¼ �M�1ðHðx1; x2Þ þ Gðx1ÞÞ
þM�1ðsþ JT

c ðx1ÞFn � JT
r x1ÞFtÞ;

ð5Þ

or the compact form is given as _x ¼ Fðx; s;Fn;FtÞ: Using

the inverted form of combination from (3) and _x ¼
Fðx; s;Fn;FtÞ;Fn can be expressed as (this part had been

detailedly introduced in [16] by us)

Fn ¼ Fnðx; s;FtÞ; ð6Þ

¼4 aðx1; x2Þ þ Aðx1ÞJT
r Ft � Aðx1Þs; ð7Þ

where aðx1; x2Þ is a scalar representing the first term in the

expression of Fn, and Aðx1Þ is an l vector to represent the

coefficient vector of s in the same expression. _x ¼
Fðx; s;Fn;FtÞ; and (6) composes a constrained system that

can be controlled, if Fn = 0, describing the unconstrained

motion of the system.

Substituting (7) into (5), the state equation of the system

including the constrained force (as Fn [ 0) can be rewrit-

ten as

_x1 ¼ x2;

_x2 ¼ �M�1½Hðx1; x2Þ þ Gðx1Þ � JT
c ðx1Þaðx1; x2Þ�

þM�1½ðI � JT
c AÞsþ ðJT

c A� IÞJT
r Ft�; ð8Þ

Solutions of these dynamic equations always satisfy the

constrained condition (3).

2.2 Shape-grinding

In the past, we did the continuous shape-grinding simula-

tions [16] to extend the grinding ability of our grinding

robot [17, 18]. Now in this paper, the continuous shape-

grinding experiment through the proposed method will be

introduced.

To make the grinding task to be different from the

former flat grinding experiment [17, 18], we ground the

work-piece into the one with different kinds of shapes, for

example, grinding the flat surface into a curved one, just as

in Fig. 2. In Fig. 2, the desired working surface is pre-

scribed (it can be decided by us), which means the desired

constrained condition Cd is known, so

Cd ¼ y� f dðxÞ ¼ 0: ð9Þ

But the constrained condition C(j) (j ¼ 1; 2; � � �; d � 1)

changed by the previous grinding is hard to define as an

initial condition. So we define

CðjÞ ¼ y� f ðjÞðxÞ ¼ 0; ð10Þ

where y is the position of manipulator’s end-effector in the

coordinates Rw depicted in Fig. 2. It is assumed that C(1) is

known, that is to say, f ð1ÞðxÞ is initially defined. f ðjÞðxÞ is

the working surface remained by ith grinding. And f ðjÞðxÞ is

a function passing through all points ðx1; f ðjÞ ðx1ÞÞ;
ðx2; f ðjÞ ðx2ÞÞ; � � �; ðxp; f ðjÞ ðxpÞÞ: These observed points

representing the (j)th constraint condition can be obtained

from the grinding tip position since the proposed method

uses the grinding tip as the touching sensor of ground new

surface. Here we assume f ðjÞðxÞ could be represented by a

polynomial of (p - 1)-th order of x. Given the above

p points, we can easily decide the parameters of

polynomial function y = f ðjÞðxÞ: If the current

constrained condition can be got successfully, then the

current working surface f ðjÞðxÞ can be detected correctly.

Therefore, the distance from the current working surface to

the desired working surface, which is expressed as DhðjÞ

shown in Fig. 2, can be obtained easily.

DhðjÞðxiÞ ¼ f dðxÞ
��
x¼xi
� f ðjÞðxÞ

��
x¼xi

ð11Þ

In this case, we can obviously find that the desired

constrained force should not be a constant. It should be

changed as DhðjÞ changes. So we redefine the desired

constrained force Fnd
(j) as a function of DhðjÞ with constant

k0, as follows:

F
ðjÞ
nd ðxiÞ ¼ k0DhðjÞðxiÞ: ð12Þ

3 Force/position controller

3.1 Controller using estimated constraint condition

Reviewing the dynamic equation (1) and constraint con-

dition (3), it can be found that as l [ 1, the number of input

generalized forces is more than that of the constrained

forces. From this point and (7), we can claim that there is

some redundancy of constrained force between the input

torque s; and the constrained force Fn. This condition is

Fig. 2 Model of shape-grinding
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much similar to the kinematical redundancy of redundant

manipulator. Based on the above argument and assuming

that the parameters of the (7) are known and its state

variables could be measured, and aðx1; x2Þ and Aðx1Þ could

be calculated correctly, which means that the constraint

condition C = 0 is prescribed. As a result, a control law is

derived and can be expressed as

s ¼ �Aþðx1Þ
�

Fnd � aðx1; x2Þ � Aðx1ÞJT
r KtFnd

�
þ ðI� Aþðx1ÞAðx1ÞÞk;

; ð13Þ

where it is assumed that Ft = KtFn& KtFnd. Kt is an

empirical coefficient, I is a l 9 l identity matrix, Fnd is the

desired constrained forces, Aðx1Þ is defined in (7) and

Aþðx1Þ is the pseudoinverse matrix of it, aðx1; x2Þ is also

defined in (7) and k is an arbitrary vector which is defined

as

k ¼Jr

�
TðqÞ Kpðrd � rÞ þ Kdð _rd � _rÞ

� �
; ð14Þ

where Kp and Kd are gain matrices for position and the

velocity control by the redundant degree of freedom of

Aðx1Þ; rdðqÞ is the desired position vector of the end-

effector along the constrained surface and rðqÞ is the real

position vector of it. Equation (14) describes the 2-link

rigid manipulator’s arm compliance; we have to set Kp and

Kd with a reasonable value, otherwise high-frequency

response of position error will appear. The controller

presented by (13) and (14) assumes that the constraint

condition C = 0 be known precisely even though the

grinding operation is a task to change the constraint

condition. This looks like to be a contradiction, so we need

to observe time-varying constraint conditions in real time

using grinding tip as a touch sensor. The time-varying

condition is estimated as an approximate constrained

function by position of the manipulator hand, which is

based on the estimated constrained surface location. The

estimated condition is denoted by Ĉ ¼ 0 (in this paper, ‘‘ ’̂’

means the situation of unknown constraint condition).

Hence, aðx1; x2Þ and Aðx1Þ including oĈ=oq and

o=oqðoĈ=oqÞ are changed to âðx1; x2Þ and Âðx1Þ as

shown in (16) and (17). They were used in the later

experiments of the unknown constrained condition. As a

result, a controller based on the estimated constrained

condition is given as

ŝ ¼ �Âþðx1Þ Fnd�âðx1; x2Þ � Âðx1ÞJT
RFt

� �
þ ðI� Âþðx1ÞÂðx1ÞÞk;

ð15Þ

mc
�1k oĈ

or
k � o

oq

oĈ

oq

 !
_q

" #
_qþ oĈ

oq

 !
M�1ðhþ gÞ

( )

¼M âðx1; x2Þ ð16Þ

m�1
c k

oĈ

or
k oĈ

oq

 !
M�1

( )
¼M Âðx1Þ ð17Þ

Figure 3 illustrates a control system constructed

according to the above control law that consists of a

position feedback control loop and a force feedforward

control. It can be found from (7) and (15) that the

constrained force always equals to the desired one

explicitly if the estimated constraint condition equals to

the real one, i.e., C ¼ Ĉ and Ft = 0 This is based on the

fact that force transmission is an instant process. In the next

section, we will introduce an estimation method which is

used to get Ĉ in current time.

Fig. 3 Shape-grinding position/force control system
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3.2 On-line estimation method of constraint

Now shape-grinding method is solved in our research. But

how to estimate the unknown constraint surface is the

nodus and key point. Here, an unknown constrained con-

dition is assumed as in the following.

Assumptions:

1. The end-point position of the manipulator during the

grinding task can be surely measured and updated.

2. The grinding task is defined in the x–y plane.

3. When beginning to work, the initial condition of the

end-effector is known and it has touched the work

object.

4. The chipped and changed constraint condition can be

approximated by connections of minute sections.

Some relations between position value and time value

are provided here; in this section, one would better

remember these relations because it will help understand

the concept of ‘‘on-line estimation method’’.

xi�1 ¼ xðti�1Þ ¼ xðt0 þ ði� 1ÞDtÞ; ð18Þ
xi ¼ xðtiÞ ¼ xðt0 þ iDtÞ; ð19Þ
xiþ1 ¼ xðtiþ1Þ ¼ xðt0 þ ðiþ 1ÞDtÞ: ð20Þ

Before on-line estimation method is introduced, let us

take a look at the situation of known flat constraint surface.

For example, just like the grinding surface shown in Fig. 4,

the expression of this surface is a straight linear equation

f jðxiÞ ¼ yi ¼ 0:5173ði ¼ 0; 1; 2; 3 � � � nÞ; ð21Þ

and point (xi, yi) is the current position of grinding robot’s

end-effector. As a result, points before (xi, yi) have been

already ground by grinder when t� t0 þ iDt: In the next

moment, when time tiþ1 ¼ t0 þ ðiþ 1ÞDt; constraint

condition

C
j
iþ1 ¼ y� f jðxiÞ ¼ 0 ð22Þ

can be used for calculation of deriving torque s. And also,

grinder will move to the next point (xi?1, yi?1) with no

hesitation driven by the input torque s: By ‘‘no hesitation’’,

it means on this known surface, grinder has nowhere to go

but point (xi?1, yi?1), since this whole grinding surface

f jðxiÞ = yi = 0.5173 (i = 0, 1, 2, 3...n) is determined

obviously. However, we all know that the grinding surface

on work-piece after ground will turn into some kind of

irregular shape that no mathematic equation can express.

What should we do to obtain the future constraint condition

Ci?1
j if the grinding surface is unknown? Like the situation

shown in Fig. 5, the grinding surface is not a simple

straight line or some curve line which can be defined and

expressed by some certain curve equation, after current

time ti ¼ t0 þ iDt; where should the grinder go? Grinding

robot has no idea since input torque s cannot be derived

without constraint condition Ci?1
j . To solve this problem,

we consider that some kind of on-line estimation function

is utilized to imitate the unknown grinding surface, to

obtain an unknown constraint condition Ĉ
j
iþ1; which can be

used to calculate the input torque ŝ.

Therefore, now let us take a look at Fig. 5, in current

time ti ¼ t0 þ iDt; the end-effector of grinding robot is at

position (xi, yi), so far, point (xi-1, yi-1) and point (xi, yi) are

known because they are just ground by the grinder in the

moment ti�1 ¼ t0 þ ði� 1ÞDt and ti ¼ t0 þ ðiÞDt and the

information of points (xi-1, yi-1) and (xi, yi) can be derived

through the position of robot’s end-effector. Now building

an estimation function going through these two points, for

example, a quadratic spline function

f
j

i ðxiÞ ¼ fsplineðxiÞ ¼ yi

¼ aiðx� xi�1Þ2 þ biðx� xi�1Þ þ ci

x 2 ½xi�1; xi�ði ¼ 0; 1; 2; 3:::nÞ;
ð23Þ

Fig. 4 Situation of known constraint surface model

Fig. 5 On-line estimation model

Fig. 6 Fitting by quadratic spline curve
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we can figure out the coefficients ai, bi and ci uniquely

according to the information of points (xi-1, yi-1), (xi, yi)

and derivation at point (xi, yi) as follows.

Firstly, let fi
j(xi) satisfy the following conditions shown

in Fig. 6.

(A) Go through the two ends of the interval

yi�1 ¼ f
j

i ðxi�1Þ ð24Þ

yi ¼ f
j

i ðxiÞ ð25Þ

(B) First-order differential of the spline polynomials is

equal at the end-point of the adjoined function.

f
j0

iþ1ðxiÞ ¼ f
j0

i ðxiÞ ð26Þ

From the relation among (23)–(26), we can obtain:

ci ¼ yi�1; ði ¼ 1; 2; � � �; nÞ ð27Þ
biþ1 ¼ 2ui � bi; ði ¼ 1; 2; � � �; n� 1Þ ð28Þ

ai ¼
biþ1 � bi

2hi

; ði ¼ 1; 2; � � �; n� 1Þ; ð29Þ

where hi ¼ xi � xi�1; ui ¼ yi�yi�1

hi
: The above-mentioned

result can update the constrained conditional expression

Ĉ
j
iþ1 step by step.

Making an expansion of the interval between point (xi-1,

yi-1) and point (xi?1, yi?1) on the grinding surface which is

shown in Fig. 7, we can see the first half of grinding sur-

face before the current position, point (xi, yi) is shown by a

black line, which means this part has been already ground,

and second half after point (xi, yi) is shown by a break point

line, which means this part has not been ground yet. Now

let us pay our attention on the interval between point (xi, yi)

and point (xi?1, yi?1), which means this part has been

estimated by quadratic spline function. With the estimation

function, the next point (xi?1, yi?1) can easily be found to

be known, and then this point can be the position where

grinder should go in the next moment when tiþ1 ¼ t0 þ
ðiþ 1ÞDt: At the same time, this imitative function can be

used as the on-line estimation function to obtain the

unknown constraint condition

Ĉ
j
iþ1 ¼ y� f

j
i ðxÞ

¼ y� ½aiðx� xi�1Þ2 þ biðx� xi�1Þ þ ci� ¼ 0;

ðxi� x� xiþ1Þ
ð30Þ

during the period when grinder goes from point (xi, yi) to

point (xi?1, yi?1), which means in this unknown interval on

Fig. 8 Comparison of actual shape (upper) and estimated shape

(lower)

Fig. 9 Real ground result,

desired surface and its photo

Fig. 7 Expansion of interval between point (xi-1, yi-1) and point (xi?1,

yi?1) on the on-line estimation model
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the grinding surface, the future unground part (xi, yi) to

(xi?1, yi?1) can be ground by this on-line estimation

method based on the information obtained from the already

ground part (xi-1, yi-1) to (xi, yi). So, in the situation of

unknown constraint surface, using this on-line estimation

method point to point, the problem for grinding robot that it

does not know where it should go in future time can be

solved theoretically.

4 Experiment

In this section, we verify the feature of the proposed con-

troller (13). In the previous papers [19], we have already

confirmed the ability in on-line shape measurement based

on spline approximation (on-line estimation of the con-

straint condition Ĉ
j
iþ1) and continuous shape-grinding as

shown in Figs. 8 and 9. Whereas alloy model of work-piece

to be ground has been just one type, and the performance of

proposed force/position controller has not been confirmed

for various types of alloy models with different hardness.

In other words, it is necessary to confirm whether its per-

formance is independent of alloy model or not. Therefore,

this section shows the experimental results of model-

independent force/position hybrid control using three types

of alloy models with different hardness. Figure 2 shows the

experiment’s grinding task. In Fig. 2, we can find the

desired surface (it can be determined by us, here we use

(31) as this desired surface) as

f dðxiÞ ¼ 0:5173þ 0:015 cosð3� 5pxi �
p
2
Þ

��� ���ðmÞ
ð0:0ðmÞ� xi� 0:2ðmÞÞ ð31Þ

and also the initial flat surface is known as

f 1ðxiÞ = 0.5173 (m). Here we notice that although the

initial constraint surface f 1ðxiÞ and desired constraint sur-

face f dðxiÞ are known already, those functions f jðxiÞ which

can express the constraint working surfaces between f 1ðxiÞ
and f dðxiÞ are unknown. Therefore, we utilize the quadratic

spline function to estimate them by means of

f jðxiÞ = fspline(xi). The initial constraint surface to be

ground is defined as (x, y) = (0.0, 0.5173) * (0.2,

0.5173) (m) in time 5.0 s, and the desired velocity along

the surface is 0.04 m/s. The desired force Fnd is set as

F
j
ndðxiÞ ¼ k0Dh jðxiÞ:k0 is set to be 666 and Dh jðxiÞ ¼

f dðxiÞ � f jðxiÞ indicates the distance between the current

surface and desired surface as shown in Fig. 2. Grinding

Fig. 10 Desired constraint force Fnd (upper) and real constraint force

Fn measured by force sensor (lower) (alloy type: S45C)

Fig. 11 Grinding position xi (upper) and its velocity _xi (lower) (alloy

type: S45C)

Table 1 Parameters of grinding robot

Link 1 Link 2

Mass of link (kg) m1 = 12.28 m2 = 7.64

Length of link (m) l1 = 0.3 l2 = 0.5

Gravity center of link (m) a1 = 0.24 a2 = 0.25

General coordinates (rad) q1 q2

Input torque (N) ŝ1 ŝ2

Artif Life Robotics (2013) 18:219–227 225
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robot’s parameters are listed in Table 1, and there are two

motors (produced by YASKAWA Ltd.) mounted on those

two links used in torque control mode whose output torque

can be designated by the input voltage to the amplifier to

each motor, where motor of AC (400 W, 200 V) drives

link 1, motor of AC (200 W, 200 V) drives link 2. Link 1’s

torque/voltage is 0.42 Nm/V, link 2’s torque/voltage is

0.21 Nm/V.

Figures 10 and 11 give the experimental result for alloy

type S45C with Vickers hardness 170–195 HV. The result

Fig. 12 Desired constraint force Fnd (upper) and real constraint force

Fn measured by force sensor (lower) (alloy type: A2017P)

Fig. 13 Grinding position xi (upper) and its velocity _xi (lower) (alloy

type: A2017P)

Fig. 14 Desired constraint force Fnd (upper) and real constraint force

Fn measured by force sensor (lower) (alloy type: A5083P)

Fig. 15 Grinding position xi (upper) and its velocity _xi (lower) (alloy

type: A5083P)
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of Figs. 12 and 13 is for alloy type A2017P with Vickers

hardness 125–130 HV. And the result of Figs. 14 and 15 is

for alloy type A5083P with Vickers hardness 80–90 HV.

One trial takes 5 s and the number of trials is 10 in these

experimental results. So the experiment of each alloy type

takes 50 s. Figures 10, 12 and 14 show desired constraint

force Fnd and real constraint force Fn measured by force

sensor. Figures 11, 13 and 15 show grinding position xi and

the velocity _xi: From these figures, it is found that the

proposed controller (13) can decouple position and force

control independent of alloy models, although the results of

real constraint force and grinding velocity are affected by

grinding.

5 Conclusions

In order to verify the feature of the proposed force-

sensorless force/position hybrid control, the experiments

of the proposed force/position hybrid control method were

executed for three types of alloy models with different

hardness. From the experimental results, it is found that

the proposed controller can decouple force and position

control for continuous shape-grinding independent of

alloy models. Although this paper does not discuss the

correspondence of the desired force and the measured

force, or the correspondence of positions and velocities in

detail, in future works, these correspondences and the

relation between hardness of alloy model and shape to be

ground should be explored to utilize in many robotic

control fields.
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