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Abstract– Visual servoing to moving target with hand-eye cameras fixed at hand is inevitably affected by
robot’s dynamical oscillations, therefore it is difficult for the fixed-hand-eye robot to keep target object at
the center of cameras’ view, since nonlinear dynamical effects of whole manipulator and intensive dynamical
coupling of each link stand against keeping consistent servoing accuracy. To improve the defects of the fixed-
hand-eye system, hand-eye-vergence system has attracted attention—left and right cameras’ directions could
be rotated to observe and keep the target object be recognized at the center of camera images, reducing the
influences of aberration of camera lens. On top of this, the longitudinal moving object is more difficult to be
recognized than the lateral one, because the image change is less than the real motion of the object. By using
“3D Move on Sensing (3D-MoS)”, which is a method to control robot’s 3D pose (position and orientation) by
using detected 3D Pose through dual cameras system. This research confirmed that the hand-eye-vergence
system can improve the observability and trackability on visual servoing in camera-depth direction.
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1 Introduction

Visual servoing is a control method to control the
motion of robot. By incorporating visual informa-
tion obtained from visual sensor[1]-[4] with the feed-
back loop, visual servoing is expected to be able to
allow the robot adapt the changing or unknown en-
vironment. Some methods have been proposed al-
ready to improve the observation abilities of the robot,
for instance by using stereo cameras[5], multiple cam-
eras[6], and a method with one camera fixed on the
end-effector, the other done in the workspace[7]. How-
ever these methods obtain different views to observe
the object by increasing the number of cameras, leav-
ing the system less adaptive for changing environ-
ment.

Even through there have been plenty try concerning
on the visual servoing about tracking object, however
the final goal of the visual servoing was been con-
sidered as realize the end-effector approaching to the
target then work on it, for instance grasping. In this
case, the desired relation between the cameras and
the object should be time varying, for this reason, the
eye-vergence camera system is a settlement to keep
suitable viewpoint on the target all the time during
the approaching visual servoing, utilizing the change-
able cameras’ eye direction in order to keep the target
been recognized at the center of the image.

The other merit of eye-vergence is concerning dy-
namical effects to keep tracking a moving target in
the camera’s view. For example, when people keep
tracking a moving object, they may catch up to the
object in case of the object moving slowly, but when
the object become to move faster and faster, human’s
face cannot be kept positioned squarely to the object,
while human’s eye can still keep staring at the ob-

ject because of its small mass and inertial moment.
Needless to say in visual servoing application, keep-
ing closed loop of visual feedback is vital from a view
point of closed loop control stability.

By a previous work, it has been clarified that the
eye-vergence system has superior stability and track-
ability performances in pose tracking dynamical mo-
tions in lateral direction. However, pose tracking
of longitudinally moving object has a difficulty for
depth distance to be estimated than laterally moving
one, because the image changes becomes less in cam-
eras’ view against when the object’s motion in real
world. In this report, we conduct some visual ser-
voing experiments about object’s longitudinal move-
ment by using fixed-camera system and confirmed
that eye-vergence system can perform well in longi-
tudinal tracking. From the experiment results, we
verified about the error of object estimation by show-
ing the action of GA in time-domain during visual
servoing.

2 3D Pose Tracking Method

In this paper,we take a rectangular solid block as an
example of the target to explain The 3D Pose Track-
ing Method.The shape and color of the solid block
is assumed to be known.Other different kinds of tar-
gets can also be measured by model-based matching
strategy if their character is given.

2.1 Kinematics of Stereo-Vision

We utilize perspective projection as projection
transformation. Fig. 1 shows the coordinate system
of the dual-eyes vision system. The target object’s
coordinate system is represented by ΣM and image
coordinate systems of the left and right cameras are
represented by ΣIL and ΣIR. A point i on the target
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Fig. 1: Coordinate systems of dual eyes

can be described using these coordinates and homo-
geneous transformation matrices. At first, a homo-
geneous transformation matrix from right camera co-
ordinates, ΣCR to ΣM is defined as CRT M . And an
arbitrary point i on the target object in ΣCR and ΣM

is defined CRri and Mri. Then CRri is,

CRri = CRT M
Mri. (1)

Where Mri is predetermined fixed vectors. Using
a homogeneous ΣW to ΣCR, i.e., W T CR, then W ri is
got as,

W ri = W T CR
CRri. (2)

The position vector of i point in right image coor-
dinates, IRri is described by using projection matrix
P of camera as,

IRri = P CRri. (3)

By the same way as above.

CLri = CLT M
Mri. (4)

W ri = W T CL
CLri. (5)

ILri = P CLri. (6)

Then position vectors projected in the ΣIR and ΣIL

of arbitrary point i on target object can be described
IRri and ILri. Here, position and orientation of ΣM

based on ΣCR has been defined as CRψM . Then
Eq.(3), Eq.(6) are rewritten as,

{
IRri = fR(CRψM , Mri)
ILri = fL(CLψM , Mri).

(7)

This relation connects the arbitrary points on the
object and projected points on the left and right im-
ages corresponding to a 3D pose CRψM of the object.
The measurement of CRψM (t) in real time will be
solved by consistent convergence of a matching model
to the target object by a “Real-Time Multi-Step GA”.
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2.2 Model-based matching
The 3D solid model is shown in Fig. 2. The model

is constituted of inside space Sin and outside space
Sout. The left and right 2D searching models, named
SL and SR, are shown in Fig. 2(on the bottom).
Supposing there are distributed solid models in the
searching space in ΣW , each has its own pose CRψM ,
CLψM . To determine which solid model is most close
to the real target, a correlation function used fitness
function in GA is defined for evaluation. Here, we
use color information to search for the target object
in the images. In order to evaluate difference of hue
value between the object and the searching model.
The hue value of right image at the position IRri is
expressed as p(IRri), and the hue value of left image
at the position ILri is expressed as p(ILri).

F(CψM)=





( ∑

IRri∈SR,in(CRψM )

p(IRri) −
∑

IRri∈SR,out(CRψM )

p(IRri)
)

+
( ∑

ILri∈SL,in(CLψM )

p(ILri) −
∑

ILri∈SL,out(CLψM )

p(ILri)
)


 /2

= {FR(CRψM) + FL(CLψM)} /2 (8)

Eq.(8) shows the fitness function that calculate the
correlation function between the search model and
image. When the searching model fits to the target
object being imaged in the right and left images, then
the fitness function F (CψM ) gives maximum value,
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i.e., F = 1.
Therefore the problem of finding a target object and
detecting its position/orientation can be converted to
searching CψM that maximizes F (CψM ). We solve
this optimization problem by GA. The genes of GA
representing possible pose solution CψM is defined as,

tx︷ ︸︸ ︷
01 · · · 01︸ ︷︷ ︸

12bit

ty︷ ︸︸ ︷
00 · · · 01︸ ︷︷ ︸

12bit

tz︷ ︸︸ ︷
11 · · · 01︸ ︷︷ ︸

12bit

ε1︷ ︸︸ ︷
01 · · · 01︸ ︷︷ ︸

12bit

ε2︷ ︸︸ ︷
01 · · · 11︸ ︷︷ ︸

12bit

ε3︷ ︸︸ ︷
01 · · · 10︸ ︷︷ ︸

12bit

.

The 72 bits of gene refers to the range of the search-
ing area: −150 ≤ tx ≤ 150[mm], 0 ≤ ty ≤ 300[mm],
650 ≤ tz ≤ 950[mm], and −0.3 ≤ ε1, ε2, ε3 ≤ 0.3,
where εi is defined as quaternion and represents al-
most the same range of −54 ≤ roll, pitch, yaw ≤
54[deg].
Although GA has been applied to a number of robot
control systems [13], it has not been yet applied to a
robot manipulator control system to track a target in
3D space with unpredictable movement in real time,
since the general GA method costs much time until
its convergence. So here, for real-time visual control
purposes, we have employed GA in a way that we de-
noted as “Real-Time Multi-Step GA” evolution. This
means that the GA evolutional iteration is applied
one time to the newly input image. While using the
elitist model of the GA, the most accurate pose of a
target can be detect in every new image by the pose of
the gene with highest fitness value. In addition, this
feature happens to be favorable for real-time visual
recognition. The flow chart of the Real-Time Multi-
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Fig. 6: 3D marker

step GA process is shown in Fig. 3. The pose of the
best gene is output in every newly input image on a
on-line measurement result, to be used as command
value to the manipulator’s controller. Thereby real-
time visual servoing can be performed. Our previ-
ous research has confirmed the 2D recognition method
enabled a eye-in-hand robot manipulator to catch a
swimming fish by a net equipped at the hand [11]. Fig.
3 shows that the image inputting process is included
in the GA iteration process seeking for the potential
solution, i.e., toward the target. That is, the evolving
speed to the solution in the image should be faster
than the speed of the target object in the successively
input images, for the success of real-time recognition
by “Real-Time Multi-Step GA.”

3 Hand & Eye Visual Servoing Con-
troller

3.1 Hand Visual Servoing Controller
The block diagram of our proposed hand & eye-

vergence visual servoing controller is shown in Fig.
8. The hand-visual servoing is the outer loop. Based
on the above analysis of the desired-trajectory gen-
eration, the desired hand velocity W ṙd is calculated
as,

W ṙd = KPp

W rE,Ed + KVp

W ṙE,Ed, (9)

where W rE,Ed,
W ṙE,Ed can be calculated from ET Ed

and EṪ Ed. KPp
and KVp

are positive definite matrix
to determine PD gain.

The desired hand angular velocity W ωd is calcu-
lated as,

W ωd = KPo

W RE
E∆ε + KVo

W ωE,Ed, (10)

where E∆ε is a quaternion error [12] calculated from
the pose tracking result, and W ωE,Ed can be com-
puted by transforming the base coordinates of ET Ed

and EṪ Ed from ΣE to ΣW . Also, KPo
and KVo

are
suitable feedback matrix gains. We define the desired
hand pose as W ψT

d = [W rT
d ,W εT

d ]T

The desired joint variable qEd = [q1d, . . . , q7d]T and
q̇Ed is obtained by

qEd = f−1(W ψT
d ) (11)
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q̇Ed = J+
E(q)

[
W ṙd
W ωd

]
(12)

where f−1(W ψT
d ) is the inverse kinematic function

and J+
E(q) is the pseudo-inverse matrix of JE(q), and

J+
E(q) = JT

E(JEJT
E)−1. In this report, we made q1

is 0, and used the inverse kinematics to calculate all
joint angles. It can solve the redundancy problem.
Meanwhile we took a controller to make the joint of
angles approximately as the desired joint angles. So
we defined the formula of the desired joint angles in
the new controller as

q̇Ed = kp(qEd − qE) + J+
E(q)

[
W ṙd
W ωd

]
(13)

where kp is P positive gain.
The hardware control system of the velocity-based

servo system of PA10 is expressed as

τ = KSP (qd − q) + KSD(q̇d − q̇) (14)

where KSP and KSD are symmetric positive definite
matrices to determine PD gain.

3.2 Eye-vergence Visual Servoing Controller
The eye-vergence visual servoing is the inner loop

of the visual servoing system shown in Fig. 8. In this

paper, we use two pan-tilt cameras for eye-vergence
visual servoing. Here, the positions of cameras are
supposed to be fixed on the end-effector. For camera
system, q8 is tilt angle, q9 and q10 are pan angles, and
q8 is common for both cameras.

As it is shown in Fig. 4 (a) and (b), ExM̂ , EyM̂ ,
EzM̂ express position of the detected object in the
end-effector coordinate. The desired angle of the cam-
era joints are calculated by:

q8d = atan2(EyM̂ , EzM̂ ) (15)

q9d = atan2(−l8R + ExM̂ ,E zM̂ ) (16)

q10d = atan2(l8L + ExM̂ ,E zM̂ ) (17)

where l8L = l8R = 120[mm] that is the camera loca-
tion.

The controller of eye-visual servoing is given by

q̇8Cd = KP (q8d − q8) (18)

q̇9Cd = KP (q9d − q9) (19)

q̇10Cd = KP (q10d − q10) (20)

where KP are positive control gain.
Because the motion of camera motor is an open

loop, we can only make it rotate a certain degree
without getting the actual angle during the rotation,
which make us cannot get the accurate camera angle.
So the desired camera angles are input in every 33ms,
and the input is limited to a certain value.

4 Experiment Of Hand Eye-Vergence
Visual Servoing

4.1 Experimental system
To verify the effectiveness of the hand & eye vi-

sual servoing system through real robot, we used a
robot, PA-10 robot arm that has a 7-DoF robot arm
manufactured by Mitsubishi Heavy Industries. Two
rotatable cameras mounted on the end-effector are
FCB-1X11A manufactured by Sony Industries. The
frame frequency of stereo cameras is set as 30fps. The
image processing board, CT-3001, receiving the im-
age from the CCD camera is connected to the DELL
WORKSTATION PWS650 (CPU: Xeon, 2.00 GHz)
host computer. The structure of the manipulator and
the cameras are shown in Fig. 5 (a) and (b).

The 3D marker as used for the target object in the
experiment composes a red ball, a green ball and a
blue ball, whose dimension is shown in Fig. 6. The
coordinate of the target object and the manipulator
in experiment are shown in Fig. 7, the white arrow
under the object express the move direction of it.

We did several contrast experiments using fixed
camera system, by comparing the data from fixed
camera system with the eye-vergence system, to check
the track ability of the eye-vergence system. First, we
did an experiment in which true object’s x, y, z, ε1,
ε2, ε3, are assumed to be given to servoing controller.
Then we did 3 groups of experiments of frequency



response. In these experiments,we made 3-DoF posi-
tion are recognized by the cameras respectively. For
every group, we set ω=1.256 rad/s, ω=0.638 rad/s,
and ω=0.314 rad/s separately, which are angular ve-
locities of the object.
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Fig. 9: The relationship of the position of a target
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Fig. 10: ω =1.256 (T=5s), Eye-Vergence system
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Fig. 11: ω =1.256 (T=5s), Fixed-Camera system

4.2 Experiment condition

The initial hand pose is defined as ΣE0 , and the ini-
tial object pose is defined as ΣM0 . The homogeneous
transformation matrix from ΣW to ΣE0 and from ΣW

to ΣM0 are:

W T E0 =




0 0 −1 −890[mm]
1 0 0 0[mm]
0 −1 0 440[mm]
0 0 0 1


 (21)
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Fig. 12: ω =0.628 (T=10s), Eye-Vergence system
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Fig. 13: ω =0.628 (T=10s), Fixed-Camera system

W T M0 =




0 0 −1 −1435[mm]
1 0 0 0[mm]
0 −1 0 440[mm]
0 0 0 1


 (22)

The target object move according to the following
time function

M0zM (t) = 150 − 150 cos(ωt)[mm] (23)

The relation between the object and the desired
end-effector is set as:

EdψM = [0,−100[mm], 545[mm], 0, 0, 0] (24)

4.3 Experiment Results
In this experiment conditions, we have carried out

some longitudinal frequency response experiments to
moving object and the Fig.9 shows the relationship
of the position of a target and a hand. We made x-
position, 3-Dof position, and 6-Dof position and orien-
tation are estimated by GA respectively, and take the
results of 3-Dof position. From each of the results we
can see that the eye-vergence system has smaller delay
phase which means it will observe the object better.
I show the relationship between the GA genes and
the object position by the results of the obtained GA.
In the Fig.10 and Fig.11,the GA from Eye-Vergence
system can estimate target object and track, but the
GA from Fixed-Camera is always carrying a delay for
about 80[mm], however, even the GA can estimate
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Fig. 14: ω =0.314 (T=20s), Eye-Vergence system
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Fig. 15: ω =0.314 (T=20s), Fixed-Camera system

the correct position of the target, but the PA-10 can
not track the target object. Because the moment of
the inetia of camera is smaller than PA-10’s, which
is a characteristic of eye-vergence system.Also from
the Fig.10 and Fig.11, we can easily find even both
two systems’ behaviour is poor, the track ability of
eye-vergence system is still better than fixed-camera
system.

From Fig.12, Fig.13, Fig.14, Fig.15, Fig.16, and
Fig.17, we can see with the target object motion is
getting slower, the manipulator can track the target
with smaller delay. For the GA genes results, the eye-
vergence can estimate the target with very small de-
lay, on the contrary, there are always be about 80[mm]
error of the fixed-camera system, from which we can
conclude that eye-vergence system has a superior per-
formance than fixed-camera system.

5 Conclusion

In this paper, we have carried out some longitu-
dinal frequency response experiments to evaluate the
observation and tracking ability on a moving object of
visual servoing system. From the experiment results,
we can draw a conclusion that the object moving in
camera-depth direction can be recognised and Real-
Time Multi-step GA can track the correct position in
real-time, meaning the Real-Time Multi-step GA is
a superior settlement to realize the tracking in real-
time. And the authors grasp the real-time estimate
tracking error by revealing the relationship between
the GA and the target object that was searched in
fixed-camera system, by comparing the results, the
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Fig. 16: ω =0.209 (T=30s), Eye-Vergence system

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 5 10 15 20 25 30 35 40

X
 p

o
si

ti
o

n
[m

m
]

Time[s]

Desired Position of the End-Effector End-Effector

Actual position of target object

Position recognized by GA

Fig. 17: ω =0.209 (T=30s), Fixed-Camera system

authors concluded that hand-eye-vergence system has
a superior performance than fixed-camera system.
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