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Abstract: Biped locomotion created by a controller based on Zero-Moment Point [ZMP] known as reliable control method looks
different from human’s walking on the view point that ZMP-based walking does not include falling state, and it’s like monkey
walking because of knee-bended walking profiles. However, the walking control that does not depend on ZMP is vulnerable to
turnover. Therefore, keeping the event-driven walking of dynamical motion stable is important issue for realization of human-like
natural walking. In this paper, walking model of humanoid including slipping, bumping, surface-contacting and point-contacting
of foot is discussed, where dynamical equation is derived by Newton-Euler method with constraint condition, which is named as
”Extended Newton-Euler Method”. Then, we further discuss walking stabilizer named ”Visual Lifting Stabilization” to enhance
standing robustness and prevent the robot from falling down. Simulation results indicate that this strategy helps stabilize pose
and bipedal walking even though ZMP is not kept inside convex hull of supporting area.
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1 INTRODUCTION

Human beings have acquired an ability of stable bipedal
walking in evolving repetitions so far. From a view point of
making a stable controller for the bipedal walking based on
knowledge of control theory, it looks not easy because of the
dynamics with high nonlinearity and coupled interactions be-
tween state variables with high dimensions. Therefore how
to simplify the complicated walking dynamics to help con-
struct stable walking controller has been studied intensively.
Avoiding complications in dealing directly with true dynam-
ics without approximation, inverted pendulum has been used
frequently for making a stable controller [1]-[3], simplifying
the calculations to determine input torque. Further, linear ap-
proximation having the humanoid being represented by sim-
ple inverted pendulum enables researchers to realize stable
gait through well-known control strategy [4]-[6].

Our research has begun from a view point of [7] as aim-
ing to describing gait’s dynamics as correctly as possible, in-
cluding point-contacting state of foot and toe, slipping of the
foot and bumping. However, our model differs from [7] and
[8] is that we discuss the dynamics of whole-body humanoid
that contains head, waist and arms. And that what the au-
thors think more important is that the dimension of dynam-
ical equation will change depending on the walking gait’s
varieties, which has been discussed by [9] concerning one-
legged hopping robot. In fact, this kind of dynamics with
the dimension number of state variables varying by the result
of its dynamical time transitions that are out of the arena of
control theory that discusses how to control a system with
fixed states’ number. Further the tipping over motion has

been called as non-holonomic dynamics that includes a joint
without inputting torque, i.e., free joint.

Meanwhile, landing of the heel or the toe of lifting leg
in the air to the ground makes a geometrical contact. [10]
mentioned how to represent robot’s motion contacting with
environment that can handle constraint motion with friction
by algebraic equation and applied it to human figures. Based
on these references, we derive the dynamics of humanoid
which is simulated as a serial-link manipulator including
constraint motion and slipping motion by using Extended
Newton-Euler Method [11].

The conventional method of NE could be applied to a
robot having an open loop serial linkage structure, but the
motion of hand was limited to motions without contacting
external world. NE method has not been formulated although
it was very important for a robot that works under a premise
that it must be contacted with the environment when the robot
was doing some grinding work or assembling work. For this
point, the extended NE method proposed in [11] is is same
as the research of [10][12], in terms of that the constraints
are strictly satisfied. Meanwhile, the constraint force which
can be included in the iterative calculation of NE method by
calculating the constraint force by a substitution method [13].

2 THE INVERSE DYNAMICS SOLUTION BY

NEWTON-EULER METHOD DURING RE-

STRAINED MOTION
Here, we consider the inverse dynamics solution of con-

strained motion of a tip link of straight chain link manipu-
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Fig. 1. n-link manipulator whose hand position is constraint
by non elastic environment, which is a floor in this figure

lator which constituted by undeformed rigid links while it
is contacting the undeformed environment. Considering the
manipulator with n rigid links shown in Fig.1, which has a
straight chain link structure and n degrees of freedom, and
affected by friction force ft and drag force fn to hand from
the ground. We will derive the equation of motion based on
a coordinate system Σi fixed to the link i. Σ0 is a work coor-
dinate system fixed to the floor. The constraint condition can
be defined as Eq.(1) when the hand is restrained to a restraint
surface, and the r(q) is the position vector of the hand, and
q is joint angle vector.

C(r(q)) = 0 (1)

Here, we can assume that C(r(q)) is differentiable respect-
ing to r and q. In Fig.1, there is depicted on the assumption
that the robot is in contact with a floor environment, but the
following discussions are not limited to discussions about the
floor constraint.

First, as a forward dynamics computation of the Newton-
Euler method, we can calculate the joint angular velocity iωi

of link i toward the tip link from the root link, the joint angu-
lar acceleration iω̇i, the translational acceleration at the ori-
gin of Σi, ip̈i, and the translational acceleration in the center
of mass by the following equation. The upper left subscript
shows the reference coordinate system, the lower right sub-
script shows the target link.

iωi = i−1RT
i

i−1ωi−1 + iziq̇i (2)
iω̇i = i−1RT

i
i−1ω̇i−1 + iziq̈i + iωi × (iziq̇i) (3)

ip̈i = i−1RT
i

{
i−1p̈i−1 + i−1ω̇i−1 × i−1p̂i

+i−1ωi−1 × (i−1ωi−1 × i−1p̂i)
}

(4)

is̈i = ip̈i + iω̇i × iŝi + iωi × (iωi × iŝi) (5)

i−1Ri is a rotation matrix from Σi−1 to Σi, and izi =
[0, 0, 1]T is a unit vector of rotation axis of the link i, i−1p̂i

is a position vector from the origin point of Σi−1 to Σi, iŝi

is a position vector from the origin point of Σi to the cen-
ter of mass of link i. As the initial value, we set 0ω0 = 0，

0ω̇0 = 0，0p̈0 = [0, 0, g]T, 0s̈0 = 0. Here g is the gravity
acceleration.

Then, based on the inverse dynamics calculation, the
Newton equation and the Euler equation of link i are derived
recursively from bottom link to top link as Eq.(6)∼Eq.(8).

n+1fn+1 = −0RT
n+1

{ (
∂C
∂r

)
∥∥∂C

∂r
∥∥fn − ṙ

‖ṙ‖
ft

}
(6)

if i = iRi+1
i+1f i+1 + mi

is̈i (7)

ini = iRi+1
i+1ni+1 + iIi

iω̇i + iωi × (iIi
iωi)

+iŝi × (mi
is̈i) + ip̂i+1 × (iRi+1

i+1f i+1) (8)

The if i,
ini in Σi show the force and moment exerted on

link i from link (i − 1). And iIi denotes the inertia ma-
trix of the center of gravity of link i. Because n+1fn+1 that
is a force transmitting from top link to the floor will be the
reaction force of drag force and friction force, we can cal-
culate it as shown in Eq.(6). About constraint motion, we
will make two assumptions as follows. (i)The drag force fn

and the friction force ft on external contact portion are or-
thogonal. (ii)ft is determined in proportion to drag force:
ft = Kfn (K is the coefficient of friction force : 0 < K ≤
1). The drag force fn can be determined by the method de-
scribed in the next chapter. Equation of motion of all links
can be obtained by repeating the Newton and Euler’s equa-
tion in Eq.(7) and Eq.(8) from hand to root link. Giving the
Σi to all joints that have rotation axes about the izi-axis, the
relationship between 0ni and joint driving force τi can be
calculated as follows.

τi = izT
i

ini + Diq̇i (9)

Here, Di represents the viscous friction coefficient of joint i.

3 DRAG FORCE FN

3.1 Derivation of Drag Force fn

In this chapter we describe a method of deriving the drag
force fn. A condition of hand constraint state of manipulator
robot is represented by Eq.(1), and its equation of motion is
represented by Eq.(10).

M(q)q̈ + h(q, q̇) + g(q) + Dq̇ − (jc − jtK)fn = τ (10)

M(q) is inertia matrix with n × n, h(q, q̇) and g(q)
are vector with n × 1 representing the term of centrifugal
force/Coriolis force and the gravity term, D is a diagonal ma-
trix D = diag[D1, D2, · · · , Dn] with n×n representing the
viscous friction coefficients of joints, τ is a input torque vec-
tor with n × 1, and q = [q1, q2, · · · , qn]T is the joint angle
vector with n × 1. Besides, jc and jt are defined as follows.

jc ,
„

∂r

∂qT

«T „

∂C

∂r

«

/

‚

‚

‚

‚

∂C

∂r

‚

‚

‚

‚

, jt ,
„

∂r

∂qT

«T
ṙ

‖ṙ‖ (11)
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Making second-order differentiation of Eq.(1) by time t to
determine the constraint condition q̈, we have

q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ +

(
∂C

∂qT

)
q̈ = 0. (12)

In order to make manipulator be always constrained to re-
straint surface, the solution q(t) of Eq.(10) should satisfy the
Eq.(1) regardless of the time t. When q̈ in Eq.(10) and q̈

which is satisfied to the Eq.(12) obtained by the time deriva-
tive of Eq.(1) take the same value, the q(t) in Eq.(10) will
satisfy Eq.(1). Erasing the q̈ by Eq.(10) and Eq.(12).

(
∂C

∂qT

)
M−1

(
∂C

∂qT

)T
fn∥∥∥∥
∂C

∂rT

∥∥∥∥

=
(

∂C

∂qT

)
M−1 (jtKfn + Dq̇ + h + g − τ )

−q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ (13)

We got Eq.(13). Here, we define mc as follow.

mc , (∂C/∂qT)M−1(∂C/∂qT)T (14)

M−1 is nonsingular, ∂C/∂qT = (∂C/∂rT)(∂r/∂qT), C

is a curved surface to satisfy the ∂C/∂rT 6= 0. Here, assum-
ing the ∂r/∂qT is full row rank, and to be considered with
the exception of singular configuration, there will be mc 6= 0,
since ∂C/∂qT 6= 0. By using mc, Eq.(13) can be rewritten
as Eq.(15).

mcfn =
∥∥∥∥

∂C

∂rT

∥∥∥∥
{(

∂C

∂qT

)
M−1(jtKfn + Dq̇

+h + g − τ ) − q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇
}

(15)

Here, we define dT as follow.

dT ,
∥∥∥∥

∂C

∂rT

∥∥∥∥
(

∂C

∂qT

)
M−1 (16)

So, Eq.(15) can be rewritten as follow.

mcfn = dTjtKfn − dTτ + dT {Dq̇ + h + g}

−
∥∥∥∥

∂C

∂rT

∥∥∥∥q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ (17)

Here, we define a as follow.

a , dT {Dq̇ + h + g} −
∥∥∥∥

∂C

∂rT

∥∥∥∥q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇ (18)

We will get Eq.(19).

mcfn = dTjtKfn − dTτ + a (19)

And we define A as follow.

A , mc − dTjtK (20)

We can get Eq.(21).

Afn = a − dTτ (21)

Drag force fn of constraint point can be determined by the
algebraic equation of the input torque τ when A 6= 0.

3.2 Differentiation of Jacobian Matrix
By deforming the second term in the right side of Eq.(18),

we can obtain Eq.(22). Here we put the (∂r/∂qT) = Jp that
is the Jacobian matrix for the q against the hand position r.

q̇T

[
∂

∂q

(
∂C

∂qT

)]
q̇

=
dqT

dt

[
∂

∂q

(
∂C

∂rT

∂r

∂qT

)]
q̇

=
d

dt

(
∂C

∂rT
Jp

)
q̇

=
[

d

dt

(
∂C

∂rT

)
Jp +

∂C

∂rT

dJp

dt

]
q̇ (22)

Therefore, it is necessary to obtain the time derivative of the
Jacobian matrix to determine the a of Eq.(18), and basing on
the calculation method of J̇p(q) in [11], we can get the time
derivative of the Jacobian matrix as follow.

J̇ = [

`

0!1 × 0R1
1z1

´

× 0pn+1,1 + 0z1 ×
`

Jp(n+1)q̇ − Jp1q̇
´

0!1 × 0R1
1z1

· · ·
`

0!n × 0Rn
nzn

´

× 0pn+1,n + 0zn ×
`

Jp(n+1)q̇ − Jpnq̇
´

· · · 0!n × 0Rn
nzn

]

(23)

4 SOLUTION OF THE FORWARD DYNAMICS

PROBLEM
It is not easy to calculate M(q), h(q, q̇), g(q) directly in

Eq.(10) which is the equation of motion of the n links multi-
joint manipulator when its n becomes larger. Following de-
scribes the solution of the forward dynamics problem by us-
ing the NE inverse dynamics solution as follows.

First, define b = h(q, q̇) + g(q) + Dq̇ and τ p as the
left-hand side of Eq.(10).

M(q)q̈ + b − (jc − jtK)fn = τ p (24)

When the inverse dynamics calculation expresses as τ p =
INV (q, q̇, q̈, g, fn,K) shown in Eq.(2)∼Eq.(9), the follow-
ing equation can be obtained.

M(q)q̈ + b − (jc − jtK)fn = INV (q, q̇, q̈, g, fn,K) (25)
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Here, b = INV (q, q̇,0, g, 0,K) can be obtained by sub-
stituting q̈ = 0, fn = 0 in Eq.(25), then there will be
M i = M(q)ei = INV (q,0, ei,0, 0,K) by substituting
q̇ = 0, q̈ = ei, g = 0, fn = 0 into Eq.(25). M i is
a vector representing the i-th column of the inertia matrix,
ei = [0, · · · , 1(i), 0, · · · , 0]T is an unit vector that the i-th
element with the ’1’, element of M(q) is calculated for each
column. Besides, jt can be obtained through jc shown in
Eq.(33) and τ defined in Eq.(34) as shown next.

jc = INV (q,0,0,0,−1, 0) (26)

τ̃ , jc − jt = INV (q,0,0,0,−1, 1) (27)

jt = jc − τ̃ (28)

Based on these equations and dT, a, A that were calculated
in Eq.(16), (18) and (20), we can calculate fn in Eq.(21).

Here, we define the bn = b−(jc−jtK)fn, and substitute
q̈ = 0 into bn. And by using the fn obtained above, it is
possible to obtain bn = INV (q, q̇,0, g, fn,K). Thus, the
angular acceleration q̈ of each link during restrained motion
is calculated as follow.

q̈ = M−1(τ − bn) (29)

By using the numerical integration of q̈ of the given equation,
it is possible to perform the forward dynamics calculations
of manipulator that the tip link is constrained and contact-
ing with object without explicitly requiring the equation of
motion in Eq.(10).

5 DYNAMICAL WALKING MODEL BASED ON

EXTENDED NEWTON-EULER METHOD
We discuss a biped robot whose definition is depicted

in Fig.2. Table 1 indicates length li [m], mass mi [kg] of
links and joints’ coefficient of viscous friction di [N·m·s/rad],
which are decided based on [14]. This model is simulated
as a serial-link manipulator having ramifications and repre-
sents rigid whole body—feet including toe, torso, arms and
so on—by 18 degree-of-freedom.

Though motion of legs is restricted in sagittal plane, it
generates varieties of walking gait sequences since the robot
has flat-sole feet and kicking torque. In this paper, one foot
including link-0 and link-1 is defined as “supporting-foot”
and another foot including link-7 and link-8 is defined as
“floating-foot” or “contacting-foot” according to the walking
state.

5.1 Model of Supporting-foot Standing
First, we can calculate the relations of positions, veloc-

ities and accelerations between links as forward kinematics
procedures from bottom link to top link using Eq.(2)-Eq.(5)
in Chapter 2.

q2
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However, velocity and acceleration of 4-th link transmit to
9-th link and ones of 11-th link transmit to 12-th, 15-th and
18-th link directly because of ramification mechanisms. Af-
ter the above forward kinematic calculation has been done,
contrarily inverse dynamical calculation procedures is the
next from top to base link using Eq.(7)-Eq.(8) in Chapter 2.

On the other hand, since force and torque of 5-th and 9-th
links are exerted on 4-th link, effects onto 4-th link as:

4f4 = 4R5
5f5 + 4R9

9f9 + m4
4s̈4, (30)

4n4 = 4R5
5n5 + 4R9

9n9 + 4I4
4ω̇4 + 4ω4 × (4I4

4ω4)

+ 4ŝ4 × (m4
4s̈4) + 4p̂5 × (4R5

5f5)

+ 4p̂9 × (4R9
9f9). (31)

Similarly, force and torque of 12-th, 15-th and 18-th links
transmit to 11-th link directly. Then, rotational motion equa-
tion of i-th link is obtained as Eq.(9) by making inner product
of induced torque onto the i-th link’s unit vector zi around
rotational axis. Finally, we get motion equation with one leg
standing as:

M(q)q̈ + h(q, q̇) + g(q) + Dq̇ = τ , (32)

where, D = diag[d1, d2, · · · , d18]. If supporting-foot
is surface-contacting and assumed to be without slipping,
joint angle can be thought as q = [q2, q3, · · · , q18]T . This
walking pattern is depicted in Fig. 3 (a). When heel
of supporting-foot should detach from the ground before
floating-foot contacts to the ground as shown in Fig. 3 (b),
the state variable for the foot’s angle q1 be added to q, thus
q = [q1, q2, · · · , q18]T .

5.2 Model of contact constraints of contacting foot
Making floating-foot contact with ground, contacting-foot

like Fig. 4 appears with contacting-foot’s position zh or an-
gle qe to the ground being constrained. Following by Eq.(1),
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Table 1. Physical parameters

Link li mi di

Head 0.24 4.5 0.5

Upper body 0.41 21.5 10.0

Middle body 0.1 2.0 10.0

Lower body 0.1 2.0 10.0

Upper arm 0.31 2.3 0.03

Lower arm 0.24 1.4 1.0

Hand 0.18 0.4 2.0

Waist 0.27 2.0 10.0

Upper leg 0.38 7.3 10.0

Lower leg 0.40 3.4 10.0

Foot 0.07 1.1 10.0

Total 1.7 63.8

constraints of foot’s position and heel’s rotation can be de-
fined as C1 and C2 respectively, these constraints can be writ-
ten as follow, where r(q) means the contacting-foot’s heel or
toe position in ΣW .

C(r(q)) =
[

C1(r(q))
C2(r(q))

]
= 0 (33)

Then, robot’s equation of motion with external force fn,
friction force ft and external torque τn corresponding to C1

and C2 can be derived based on Eq.(10) as:

M(q)q̈ + h(q, q̇) + g(q) + Dq̇

= τ + jT
c fn − jT

t ft + jT
r τn, (34)

where jc, jt and jr are defined as:

jT
c =

„

∂C1

∂qT

«T„

1/

‚

‚

‚

‚

∂C1

∂rT

‚

‚

‚

‚

«

, jT
t =

„

∂r

∂qT

«T
ṙ

‖ṙ‖ , (35)

jT
r =

„

∂C2

∂qT

«T„

1/

‚

‚

‚

‚

∂C2

∂qT

‚

‚

‚

‚

«

. (36)

It is common sense that (i) fn and ft are orthogonal, and
(ii) value of ft is decided by ft = Kfn (0 < K ≤ 1). Based
on Eq.(12) that differentiating Eq. (33) by time for two times,
we can derive the constraint condition of q̈.

(
∂Ci

∂qT

)
q̈+q̇T

{
∂

∂q

(
∂Ci

∂qT

)
q̇

}
= 0 (i = 1, 2) (37)

Making the q̈ in Eqs. (34) and (37) be identical, we can
obtain the equation of contacting motion as follow.

2

6

4

M(q) −(jT
c − jT

t K) −jT
r

∂C1/∂qT 0 0

∂C2/∂qT 0 0

3

7

5

2

6

4

q̈

fn

τn

3

7

5

=

2

6

6

6

6

4

fi − h(q, q̇) − g(q) − Dq̇

−q̇T



∂

∂q

„

∂C1

∂qT

«ff

q̇

−q̇T



∂

∂q

„

∂C2

∂qT

«ff

q̇

3

7

7

7

7

5

(38)

Here, since motion of the foot is constrained only vertical
direction, walking direction has a degree of motion. That is,
contacting-foot may slip forward or backward depending on
the foot’s velocity in traveling direction.

6 ANALYSES OF BIPEDAL WALKING

To realize bipedal walking, four kinds of input torques
were used [15]. which are: a torque for stabilization of pose,
a periodical input to thigh of floating-leg (joint-5) to make
the leg step forward, a periodical input to roll angle of body
(joint-11), and a periodical input to make arms(joint-12,15)
swing like humans. Fig.5 is the relation between angle q10

and angular velocity q̇10 of waist during 1000 steps’ walking
when the first step is by right foot. Although both trajectories
being close the same constant cycle along with time passage,
these trajectories in Fig. 5 are not limit cycle since trajecto-
ries have a certain width after 1000 walking steps. Chang-
ing the initial condition,we got Fig.6 whose first step is by
left foot. We can find that Fig.5(a) and Fig.6(b), Fig.5(b)
and Fig.6(a) are the same because of the symmetry motion
of foots. Therefore, we can say that the model we made is
appropriate.
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Fig. 5. Relation of q10 and q̇10 when first step is by right foot

(b) Supporting foot is left

(a) Supporting foot is right
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Fig. 6. Relation of q10 and q̇10 when first step is by left foot

7 CONCLUSION
In this paper, we showed a walking model of humanoid

including slipping, bumping, surface-contacting and point-
contacting of foot, which dynamical equation is derived by
Newton-Euler method with constraint condition, named as
”Extended Newton-Euler Method”. For the future, we plan
to extend the calculation method to the case of more than two
constraint conditions, and evaluate it by simulations.
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