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Abstract: Model-based visual servoing needs definitions of the objects and detected pose of the model is used for visual servo
controller. When 3-D pose-based visual servoing is applied to 3-D unknown-shaped target, the model-based visual servoing
method needs create the artificial 3-D model definitions for detecting the unknown 3-D target and tracking it. In order to have
visual servoing system track the unknown-shaped target, automatic 3-D model generation mechanisms for arbitrary-shaped target
objects should be created before detecting the designated target. In this paper, a 3-D modeling method of arbitrary shape objects
is proposed and the performance is examined by modeling experiment of arbitrary shape objects and visual servoing experiments
with twin hand-eye camera whose looking direction can rotate around pitching and yawing axes.
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1 INTRODUCTION
Visual servoing is a control method of robot’s motion

through visual information in the feedback loop, which is
obtained from visual cameras [1]-[4]. Some methods have
already been proposed to improve observation abilities, by
using stereo cameras [5], multiple cameras [6], and two cam-
eras; with one fixed on the end-effector, and the other done
in the workspace [7]. These methods obtain different views
to observe the object by increasing the number of cameras,
leaving the system less adaptive for changing environment.

Image-based visual servoing has an advantage that it can
be used under unknown environment, that is, it works without
any definition or knowledge of environment. However, it has
no concept of the shape of target object since Image-based
visual servoing system could be constructed by just eliminat-
ing corresponding point-to-point distance errors between de-
sired point position and actual point position in image plane.
Therefore, the image-based visual servoing does not need to
recognize target shape.

But there exists visual servoing application that the system
be required to discern several objects’ shape and to do visual
servoing against one of the objects. In this case, target shape
should be recognized and its pose should be detected as well.
Therefore when shape recognition task and visual servoing
task to the designated target are required to be simultane-
ously done, the model-based visual servoing method is supe-
rior than the image-based one since model-based method en-
ables the system to understand the target shape based on the
defined shape in computer and pose, enabling the robot sys-
tem can handle the target object such as grasping and picking
up. And that image-based visual servoing system are unable
to do so.

The model-based visual servoing needs definition of
shape of object target, which is called in this document as
simply “model”, which is thought to be demerit when com-
paring it with image-based method. However GA-based
(Genetic-Algorithm-based) 3-D model-based pose detection
method that we have proposed can obtain the pose of target
object without extracting correspondent points between left
and right images, where epipolar line is usually used to find
corresponding points that represent the identical point on an
object existing in 3-D real world.

To find corresponding two points in left and right camera
using epipolar line sometimes becomes difficult due to dy-
namic luminous intensity changing or being hidden by some-
thing adrift in the foreground of the target. However 3-D
model-based matching method dose not require to find cor-
responding points in the camera views since the 3-D model
projected to left and right camera images has already corre-
sponding points in the projected model shape.

This natural feature of model-based matching can made
the 3-D pose detection robust against noises in images. The
robustness of 3-D model based pose tracking has been con-
formed [8] and usefulness for pose tracking in dynamic/real-
time video images, which is used for visual servoing against
swimming fish [9]. However the mode-based method needs
of course a model definition. This restricts an extent of ap-
plicable target of this method where model should be pre-
determined and known. In order to overcome this problem,
automatic 3-D model generation mechanisms for arbitrary-
shaped target objects is required created before detecting the
designated target. In this paper to overcome the above obsta-
cle to use model-based method against unknown object, we
propose a modeling method of 3-D arbitrary shaped target
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Inputting image of arbitrary-shaped target “�”
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Step1:Deciding maximum-size ellipsoid “1�” inscribed in the target object in 
input image. Calculating correlation value ��(�, 1�(1�)) of � and 1�, and 
deciding attribute 1� that maximize �� by Genetic Algorithm(GA). Then 
1�(1�) becomes fixed value.

Step2:Placing plural second ellipsoids 2� = [2��, 2��,⋯ , 2��]	on arc of 1� on 
which those origins of ellipsoids position. Calculating correlation value ��	(�,
1�(1�), 2�(2�)) of �, 1�, 2�, and deciding attribute 2� of 2�(2�) that maximize 
��. Then 2�(2�)becomes fixed value.

Step p:Placing plural p-th ellipsoids p� = [���, ���,⋯ , ���]	on arcs of p-1� on 
which those origins of ellipsoids position. Calculating correlation value �� 	(�,
1�(1�), 2�(2�),⋯ , ��(��)) of �, 1�, 2�, ⋯, ��, and deciding attribute �� of 
��(��)that maximize ��. Then ��(��)	becomes fixed value.
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Fig. 1. Flowchart of approximation description of arbitrary-
shaped target object by optimization through Genetic Al-
gorithms by using progressive combination as a fitness-
function.

Arbitrary-shaped target

First spindle model 1�

Second spindle model
2�1,

2�2,
2�3

p-th spindle model
��1,

��2,⋯
���

Fig. 2. Modeling method of arbitrary-shaped target object
through progressive combinations.

object.

2 3-D ARBITRARY-SHAPE MODELLING

2.1 Needs for Arbitrary-shape Modelling
Robots used in factories need predetermined descriptions

of target objects’ shape, position and orientation, and that
their information is crucial for adaptive behavior of robots.
Thus the robots are hard to have leeways to deal some re-
quired tasks within changing environment since the changing
could not be prescribed beforehand. To make a robot sys-
tem that manages to operate autonomously in the unknown
and unpredictable environment, it is required that the robot
should perceive the changing in environment resulted from
what the robots have done and should accomplish the task to
be done adaptively and autonomously. Then this requirement
indicates the abilities to perceive 3-D arbitrary-shaped target
objects are essential for autonomous operations in changing
environments. Therefore we propose in this paper to con-
struct a recognition system of target object with arbitrary-

�

��

��� ����

Σ�

Σ� �:position
�:orientation

�, �

Fig. 3. 3-D model to approximate arbitrary-shape object for
progressive combination.

shape by approximating the object with progressive combi-
nation of 3-D ellipsoid.

2.2 Progressive Ellipsoid Approximation

Here a 3-D ellipsoid object is considered as a fundamen-
tal element to approximate an arbitrary-shaped object to be
perceived and to describe it in computer. The ellipsoid ele-
ment description has an attribute including pose(position and
orientation), radii of longer/shorter axes, color, etc.

Figure 1 shown a flowchart of description procedure for
arbitrary-shaped object with progressive ellipsoid approxi-
mation. By optimizing a correlation function F1(X,1E(1Y ))
between target object “X” in input image and attribute of first
3-D ellipsoid model “1Y ” that has a peak when the first 3-D
ellipsoid model is bounded internally in the target object and
that the size and pose are chosen as large as the projected el-
lipsoid to be matched to the target object in the image, the
first 3-D ellipsoid model could be determined, as a first step.

In step 2, second 3-D ellipsoid models that have their cen-
ter positions placed on the surface of the first model with
attributes 2E = [2E1,

2E2, · · · ,2En] are determined by the
same procedures as the first one that maximizes the correla-
tion value F2(X,1E(1Y ),2E(2Y )) by changing the attribu-
tions 2Y = [2Y1,

2Y2, · · · ,2Yn] of the secondary models.

By repeating above procedures p times, the accumulated
correlation function Fp(X,1E(1Y ),2E(2Y ), · · · ,pE(pY ))
that includes first, second, · · · , p-th can be calculated.

When the incremental changing of ∆Fp = Fp − Fp−1

is less than predetermined δ, the approximation procedure
steps. To make the approximation accuracy high, the δ

should be set small, thus the requirement of how much
precisely the 3-D ellipsoid series describe under unknown-
shaped target can be adjusted through setting the value of δ.

Figure 2 shows the models determined by Genetic Al-
gorithms, where one first model 1E, three second models
2E1,

2E2,
2E3, · · · are depicted, where are determined by flow

chart in Fig.1.
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2.3 Definition of 3-D Ellipsoid Model
A 3-D ellipsoid model is shown in Fig.3. The model con-

sists of points that exist on the surface of the ellipsoid “Sp
on”,

which includes m points and outside the one “Sp
out” that en-

velopes the Sp
on. “q” means the number of the 3-D model

points used in 1-step GA process. A set of points on the sur-
face Sp

on of p-th model is determined by




xp
on,i = a sin θi

yp
on,i = b cos θi sin φi (−π < θi, φi < +π

zp
on,i = c cos θi cos φi and i = 1, 2, · · · ,m)

(1)

and a set of points on the enveloping surface Sp
out with the

radii being a + α, b + α, c + α along to each x,y,z axis is
defined as




xp
out,i = (a + α) sin θi

yp
out,i = (b + α) cos θi sin φi (−π < θi, φi < +π

zp
out,i = (c + α) cos θi cos φi and i = 1, 2, · · · ,m).

(2)

Then a set of the p-th 3-D ellipsoid model is defined based
on ΣM as

MSp
on = {(x, y, z)|Mrp

on = [xp
on,i, y

p
on,i, z

p
on,i],

(i = 1, 2, · · · ,m)} (3)
MSp

out = {(x, y, z)|Mrp
out = [xp

out,i, y
p
out,i, z

p
out,i],

(i = 1, 2, · · · ,m)} (4)
MSp = MSp

on ∩M Sp
out. (5)

Suppose that the p-th 3-D ellipsoid model positions based on
the coordinate of ΣM that is set at the center of 3-D model as
shown in Fig.3 at the point of Mrp and orientation Mεp that
is represented by unit quaternion, {η, ε} and η2 + εT ε = 1,
then the each point in MSP is translated into the pose based
on ΣW as

WSp = {(x, y, z)|Wrp = r +WRM (ε)Mrp,Mrp ∈MSp} (6)

where W RM (ε) is 3 × 3 orientation matrix determined by
quaternion. The set of points in W SP is projected to image
plane of left and right camera, then the 3-D model-based cor-
relation function is calculated based on points in W SP .

Then the best matched pose, that is r and ε, which is
thought to represent pose of the real target object in 3-D
space, can be identified.

3 OBJECT RECOGNITION METHOD
3.1 Model-based Matching Method

In this part, a model-based matching method was pre-
sented. The images input from a right-and-left video cameras
are composed by hue value ranging from 0 to 360. SR,in,
and SL,in are the inside spaces of coordinate on the surface
of the block model. Accordingly, SR,out, and SL,out are the

outside spaces. The H value of right image at the position
IRri is expressed as p(IRri), and the H value of left image
at the position ILri is expressed as p(ILri). IRri and ILri

are the positions of the pixels. If it was defined that m(r) =
1(r ∈ SR,in, or r ∈ SL,in), m(r) = −1(r ∈ SR,out,

or r ∈ SL,out), and φ was the position/orientation of the
model, then the fitting evaluation function was

F (φ) =
p∑

j=1





( ∑

IRri∈Sj
R,in(φ)

m ∗ p(IRri) +
∑

IRri∈Sj
R,out(φ)

m ∗ p(IRri)
)

+
( ∑

ILri∈Sj
L,in(φ)

m ∗ p(ILri) +
∑

ILri∈Sj
L,out(φ)

m ∗ p(ILri)
)




/2

=
p∑

j=1

{
F j

R(φ) + F j
L(φ)

}
/2 (7)

Equation (7) was used as a fitness function in GA process.
When the moving searching model fitted to the target object
being imaged in the right and left images, the fitness function
F (φ) got maximum value.

Therefore, the problem of finding a target object and de-
tecting its pose can be converted to searching φ that max-
imize F (φ). This problem will be solved with 1-step GA
algorithm.

3.2 On-line Pose Tracking “1-step GA”
For real-time visual control purposes, we employ GA in a

way that we denoted as “1-Step GA”[10] evolution in which
the GA evolutional iteration is applied one time to the newly
input image. While using the elitist model of the GA, the po-
sition/orientation of a target can be detect in every new image
by that of the searching model given by the best individual in
the population. This feature happens to be favorable for real-
time visual recognition. We output the current best individual
of the GA in every newly input image, and use it as real-time
recognition result.

4 EYE-VERGENCE VISUAL SERVOING CON-

TROLLER
4.1 Desired-trajectory generation

In Fig.4, the world coordinate frame is denoted by ΣW ,
the target coordinate frame is denoted by ΣM , and the desired
and actual end-effector coordinate frame is denoted by ΣEd,
ΣE respectively. The desired relation between the target and
the end-effector is given by Homogeneous Transformation
as EdT M , the relation between the target and the actual end-
effector is given by ET M , then the difference between the
desired end-effector pose ΣEd and the actual end-effector
pose ΣE is denoted as ET Ed, which can be described by:

ET Ed(t) = ET M (t)EdT−1
M (t) (8)
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Fig. 4. Motion of the end-effector and object

(8) is a general representation of hand pose tracking error
that satisfies arbitrary object motion W T M (t) and arbitrary
visual servoing objective EdT M (t). The relation ET M (t)
can be estimated by 1-step GA [10], having been presented
as an on-line model-based pose estimation method. Let ΣM̂

denote the detected object, It is natural there should always
exist an error between the actual object ΣM and the detected
one ΣM̂ . So in visual servoing, (8) will be rewritten based on
ΣM̂ that includes the error MT M̂ , as

ET Ed(t) = ET M̂ (t)EdT−1

M̂
(t). (9)

Differentiating (9) with respect to time yields

EṪ Ed(t) = EṪ M̂ (t)M̂T Ed(t) + ET M̂ (t)M̂ Ṫ Ed(t). (10)

Differentiating (10) with respect to time again

ET̈ Ed(t) = ET̈ M̂ (t)M̂T Ed(t) + 2EṪ M̂ (t)M̂ Ṫ Ed(t)+
ET M̂ (t)M̂ T̈ Ed(t), (11)

where M̂T Ed, M̂ Ṫ Ed, M̂ T̈ Ed are given as the desired visual
servoing objective. ET M̂ , EṪ M̂ , ET̈ M̂ can be observed by
cameras. As shown in Fig.4, there are two errors left to be
decreased in the visual system. One is the error between the
actual object and the detected one, MT M̂ , and the other is
the error between the desired end-effector and the actual one,
ET Ed. The error of MT M̂ is decreased by pose tracking
method of the “1-step GA” [10], and the eye-vergence cam-
era system, and the error of ET Ed depends on the perfor-
mances of the hand visual servoing controller.

4.2 Hand Visual Servoing Controller
The block diagram of the eye-vergence visual servoing

controller is shown as Fig.5. Based on the above analysis
of the desired-trajectory generation, the desired hand veloc-
ity W ṙd is calculated as,

W ṙd = KPp

W rE,Ed + KVp

W ṙE,Ed, (12)

f(q)
Raw imageRaw imageRaw imageRaw image

EdTM ,
Ed _TM

DesiredDesiredDesiredDesired----
trajectory trajectory trajectory trajectory 
generationgenerationgenerationgeneration

ET Ed
E _TEd

E!Ed

W rE;Ed
W _rE;Ed

W!E;Ed

EÅè

Objective ofObjective ofObjective ofObjective of

visual servovisual servovisual servovisual servoinginginging

Velocity Velocity Velocity Velocity 
controllercontrollercontrollercontroller
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transformtransformtransformtransform

MotionMotionMotionMotion----FeedForwardFeedForwardFeedForwardFeedForward
compensationcompensationcompensationcompensation
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ú
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+G(q) =ú

ú

CameraCameraCameraCamera

Fig. 5. Block diagram of Eye-Vergence visual servoing con-
troller

where W rE,Ed,
W ṙE,Ed can be calculated from ET Ed and

EṪ Ed. KPp and KVp are positive definite matrix to deter-
mine PD gain.

The desired hand angular velocity W ωd is calculated as,

W ωd = KPo

W RE
E∆ε + KVo

W ωE,Ed, (13)

where E∆ε is a quaternion error [10] calculated from the
pose tracking result, and W ωE,Ed can be computed by trans-
forming the base coordinates of ET Ed and EṪ Ed from ΣE

to ΣW . Also, KPo and KVo are suitable feedback ma-
trix gains. We define the desired hand pose as W ψT

d =
[W rT

d ,W εT
d ]T

The desired joint variable qEd = [q1d, ..., q7d]T and q̇Ed

is obtained by

qEd = f−1(W ψT
d ) (14)

q̇Ed = J+
E(q)

[
W ṙd
W ωd

]
(15)

where f−1(W ψT
d ) is the inverse kinematic function and

J+
E(q) is the pseudo-inverse matrix of JE(q), and

J+
E(q) = JT

E(JEJT
E)−1.

The robot arm is a 7 links manipulator, and the end-
effector has 6-DoF, so it has a redundance. In the research
before, we only calculated the position of the manipulator’s
end-effector, but not considering the joint angles through
the position of the manipulator’s end-effector. For one end-
effector pose, there may exist infinite kinds of shapes, which
will make the system dangerous. In this report, we made q1

is 0, and used the inverse kinematics to calculate all joint an-
gles. It can solve the redundancy problem. Meanwhile we
took a controller to make the joint of angles approximately
as the desired joint angles. So we defined the formula of the
desired joint angles in the new controller as

q̇Ed = kp(qEd − qE) + J+
E(q)

[
W ṙd
W ωd

]
(16)
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Fig. 8. 3-D distribution map of fitness value.

where kp is P positive gain.

5 EXPERIMENT
5.1 The confirmation of the proposed method

To judge whether a target object can be searched, a distri-
bution map of fitness value of the object in fig.6(a) is made.
Manipulator coordinate system is shown in fig.7. The re-
lation between the object and the end-effector ΣH is set as
(x, y, z, ε1, ε2, ε3) = (0,−100, 530, 0, 0, 0). The conformity
was calculated every 5[mm] in a range of the x-axis direc-
tion from -100[mm] to 100[mm], the y-axis direction from
-190[mm] to 10[mm], the z-axis direction from 445[mm] to
645[mm] by an experiment. The result of the experiment is
shown in Fig.8. The distribution maps of the fitness value

100 100

-20 -20

200 200

0 0
560

720
560

720

Left camera Right camera

y[mm] y[mm]

z[mm]z[mm] x[mm]x[mm]

First ellipsoidSecond ellipsoid

Third ellipsoid

Second ellipsoid First ellipsoid

Third ellipsoid

Fig. 9. Recognition result using three ellipsoids.

is drawn as mountain shapes, such as (a)x-y plane, (b)y-z
plane, and (c)x-z plane. The fitness value described in color
depth, maximize at the top of the mountain where the color
is the darkest. In fig.8(a), the position expressed by the max-
imum of the fitness value is the same as the real position of
the object. However the distribution of the maximum in the
z direction is wider, which is shown as Fig.8(b) and (c).

5.2 Recognition experiment of arbitrary shape objects
The target object which put two ellipsoids together is

shown in Fig.19(b). In a recognition experiment, 3 ellipsoids
were used as a target object. The result of this experiment is
shown in Fig.9. Two ellipsoids with different size, first and
second ellipsoid, are used to be the model of the ellipsoid on
the upper side shown in Fig.19(b). Then the third ellipsoid in
Fig.9 model the ellipsoid on the underside shown in Fig.??.
From the above, shape of the target object is matched with
the modeling results. But, there is an position error in x and
z axis.

5.3 Visual Servoing Experiment

5.3.1 Experiment condition

Visual servoing is performed by using the ellipsoid shown
in fig.6(a). The initial hand pose is defined as ΣE0 , and
the initial object pose is defined as ΣM0 . The homogeneous
transformation matrix from ΣW to ΣE0 and from ΣW to ΣM0

are:

W T E0 =




0 0 −1 −890[mm]
1 0 0 0[mm]
0 −1 0 500[mm]
0 0 0 1


 , (17)

W T M0 =




0 0 −1 −1435[mm]
1 0 0 −100[mm]
0 −1 0 500[mm]
0 0 0 1


 . (18)

The target object moves according to the following function
as:
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M0xM (t) = 150 − 150 cos(ωt)[mm]. (19)

The relation between the object and the desired end-effector
is set as:

EdψM = [0,−90[mm], 545[mm], 0, 0, 0]. (20)

the visual servoing experiments is conducted in two con-
ditions ω = 0.209 (Period: T = 30[s]) and ω = 0.628
(Period: T = 10[s] ). In this experiment, position (x, y, z
coordinates) was unknown and a true value was given to pos-
ture. In this case, the variables in the genes of the 1-step-GA
pose-tracking-system are only x, y, z, and the variables for
orientation defined by quaternion are fixed as a true value and
not updated by 1-step GA. After Modeling by the primary el-
lipsoid of a target object, visual servoing is performed based
on the position and size which are given by the modeling.

5.3.2 Experiment result
The experiment result are shown in Fig.10 and Fig.11.

A modeling result by the primary ellipsoid of a target ob-
ject is an ellipsoid with the size of major axis 90 [mm]
and minor axis 45 [mm], the position of target object is
(x, y, z) = (0,−90, 545). This modeling experiment result
agrees with both the target object shown in Fig.6, and the ini-
tial position. In the visual servoing based on modeling result,
End-effector has the phase delay, but GA is able to recognize
the target object(Fig.10,Fig.11). However, in fig.11, recogni-
tion becomes unstable with the time passed. It is because that
a range giving the biggest fitness value in the z direction is
wide, unevenness occurs in the recognition of the z direction,
and the result has a bad influence upon the x-direction.
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Fig. 10. ω = 0.209

6 CONCLUSION
We modeled arbitrary-shaped object by performing the 3-

D modeling which used the ellipsoid. It was confirmed that a
target can be recognized from the modeling result. In the case
of the one ellipsoid, we modeled the target object and applied
it to a visual servoing. We will improve the recognition in z
direction and perform a visual servo using plural ellipsoids
in future.
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