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Abstract—We have been investigating a method to compose
some intelligent robot. Continuous catching and releasing exper-
iment of several fishes induces the fishes to find some escaping
strategies such as staying stationarily at corners of the pool. To
make fish-catching robot intelligent more than fish’s adapting and
escaping abilities, we have proposed a chaos-generator comprising
Neural-Network-Differential-Equation(NNDE) and an evolving
mechanism to have the system generate chaotic trajectories as
many as possible. We believe that the fish could not be adaptive
enough to escape from chasing net with chaos motions since
unpredictable chaotic motions of net may go beyond the fish’s
adapting abilities to the net motions. In this report we confirmed
that the proposed system can generate plural chaos by examining
chaotic characters of chaos trajectories generated by NNDE
through Lyapunov number, Poincare return map, initial value
sensitivity, fractal dimension and bifurcation map.

I. INTRODUCTION

Animal world has been used conceptually by robotics as a
source of inspiration for machine intelligence. For the purpose
of studying animal behavior and intelligence, the model of
interaction between animals and machines is proposed in re-
searches like [1]. Crucial characteristic of machine intelligence
is that the robot should be able to use input information from
sensor to know how to behave in a changing environment and
furthermore can learn from the environment for safety like
avoiding obstacle. As known universally the robot intelligence
has reached a relatively high level, still the word “intelligence”
is an abstract term, so the measurement of the intelligence level
of a robot has become necessary. A practical and systematic
strategy for measuring machine intelligence quotient (MIQ)
of human-machine cooperative systems is proposed in [2].
In our approach to pursue intelligent robot, we evaluate the in-
telligence degree between fish and the robot by Fish-Catching
operation. We considered that the competitive relation can be
very meaningful as one way to discuss robotic intelligence.
In recent years, visual tracking and servoing in which visual
information is used to direct the end-effector of a manipulator
toward a target object has been studied in some researches
[3], [4]. By evolutionary algorithms [5], Visual Servoing and
Object Recognizing based on the input image from a CCD
camera mounted on the manipulator has been studied in our
laboratory(Fig.1) [6], and we succeeded in catching a fish by
a net attached at the hand of the manipulator based on the

Fig. 1. Fish Catching system PA10

real-time visual tracking under the method of Gazing GA [7]
to enhance the real-time pose-tracking ability.

Through above experiments, we have learned that it is not
effective for fish catching to simply pursue the current fish
position by visual servoing with velocity feedback control. Ac-
tually, the consistent tracking is sometimes impossible because
the fish can alter motion pattern suddenly maybe under some
emotional reasons of fear. Those behaviors are thought to be
caused by emotional factors and they can also be thought as
a kind of innate fish intelligence, even though not in a high
level.

While observing the fish’s adapting behavior to escape in
the competitive relations with the robot, that is continuous
catching/releasing experiments, we found that we can define a
“Fish Learning Speed”(FLS) representing decreasing velocity
of fish number caught by the robot through continuous catch-
ing/releasing operation. Through this measure we can compare
the innate intelligence of the fish and the intelligence of the
robot.
It has been well known that many chaotic signals exist in
our body, for example, in nerves, in motions of eye-balls and
in heart-beating periods [8], [9]. Therefore we thought that
imitating such animal’s internal dynamics and putting chaos
into robots have something meaningfulness to address fish’s
intelligence. We embed chaos into the Robot Dynamics in
order to supplement the deficiency of our Fish-Catching system
[10]. Therefore what we have to pay attention to the fish’s
nature that the fish does continue to conceive always escaping
strategy against new stressing situation. This means that robot’s
intelligence to override the fish’s thinking ability needs infinite
source of idea of catching motions.
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To generate such catching motion, we have proposed Neural-
Network-Differential-Equation(NNDE) that can generate plu-
ral chaos and inherently have a possibility to be able to
generate infinite varieties of chaos, derived from the neural
network’s ability to approximate any nonlinear function as
accurate as with desirable precision[11], [12]. In this paper,
we report analyses of chaos generated by NNDE.

II. FISH TRACKING AND CATCHING

The problem of recognition of a fish and detection of its
position/orientation is converted to a searching problem of
r(t) = [x(t), y(t)]T in order to maximize F (r(t)), where
F (r(t)) represents correlation function of images and fish-
shaped matching model. F (r(t)) is used as a fitness function
of GA [7]. To recognize a target in a dynamic image input
by video rate, 33 [fps], the recognition system must have real-
time nature, that is, the searching model must converge to
the fish in the successively input raw images. An evolutionary
recognition process for dynamic images have been realized
by such method whose model-based matching by evolving
process in GA is applied at least only one time to one raw
image input successively by video rate. We named it as “1-
Step GA” [6]. When the converging speed of the model to
the target in the dynamic images should be faster than the
swimming speed of the fish in the dynamic images, then the
position indicated by the highest genes represent the fish’s
position in the successively input images in real-time. We have
confirmed that the above time-variant optimization problem
to solve r(t) maximizing F (r(t)) could be solved by “1-
Step GA”. r(t) = [x(t), y(t)]T represents the fish’s position
in Camera Frame whose center is set at the center of catching
net, then r(t) means position deviation from net to Fish, means
r(t) = ∆r(t) The desired hand velocity at the i-th control
period ṙi

d is calculated as

ṙi
d = KP ∆ri + KV (∆ri − ∆ri−1) (1)

where ∆ri denotes the servoing position error detected by
1-Step GA [6]. KP and KV are positive definite matrix to
determine PD gain.
Now we add chaos items to (1) above, and we also need
to redefine the meaning of ṙi

d. The simple PD servo control
method given by (1) is modulated to combine a visual servoing
and chaos net motion into the controller as follows,

∆ri = k1 · ∆ri
fish + k2 · ∆ri

chaos (2)

Here ∆ri
fish =

[
∆xi

fish ∆yi
fish

]
is the tracking error

of fish from the center of camera frame, and ∆ri
chaos =[

∆xi
chaos ∆yi

chaos

]
denotes a chaotic oscillation in x− y

plane around the center camera frame. the hand motion pattern
can be determined by the switch value k1 and k2. k1 = 1 and
k2 = 0 indicate visual servoing, and k1 = 0 and k2 = 1
indicate the net will track chaotic trajectory made by NNDE
being explained later in this report.
The robot used in this experimental system is a 7-Link
manipulator, Mitsubishi Heavy Industries PA-10 robot.

III. PROBLEM OF FISH-CATCHING

In order to check the system reliability in tracking and
catching process, we kept a procedure to catch a fish and re-
lease it immediately continuously for 30 minutes. We released

Fig. 2. Result of catching number

(a) Motion (1) of a fish

(b) Motion (2) of a fish (c) Motion (3) of a fish

Fig. 3. Fish motion

5 fishes (length is about 40[mm]) in the pool in advance, and
once the fish got caught, it would be released to the same pool
at once. The result of this experiment is shown in Fig.2, in
which the vertical axis represents the number of fishes caught
in successive 5 minutes and the horizontal axis represents the
catching time. Based on the idea that the fish may get tired
as time passing, we had expected that the capturing operation
would become smoother.
But to our astonishment, the number of fishes caught decreased
gradually. The reason of decreased catching number may lie
in the fish learning ability. For example, the fish learn how
to run away around the net (Fig.3(a)) by circular swimming
motion with about constant velocity, having made a steady
state position error that the net cannot reach to the chasing
fish.
Or the fish stay in the opposite corner against the net in the
pool (Fig.3(b)). And also, the fish keep staying within the
clearance between the edge of the pool and the net (Fig.3(c))
where the net is inhibited to enter. To solve these problems, and
to achieve more intelligent fish catching systems, we thought
that the net’s chaos behavior with many chaotic variey can be
method to overcome those fish’s escaping intelligence, since
huge variety of chaos trajectories seems to be unpredictable for
the fish to adapt them. This strategy to overcome fish’s adaptive
intelligence is based on a hypothesis that unpredictability of the
motion of the chasing net produced by plural chaos can make
the fish’s learning logic confuse. Then we propose Neural-
Network-Differential-Equation to generate chaos as many as
possible.
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Fig. 4. Block diagram of Chaos Generation

IV. FISH LERNING SPEED

To evaluate numerically how fast the fish can learn to es-
cape the net, we adapted Linear Least-Square approximation to
the fish-catching decreasing tendency, resulting in FLS=−0.30
as shown in Fig.2, which exhibit the number of fish caught
by the robot in five minutes, on condition of the caught
fish released into the same pool immediately. The decreasing
coefficient −0.30 represents adapting or learning speed of the
fish as a group when the fish’s intelligence is compared with
robot’s catching ability. We named the coefficient as “Fish
Learning Speed”(FLS), since the decreasing tendency that is
the value of coefficient can represent the fish’s learning speed
to conceive a new escaping strategies—stay at corner or swim
with constant speed on a circle trajectory.

V. CHAOS GENERATE SYSTEM

we proposed a new chaos generator using N.N. feedfor-
ward. In the chaos generator we proposed, nonlinear differen-
tial equation is expressed with N.N.. N.N. has been proven to
have an ability to approximate any nonlinear functions with
arbitrarily high accuracy[13][14][15]. Including the function
expressed by N.N. in a differential equation, a nonlinear
function part of the nonlinear differential equation can be
changed variously. Considering N.N. which has input layer,
hidden layer and output layer and has nonlinear mapping
p(t) = [x(t), y(t), z(t)]T to f(p(t))(3). The N.N. output is
ṗ(t) = [ẋ(t), ẏ(t), ż(t)]T and p(t) is obtained by integrating
ṗ(t) with Runge-Kutta method. A closed loop system is
composed by feedback p(t) to the N.N. input and this system
represents Eq. 3. A block diagram which represents Eq .3 as
N.N. is shown in Fig. 4. Here, a method that search the N.N.
weight coefficients which generate chaos is introduced. Fig. 4
represents the block diagram that finds chaos by using Genetic
Algorithm(GA). The GA evolves genes representing a vector
qi = [q1i, q2i, . . . , qni]T which means N.N. weight coefficients
quantity to search N.N. weight coefficients maximizing gi

defined as follow,

ṗ(t) = f(p(t)). (3)

gi = k1 · λ1i − k2 · |λ2i|− k3 · λ3i. (4)

where k1, k2 and k3 are positive coefficients. To evaluate qi, qi

is set to N.N. as weight coefficients and Eq. 3 is solved by nu-
merical integration and solved trajectory pi(t) appears. In addi-
tion, Lyapunov numbers L = [λ1,λ2,λ3]T , (λ1 > λ2 > λ3) of
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Fig. 5. Poincare return map of Chaos 01∼04
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Fig. 7. Sensitivity of initial value (x-coordinate)

the trajectory are calculated. Evolution of GA tries to maximize
the fitness function gi. The relationship between positive and
negative Lyapunov spectrum is (+, 0,−) and gi is composed to
get large value when λ1i,λ2i,λ3i correspond with Lyapunov
spectrum (+, 0,−). gi maximization by GA leads NNDE to
have chaos trajectory. This procedure is repeated many times
and chaos trajectory can be generated by searching a trajectory
which satisfy Lyapunov number of chaos with GA.

VI. CHAOS VERIFICATION

In this section, Lyapunov number, Poincare return map,
Sensitivity of initial value and Fractal dimension are introduced
as indices of chaos.
A. Lyapunov number

As one of criteria to evaluate a chaos’ character of time
function f (t) at discrete time ti in time domain, Lyapunov



number expressed by the following equation is well known,

λ = lim
N→∞

1
N

N−1∑

i=0

log |f ′(ti)|, (5)

where positive value can represent that the irregular oscillation
diverts from a standard trajectory, which expands like expo-
nential function
B. Poincare return map

Poincare return map verifies whether trajectory has a struc-
ture of stretching and folding. Stretching means a trajectory
goes away from a point of convergence and folding means
a trajectory is brought back to a point of convergence. This
structure is a basic chaos property.
C. Sensitivity of initial value

The small perturbation of the current trajectory may lead
to significantly different future behavior. Sensitivity of initial
value is popularly known as the ”butterfly effect”. This struc-
ture is a basic chaos property too.
D. Fractal dimension

In this subsection, Fractal dimension is introduced as an
index of chaos. Fractal dimension represents self-similarity of
chaos attractor and if Fractal dimension of a trajectory is not
integer, it can be said that the trajectory has self-similarity.

VII. CHAOS VERIFICATION RESULT

So far we have found four chaos patterns with different
weight coefficients explored by GA mentioned in the previous
section. We named them with serial numbers as chaos 01∼04.
The followings are verifications of these chaos with each
individual characters.
A. chaos 01

In this subsection, chaos 01 is verified whether the trajec-
tory has chaos properties or not from viewpoints of Lyapunov
number, Sensitivity of initial value, Poincare return map and
Fractal dimension.

1) Lyapunov number: Lyapunov numbers are λ1 =
0.014585, λ2 = −0.003314 and λ3 = −0.165381. These
corresponded to the Lyapunov spectrum of chaos,(+, 0,−).

2) Poincare return map: Poincare section is put at x − z
plane(x < 0) and a difference between the origin and trajectory
intersection with poincare section is defined as r. Chaos 01’s
poincare return map appear in Fig. 5(a). One dimensional map
can be seen in the figure, from which we can understand that
the map represents streaching (left half of the Fig. 5(a)) and
folding (right half) that are essential characters to generate
chaos.

3) Sensitivity of initial value: Here, a difference between
trajectories with minutely different initial value are shown as
εx, εy, εz . Initial values of a trajectory (x1(t), y1(t), z1(t))
are set as x1(0) = 1.00, y1(0) = 1.00, z1(0) = 1.00 and
initial value of another trajectory (x2(t), y2(t), z2(t)) are set
as x2(0) = 1.01, y2(0) = 1.01, z2(0) = 1.01. εx, εy, εz are
defined as εx = x1(t) − x2(t), εy = y1(t) − y2(t), εz =
z1(t) − z2(t). Fig. 6 shows εx, εy, εz of chaos 01. Because
εx, εy, εz are almost zero from 0s to 400s, they are not shown
until 400[s]. We can see from Fig. 6 that the difference between
the two trajectories with minute difference of initial values
diverts suddenly about 800 seconds having passed, this means
the slight different initial values make large separation with
each other, indicating sensitivity of initial value, which is one
of the character of chaos.

TABLE I. CHARACTER OF CHAOS 02∼04

Chaos02 Chaos03 Chaos04
0.01919 0.015934 0.01208

Lyapunov number −0.00733 −0.002172 −0.00143
−0.10379 −0.123026 −0.075448

Fractal dimension 1.78474 1.89099 1.8799
Poincare return map Fig. 5(b) Fig. 5(c) Fig. 5(d)

Sensitivity of initial value Fig. 7

TABLE II. WEIGHTS OF THE CHAOS 03 AND CHAOS 04

chaos 03 chaos 04 Fig. 9
q11 0.829098955 -0.108415351 −1.0 ∼ +1.0
q21 -0.561699855
q31 -0.902555886 all values are all values are
q12 -0.640772107 identical to identical to
q22 -0.017715724 the left values the left values
q32 0.196276799 from q21 from q21
q13 -0.627588312 to w63 to w63
q23 0.862119478
q33 0.678095674
q14 0.815579461
q24 -0.79250782
q34 0.100541695
q15 -0.333791104
q25 -0.891996643
q35 -0.869291218
q16 -0.616632334
q26 -0.895109483
q36 0.547966735
w11 -0.145769436
w21 -0.479484245
w31 0.047714961
w41 -0.52028687
w51 -0.749568933
w61 0.153582055
w12 -0.659693294
w22 0.469321736
w32 0.830869001
w42 0.083115892
w52 0.758999008
w62 0.554406043
w13 0.858548867
w23 -0.639246204
w33 -0.589715419
w43 -0.660547799
w53 -0.480460822
w63 0.649317159

4) Fractal dimension: Fractal dimension of chaos 01 is
1.36058, which is non integer and chaos 01 has self-similarity.
Therefore, the chaos property of chaos 01 has been verified
from the viewpoint of Lyapunov number, Sensitivity of initial
value, Poincare return map and Fractal dimension.

B. chaos 02∼04
Verifications of chaos 02∼04 are summarized at TABLE

I. Lyapunov number column represent λ1,λ2,λ3 from the top
and Lyapunov spectrums of chaos 02∼04 are confirmed as
(+, 0,−). And also the table shows Fractal dimensions of
chaos 02∼04 are non integer and thus chaos 02∼04 have self-
similarity. Poincare return maps are shown in Fig. 5(b),(c),(d)
and one dimensional map can be seen in these figures. Time-
profile of differences between trajectories with minutely dif-
ferent initial value are shown in Fig. 7. εx i(i = 02, 03, 04)
represent chaos 02∼04 x-coordinate differences between tra-
jectories. Because εx 02, εx 03, εx 04 are almost zero from
0s to 250s, they are not shown until 250s. Initial values are
same as chaos 01’s. As for y and z coordinates, they are similar
to x, omitted to spare the space. We can see from Fig. 7 that the
difference between the two trajectories with minute difference
of initial values diverts suddenly. Each chaos properties are
confirmed about chaos 02∼04 as well as chaos 01.
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VIII. SENSITIVITY OF NEURON’S WEIGHT
A. Bifurcation diagram

After a solved trajectory p(t) = [x(t), y(t), z(t)] has been
obtained by numerical integration with weight coefficients
found by GA procedure, p(t) crosses through x − z plain.
In case of the period of p(t) being 1 cycle, one fixed point
appears on the x − z plain. If it is 2 cycle, two fixed points
appear. Further, with the p(t) having k cycle, the spots on
x − z plain number k.
Bifurcation diagram represents fluctuation in the number of the
crossing points depending on changing a parameter of chaos.
In this case, a changing parameter is one weight coefficient
value of a neural network . When p(t) is chaos, it has infinite
periods, then the crossing points appear on the x − z plain
infinitely.

B. In the case of chaos 03 and chaos 04

In TABLE II, N.N. weight coefficients of chaos 03 and
chaos 04 are shown. From this table, we noticed weight
coefficients of N.N. that generated chaos 03 are almost similar
to chaos 04’s. Only one weight coefficient is different, that is
“q11” in Fig. 8.(Weight coefficients of chaos 01 and chaos 02
are completely different from these of chaos 03 and chaos 04)
From the fact, we think “q11” is related to the generation of
chaos. So we increased the weight q11 gradually from “−1.0”
to “+1.0” at 0.0001 interval and compare their trajectories. Fig.
9 shows the bifurcation diagram and the vertical axis means a
distance from the center of trajectory. Other weight coefficients
were not changed. In the case of −1.0 ≤ q11 ≤ −0.28,
0.18 ≤ q11 ≤ 0.39 and 0.85 ≤ q11 ≤ 1.0, the trajectories
diverged without cyclic motion.

Weight Coefficient q11

r  

Fig. 10. Pitchfork bifurcation ((A) of Fig.9)

Weight Coefficient q11
r  

Fig. 11. Window with 3 period ((B) of Fig.9)

(a) q11 = −0.2800 (b) q11 = −0.1084

(c) q11 = 0.1744 (d) q11 = 0.4800
Fig. 12. Generated Trajectories

C. Confirmation of Pitchfork bifurcation
Fig. 10 shows a magnification of Fig. 9(A)(−0.220 ≤

q11 ≤ −0.195, 0.0 ≤ r ≤ 20000). As increasing q11, the
trajectory p(t) is bifurcated into two, four, and falls into chaos
behavior. This is said to be “period doubling”, and typical
phenomenon in chaos. Pitchfork bifurcation is confirmed in
Fig. 10.

D. Confirmation of chaos window
Fig. 11 shows a magnification of Fig. 9(B)(0.440 ≤ q11 ≤

0.5167, 0.0 ≤ r ≤ 4500). Window with 3 period is confirmed



in Fig. 11, which is the typical phenomenon of chaos.

E. Generated trajectories in x-y-z space
Fig. 12(a)∼(d) show trajectories generated at q11 =

−0.2800,−0.1084, 0.1744, 0.4800 respectively. (a) shows a
period trajectory, (b) shows chaos trajectory and (c),(d) show
three periods trajectory. When q11 is in a interval which has
infinite periods, chaos trajectory is generated. q11 of chaos 03
and chaos 04 are respectively 0.829098955,−0.108415351,
which are in the interval. It is confirmed that by changing
weight coefficients of N.N. trajectory period changes and chaos
and non chaos trajectories are appeared.

IX. ADAPTENCE CHAOS TO ROBOT

The chaos made by NNDE is actually adapted to the robot
dynamics. Fig.13 shows the results of visual servoing and
chaos experiments. In comparison with visual servoing (FLS=
ʵ 0.30), it is said that chaos trajectory (FLS=ʵ 0.08) reduced
the learning speed of fish.
Fig.14 and 15 show fish positions recognized by the robot in
Visual Servoing and chaos experiments. Fig.14 (a)(b) show
fish escaped from the net in circular swimming and Fig.14(c)
shows fish gradually stayed at corner to escape from the net.
In the case of chaos, Fig.15 shows fish didnʟt tend to change
the oneself movement like staying at corners as time goes by.
It indicates that the robot tried to drive fish from the corners
by chaos and the fish couldnʟt take escaping strategy that fish
stay at corners. From these results, chaos has possibility of
catching fish taking the escaping strategy.

X. CONCLUSION

In this paper, we propose a new chaos generating system
using N.N., named as ”NNDE” for Fish-Catching Robot. This
method is confirmed that can generate plural chaos. Also, the
characters of plural chaos generated by this method has been
examined on the following points; Lyapunov number, Poincare
return map, sensitivity to initial value, fractal dimension and
bifurcation diagram.
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