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Abstract—This paper proposes a design method of on-demand
type feedback controller using coprime factorization. A controller,
such as generalized minimum variance control (GMVC), general-
ized predictive control (GPC) and so on, can be extended by using
coprime factorization. Then the extended controller has a new
design parameter, and the parameter can select the characteristic
of the extended controller without changing the closed-loop
characteristic. Considering to design safe systems, strong stability
systems can be obtained by the extended controller. Moreover,
focusing on feedback signal, the extended controller can adjust the
magnitude of the feedback signal. That is, the proposed controller
can drive the magnitude of the feedback signal to zero if the
control object was achieved. In other words the feedback signal
by the proposed method can appear on demand of achieving the
control object. At first step, this paper proposes on-demand type
feedback controller using GMVC and coprime factorization. A
numerical example is given in order to check the characteristic
of the proposed method.

I. INTRODUCTION

Generalized Minimum Variance Control (GMVC) has been
proposed by Clarke and others[1]. GMVC is one of the control
methods for application in industry. This control method can
be designed by generalized output which is selected to make
the closed-loop system stable. And the control law is derived
to minimize the variance of generalized output. Once the
generalized output is selected, the derived controller cannot be
re-designed without changing the closed-loop system. In the
case of considering the application in industry, it is desirable
for both of the closed-loop system and the controller to be
stable in the view point of safety. That is, even if the closed-
loop characteristic has been designed, it is better that the
flexibility of re-designing the controller characteristic remains
because of designing safe systems. Authors have proposed
the extended GMVC design method[2], [3]. The extended
method introduces a new design parameter for conventional
GMVC by using Youla-Kucera parameterization[4]. In the
method, the poles of controller can be re-designed by its
parameter and can be chosen without changing the poles of
closed-loop system. Therefore a strong stability system, which
means that both closed-loop system and controller are stable,
can be obtained by re-designing stable controller. Although
the authors have proposed such a design method[5], [6], [7],
[8], [9] and a concept of strong stability rate[10], [11], [12],
[13] by using coprime factorization and showed that strong
stability system can be obtained, the previous researches have
not focused on feedback signal clearly. Under the assumption
that the controlled plant is stable, the research about strong

stability rate has focused on a stable open-loop output. For
example, if the value of strong stability rate becomes one,
the controlled output becomes equal to reference signal in
the steady state whether the feedback loop is cut or not. This
situation indicates that the control object is achieved and the
feedback signal is not demanded (that is, the feedback signal
becomes zero) in the steady state. In other words, new concept
controller, whose feedback signal emerges according to the
demand to make the controlled output follow the reference
signal and disappears if the controlled output becomes equal
to the reference signal, can be considered by using coprime
factorization and extending the controller. In the proposed
method, the role and the benefit that the feedback signal
disappears contribute to constructing safe systems because
the output of the proposed system does not diverge even if
the feedback signal becomes zero by an accident. Therefore
this paper proposes on-demand type feedback controller using
coprime factorization. The control method to make on-demand
type feedback controller is GMVC in this paper. A numerical
example is shown in order to check the characteristic of the
proposed controller.

This paper is organized as follows. Section 2 describes
problem statement and conventional GMVC. Section 3 extends
GMVC through coprime factorization and gives the proposed
controller. Section 4 shows a numerical example to check the
characteristic of on-demand type feedback controller. Section
5 summarizes the result of this paper.

Notations This paper assumes that the controlled plant is
stable. z−1 means backward shift operator z−1y(t) = y(t−1).
A[z−1] and A(z−1) means polynomial and rational function
with z−1 respectively. Steady state gain A(1) of transfer
function is calculated as z−1 = 1 under the assumption that
signals such as input and output for system does not change
with regard to time t.

II. PROBLEM STATEMENT AND CONVENTIONAL GMVC

A single-input single-output system is considered.

A[z−1]y(t) = z−kmB[z−1]u(t) + C[z−1]ξ(t) (1)

t = 0, 1, 2 · · ·

u(t) and y(t) are input and output respectively. km is time
delay, ξ(t) is a white Gaussian noise with zero mean. A[z−1],
B[z−1] and C[z−1] are the polynomials with degrees n, m
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and l.

A[z−1] = 1 + a1z
−1 + · · · anz−n

B[z−1] = b0 + b1z
−1 + · · · bmz−m (2)

C[z−1] = 1 + c1z
−1 + · · · clz

−l

On the system (1) the following assumptions are hold.

[A.1] The degrees n, m and l of A[z−1], B[z−1] and
C[z−1], and the time delay km are known.

[A.2] The coefficients of A[z−1], B[z−1] and C[z−1]
are known.

[A.3] The polynomials A[z−1] and B[z−1], A[z−1] and
C[z−1] are coprime.

[A.4] The polynomial C[z−1] is stable.

The control object is to make the output y(t) follow the
reference signal w(t). To achieve this object, performance
index J averaged over the noise is minimized.

Φ(t + km) = P [z−1]y(t + km) + Q[z−1]u(t)

−R[z−1]w(t) (3)

J = Ex[Φ2(t + km)] (4)

Φ(t + km) means generalized output. P [z−1], Q[z−1] and
R[z−1] are polynomials with degrees of np, nq and nr. These
polynomials are selected to obtain stable closed-loop poles.
In conventional GMVC, Diophantine equation is given for
solutions E[z−1] and F [z−1].

P [z−1]C[z−1] = A[z−1]E[z−1] + z−kmF [z−1] (5)

where

E[z−1] = 1 + e1z
−1 + · · · + ekm−1z

−(km−1) (6)

F [z−1] = f0 + f1z
−1 + · · · + fn1

z−n1 (7)

n1 = max{n − 1, np + l − km} (8)

The solution E[z−1] of Diophantine equation is used to
calculate the following polynomial G[z−1]. T [z−1] gives the
closed-loop characteristics.

G[z−1] = E[z−1]B[z−1] + C[z−1]Q[z−1] (9)

T [z−1] = P [z−1]B[z−1] + Q[z−1]A[z−1] (10)

From (5) and (9), the generalized output and its prediction

Φ̂(t + km|t) can be given.

Φ(t + km) = Φ̂(t + km|t) + E[z−1]ξ(t + km) (11)

Φ̂(t + km|t) = (F [z−1]y(t) + G[z−1]u(t)

−C[z−1]R[z−1]w(t))/C[z−1] (12)

Since Φ̂(t + km|t) and the noise term E[z−1]ξ(t + km) have
no correlation each other, the control law u(t) minimizing J
can be obtained by the following equation.

Φ̂(t + km|t) = 0 (13)

Then the control law is obtained as,

u(t) =
C[z−1]R[z−1]

G[z−1]
w(t) −

F [z−1]

G[z−1]
y(t) (14)

The closed-loop system for (14) can be given as,

y(t) =
z−kmB[z−1]R[z−1]

T [z−1]
w(t) +

G[z−1]

T [z−1]
ξ(t) (15)

where T [z−1] is defined in (10).

III. EXTENSION OF GMVC THROUGH COPRIME

FACTORIZATION

A. Coprime Factorization of Controlled Systems

For coprime factorization, the family of stable rational
functions RH∞ is considered,

RH∞ = {G(z−1) =
Gn[z−1]

Gd[z−1]
} (16)

where Gd[z
−1] is stable polynomial. Transfer function

Gp(z
−1) of the system (1) between u(t) and y(t) is given

in the form of a ratio of rational functions in RH∞,

y(t) =
z−kmB[z−1]

A[z−1]
u(t)

= Gp(z
−1)u(t)

= N(z−1)D−1(z−1)u(t) (17)

N(z−1) and D(z−1) are rational functions in RH∞ and
coprime each other. This paper assumes that the controlled
system Gp(z

−1) is stable.

In the next step, the following Bezout identity is consid-
ered.

X(z−1)N(z−1) + Y (z−1)D(z−1) = 1 (18)

The solutions X(z−1) and Y (z−1) of Bezout identity are in
RH∞. Then all the stabilizing controller is given in Youla-
Kucera parameterization[4] from (17) and (18).

u(t) = C1(z
−1)w(t) − C2(z

−1)y(t) (19)

C1(z
−1) = (Y (z−1) − U(z−1)N(z−1))−1K(z−1) (20)

C2(z
−1) = (Y (z−1) − U(z−1)N(z−1))−1

· (X(z−1) + U(z−1)D(z−1)) (21)

U(z−1), K(z−1) ∈ RH∞ are free parameters and w(t) is
reference signal. From (19), (20), (21) and (17), the closed-
loop transfer function is given.

y(t) = N(z−1)D−1(z−1)(Y (z−1) − U(z−1)

·N(z−1))−1K(z−1)w(t) − N(z−1)D−1(z−1)

·(Y (z−1) − U(z−1)N(z−1))−1(X(z−1)

+U(z−1)D(z−1))y(t) (22)

Therefore

{D(z−1)(Y (z−1) − U(z−1)N(z−1)) + N(z−1)

·(X(z−1) + U(z−1)D(z−1))}y(t)

= N(z−1)K(z−1)w(t) (23)

Then the closed-loop transfer function is given from (18).

y(t) = N(z−1)K(z−1)w(t) (24)

If the controller is designed for settling control, the output
y(t) converges to w(t) as time progresses. It means that the
steady-state gain of closed-loop system (24) is designed to be
N(1)K(1) = 1. Moreover the design parameter U(z−1) in the
stabilizing controller (19) does not affect (24). Therefore when
closed-loop system (24) is designed to be stable and stabilizing
controller (19) is also designed to be stable through U(z−1),
strong stability system can be obtained. Here it is noticed that
the closed-loop system (24) is independent of design parameter
U(z−1).



B. Concept of On-demand Type Feedback Controller

In the previous research[14], the authors have proposed
a design method of strong stability system and defined the
selection method of design parameter U(z−1), which can
equate steady state gains of the closed-loop system and the
open-loop system. Through this research, it was found that
the derived closed-loop system allows that the feedback signal
becomes zero in the steady state because the controller is
designed to make the open-loop gain equal to the closed-
loop gain. It means that the feedback signal appears (does
not become zero) so as to achieve the control object, and the
feedback signal becomes zero when the control object was
achieved in the steady state. Therefore this paper defines such
a controller as on-demand type feedback controller.

In this subsection, the concept is described briefly. Assum-
ing that the feedback signal C2(z

−1)y(t) in the stabilizing
controller (19) becomes zero, and considering the open-loop
system for the closed-loop system (24), the controller (19) is
given as follows.

u(t) = (Y (z−1) − U(z−1)N(z−1))−1K(z−1)w(t) (25)

From (17), the open-loop transfer function from w(t) to y(t)
is given.

y(t) = N(z−1)D−1(z−1)u(t)

= N(z−1)D−1(z−1)(Y (z−1) − U(z−1)

·N(z−1))−1K(z−1)w(t)

= (Y (z−1)D(z−1) − U(z−1)N(z−1)D(z−1))−1

·N(z−1)K(z−1)w(t) (26)

Because of Y (z−1)D(z−1) = 1 − X(z−1)N(z−1), the open-
loop system can be obtained as the following equation.

y(t) = (1 − X(z−1)N(z−1) − U(z−1)N(z−1)

·D(z−1))−1N(z−1)K(z−1)w(t)

= {1 − (X(z−1) + U(z−1)D(z−1))N(z−1)}−1

·N(z−1)K(z−1)w(t) (27)

The steady state output y(t) of the open-loop system is given.

y(t) = {1 − (X(1) + U(1)D(1))N(1)}−1

·N(1)K(1)w(t) (28)

Moreover the design parameter U(z−1) = U(1) is selected as
follows.

U(1) = −D−1(1)X(1) (29)

Then the steady state output y(t) in (28) can be expressed as,

y(t) = N(1)K(1)w(t) (30)

The design parameter U(1) can give the poles of controller
(19) without changing the closed-loop poles of (24). From (30),
the steady state gain of open-loop system becomes equal to the
closed-loop’s one, even if the feedback signal C2(z

−1)y(t)
in (19) becomes zero. In other words the open-loop system’s
output becomes equal to the reference signal w(t) in the steady
state because N(1)K(1) is designed to be 1. This means that
the feedback signal of the closed-loop system becomes zero in
the steady state by choosing U(1) as (29). That is, on-demand
type feedback controller can be obtained.

In the next step, generalized minimum variance control
system with on-demand type feedback controller is designed
under the assumption that the controlled plant is stable. In the
case that P [z−1] and Q[z−1] in generalized output Φ(t + km)
are chosen for T [z−1] to be stable, comparing transfer function
(17) to (15), N(z−1) and D(z−1) can be chosen as follows;

N(z−1) =
z−kmB[z−1]

T [z−1]
(31)

D(z−1) =
A[z−1]

T [z−1]
(32)

Substituting (31) and (32) into Bezout equation (18) and com-
paring it to Diophantine equation (5), the solutions X(z−1)
and Y (z−1) of Bezout equation are given.

X(z−1) =
F [z−1]

C[z−1]
(33)

Y (z−1) =
G[z−1]

C[z−1]
(34)

Then the control law (14) is obtained from Youla-Kucera
parameterization (19), (20) and (21) by selecting the free
parameters as,

K(z−1) = R[z−1] (35)

U(z−1) = 0 (36)

To extend the controller (14), instead of choosing U(z−1)
as 0, on-demand type feedback controller uses U(1) =
−D−1(1)X(1) as given in (29). Then the extended controller
through U(1) is obtained as follows.

(G[z−1]T [z−1] − U(1)z−kmB[z−1]C[z−1])u(t)

= C[z−1]T [z−1]R[z−1]w(t) − (F [z−1]T [z−1]

+U(1)A[z−1]C[z−1])y(t) (37)

To calculate this control law, the polynomial operating on u(t)
in the left-hand side of (37) is divided by the leading term g0

and the remaining term.

G[z−1]T [z−1] − U(1)z−kmB[z−1]C[z−1]

= g0 + z−1G′[z−1] (38)

Therefore the control law (37) is calculated by

u(t) =
1

g0
{C[z−1]T [z−1]R[z−1]w(t)

−(F [z−1]T [z−1] + U(1)A[z−1]C[z−1])y(t)

−G′[z−1]u(t − 1)} (39)

From (24) it is noticed that the transfer function from reference
signal to output is independent of U(z−1). And the poles of
controller can be given by the following equation.

G[z−1]T [z−1] − U(1)z−kmB[z−1]C[z−1] = 0 (40)

IV. NUMERICAL EXAMPLE

In this section, the numerical example is shown to check
the characteristic of the proposed controller. The following
controlled system described in (1) is given.

A[z−1] = 1 + 0.6z−1 + 0.7z−2

B[z−1] = 0.5 − 1.5z−1

C[z−1] = 1, km = 1



Simulation steps are 200, the initial values of output and input
are assumed to be zero. The disturbance is assumed to be
ξ(t) = 0. In order to design the closed-loop characteristic to
be stable, the generalized output is given so as to make the
controlled output y(t) follow the reference signal w(t).

Φ(t + 1) = y(t + 1) + 0.8u(t) − 0.84z−2 · w(t)

The amplitude of reference signal w(t) is 1 from the beginning
of simulation to 100th step, and 1.5 after 101th step. The
closed-loop poles are 0.3923±0.5262i and its absolute value is
0.6563. Therefore the derived closed-loop system is designed
to be stable. In this case, the new design parameter U(1) =
−D−1(1)X(1) is calculated to 0.4748. Then the controller’s
poles are 0.7736± 0.58i and 0.5317 and their absolute values
are 0.9669 and 0.5317. That is, the strong stability system
can be obtained by the extended controller. If the parameter is
selected as U(1) = 0, the controller becomes the conventional
GMVC (14). Then the absolute value of controller’s pole is
1.1538 although the closed-loop poles become equal to the
proposed ones. It means that the conventional GMVC of this
case does not make strong stability system. Therefore it finds
that the new design parameter U(1) = −D−1(1)X(1) has the
characteristic to construct a strong stability system. But it is
noticed that the new design parameter does not always supply
strong stability system because it depends on the given system
in (1) and the conventional controller.

Fig.1 and Fig.2 show the plant outputs by the conventional
method and the proposed method respectively. The dotted
lines of their figures mean the reference signals w(t). The
solid lines of them show the plant outputs y(t). From these
figures it can finds that their outputs are the same although
their controllers are different ((14) and (37)). Moreover, Fig.3
and Fig.4 show the control inputs u(t) (upper figure of each
figure), the feedforward signals (middle one), which can be
expressed as C1(z

−1)w(t) described in (19), and the feedback
signals C2(z

−1)y(t) (lower one). These figures show that the
control inputs are same. On the other hand, it can find that the
feedforward and the feedback signals are different. In Fig.4, the
proposed controller shows that the feedback signal appears in
order to follow the reference signal and disappears (becomes
zero) when the control object, which means that the output
becomes equal to the reference signal, was achieved. After
101th step, the reference signal was changed from 1 to 1.5.
Then the feedback signal appears again, aiming to follow new
reference signal. And it disappears when the control object was
achieved. Therefore it can find that the proposed controller has
the characteristic that its feedback signal appears according
to the demand of acheving the control object and disappears
when the control object was achieved. This means the proposed
controller is on-demand type feedback controller.

Moreover, if the condition of new design parameter U(1)
is relaxed with a constant α as follows[12], [13],

U(1) = −αD−1(1)X(1)

then the magnitude of the feedback signal can be adjusted. For
example, in the case of α = 0.9, Fig.5 shows the plant output
and it is found that the output is the same as the conventional
GMVC shown in Fig.1. Fig.6 shows the control input (upper
figure), the feedforward signal (middle one) and the feedback
signal (lower one). The controller’s poles are 0.7399±0.5496i
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Fig. 2. Proposed method (output)

and 0.585, and their absolute values are 0.9217 and 0.585.
From this figure, it can find that the magnitude of the feedback
signal become smaller than the conventional one shown in
Fig.3 although the feedback signal does not become zero even
if the control object was achieved. Therefore comparing with
[14], the improvement of the proposed method is the flexibility
for obtaining the on-demand type feedback controller through
α.

V. CONCLUSION

This paper proposed a design method of on-demand type
feedback controller of generalized minimum variance con-
trol using coprime factorization. The numerical example was
shown to check the characteristic of the proposed method,
whose feedback signal emerges according to the demand to
make the controlled output follow the reference signal and
disappears if the controlled output becomes equal to the
reference signal. As future works, there is an extension to
multi-input multi-output systems using the proposed method.
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Fig. 3. Conventional method (input)

Moreover a self-tuning controller through the proposed method
will be considered.
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