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Abstract: Nowadays, underwater docking application plays an important role in sea development. This paper studies
visual-servo type docking system for underwater vehicle through real-time pose (position and orientation) tracking with
stereo vision. Real-time estimation of vehicle’s relative pose to 3D marker whose shape and color is predetermined and
known is executed by 3D model-based matching utilizing Genetic Algorithms (GA). In this paper, unidirectional docking
station is designed and effective docking strategy is proposed for recharging application of batteries. P controller is applied
for visual servoing. Docking experiments were conducted in the sea at Wakayama prefecture, Japan. According to the
experimental results, it can be confirmed that docking performance using proposed system is achieved successfully with
millimetre level accuracy in recognition and visual servoing.
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1. INTRODUCTION

In recent years, underwater vehicles play an impor-
tant role in the ocean science. An automatic docking for
recharging battery is regarded as one of the most essen-
tial abilities for reliable long-term operation of underwa-
ter vehicle. While in docking state, the underwater vehi-
cle can perform activities such as battery recharging, data
downloading and uploading. These implementations en-
able the underwater robot to stay for the duration in water
and work.

A large number of docking have been conducted in
the underwater domain by applying various sensors and
guiding methods [1]-[9]. They include the utilization of
fuzzy guidance system [1], self-similar landmark [2], op-
tical terminal guidance [3], sonar and video-based [4] and
electromagnetic guidance [5]. Each aiming autonomous
docking measures relative pose continuously in time and
enable the vehicle to respond changing environment con-
ditions. The cost of most of the guiding system using
sensor-based methods is high. Even though expensive
navigation sensors and guiding methods are able to pro-
vide high accurate position data, the finial docking pro-
cess is still difficult problem.

In order to construct reliable and inexpensive docking
system, we have been studying for the purpose of imple-
mentation of the automatic control of underwater robot
using a visual servoing. As a typical image recognition
method relating to underwater robot, some researches opt
to adopt monocular camera to acquire the distance be-
tween the target with respect to the vehicle [6], [7]. This
method tend to be robust to variations in camera model
and is difficult to perform the precise docking when be-
ing close into the target. In this work, we utilized the
stereo vision system to estimate the relative pose between
the vehicle and the target object. In proposed stereo vi-
sion system, the two cameras are used for pose estimation
while seeing the same target object at the same time. We
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Fig. 1 Visual-Docking Underwater Vehicle

have developed visual-based underwater vehicle using
dual-eyes cameras and 3-dimensional move on sensing
(3D-MoS) as shown in Fig.1, which can perform auto-
matically charging to extend the activity time duration in
water. In this paper, real-time recognition of the relative
pose of the target object utilizing model-based matching
and Multi-step GA is proposed and we named the method
as “Real-time Multi-step GA”, since the method has been
proved to be useful for real-time visual servoing purpose.
Utilizing predefined information of shape and color of the
3D marker (shown in Fig.1), the underwater vehicle is
regulated in the desired pose between the target and the
vehicle by visual servoing. The proposed system of dock-
ing operation has been successful in previous work [8] at
simulated pool with high homing accuracy. As a main
contribution of this paper, we conducted docking experi-
ment in the sea of Wakayama prefecture to evaluate how
much our 3D-MoS system would be robust against natu-
ral sea environment. This paper shows the experimental
result of docking performance.

Section 2 introduces the proposed docking system and
explains the detail of the system. Section 3 describes the
environment condition of the experiment. Underwater
docking experiment results are reported in section 4 and
conclude in section 5.
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2. PROPOSED DOCKING SYSTEM
To perform the docking operation, the proposed dock-

ing system includes four-stages:
1. MANUAL OPERATION: In this approach stage, the
ROV approached by manually until the object is in the
field of view of the dual-eyes cameras which is mounted
in front of the robot. After approaching closer to the tar-
get object, the proposed system switches from manual to
automatic control of visual servoing state.
2. VISUAL SERVOING: In this stage, the underwater
robot detects the target object and relative pose of the ve-
hicle through 3-D model-based recognition using multi-
step GA.
3. DOCKING (Fitting): In docking state, the robot is
performed the docking function utilizing a rod that is at-
tached in ROV into the docking hole that is assembled
with 3D marker in docking station. When the errors of
tolerance of relative pose in image plane (x and y direc-
tion) is within ±20 [mm] and the stable duration within
desired relative pose error is more than 165 [ms], the rod
is fitted into the docking hole by decreasing the desired
value of xd. However, if the docking process no longer
meet the conditions of desired allowance error and stable
condition, it return to the visual servoing.
4. COMPLETION OF DOCKING: In this stage, our mis-
sion is absolutely completed for docking. The robot is
maintained constantly in final target pose for proposed
recharging battery application.
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Fig. 2 Flowchart of the Docking System

2.1. Vision based Guidance for Underwater Vehicle
There are many guidance and control techniques to en-

able the underwater robot to perform useful tasks. Un-
derwater robots required adequate guidance and control
to perform these tasks. In this experiment, we used vi-
sual information to guide the robot’s motion by using vi-
sual servo control. Visual servoing is the use of feed-
back information from camera to control the pose of the
robot relative to the target object. Diagram of the visual
servoing system is shown in Fig. 3. In this system, se-
quence of images are captured by the dual-eye cameras
that is mounted on the underwater vehicle. The visual
signal of left and right images are sent to the PC through
the cable and then the relative pose of the vehicle is esti-
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Fig. 3 Diagram of Visual Servoing System

mated by corresponding implemented software (pose es-
timator). The estimated pose of the current condition of
underwater vehicle entered into the motion controller as
the input signal to adjust the thrust force of the robot. By
using feedback information of the P controller, we can
eliminate the error between the estimated pose and the
desired pose.

2.2. 3D Model-based Matching Method Using Dual-
eyes Cameras and 3D Marker

For pose estimation, apart from other model-based
recognition methods, we have developed 3D model-
based matching method using dual-eyes cameras and 3D
marker. This contribution was confirmed in previous
works [13]. In this method, the target object named as
3D-marker that consists of three spheres (40[mm] diame-
ter) whose colors are red, green and blue is designed. The
position and orientation of the three-dimensional solid
model is determined by six variable (x, y, z, ε1, ε2, ε3),
where (x, y, z) are position in Cartesian coordinate system
and (ε1, ε2, ε3) are the orientation in quaternion avoiding
singularity assume, where the pose is defined based on
ΣH in Fig4 and Fig.6. Fig. 4 shows the 3D model-based
matching system with dual-eyes cameras and 3D-marker.
In this figure, ΣCR and ΣCL are the reference coordi-
nate frame of the right camera and left camera. ΣH is the
reference frame of the ROV. ΣM is the reference frame
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Fig. 4 3D Model-based Matching with Stereo Vision
System
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of the real target object. The solid model of the real
target object in space is projected naturally to the dual-
eyes cameras images and the dotted 3D marker model
where pose is given by one of GA’s genes is projected
from 3D to 2D. We can calculate the correlation value
between the projected real target 3D marker and the pro-
jected model. The correlation function that considers 3D
marker shape and color is used for fitness function in GA
process. Multiple models are initially located randomly
within the search area that are the same information of
3D marker (color, shape, size) with different pose and
projected from 3D space to 2D image plane. Then, the
projected model (six variables) is matched with the image
captured by dual eyes cameras (six variables). Finally, the
best model that is generated by collecting the maximum
fitness value is selected to represent truthful relative pose.

2.3. Fitness Function
Fitness function is very important to obtain the opti-

mum recognition accuracy. In each population, the recog-
nition accuracy of individual model is based on the fitness
function. The good fitness function will support the opti-
mum searching method effectively and efficiently. In this
experiment, the following fitness function is represented
the correlation between the searching model and the im-
age input from the left and right video camera. In this
function, FR(ϕ) and FL(ϕ) are the fitness function of
the right camera and left camera image. Detail explana-
tion about fitness function can be seen in previous work
[11]. Fig. 5 shows the recognition regulation of the target
object and the model.

FR(ϕ) =
∑

IRri∈FR,in(ϕ)

ρ(IRri)−
∑

IRri∈FR,out(ϕ)

ρ(IRri)(1)

FL(ϕ) =
∑

ILri∈FL,in(ϕ)

ρ(ILri)−
∑

ILri∈FL,out(ϕ)

ρ(ILri)(2)

F (ϕ) = (FR(ϕ) + FL(ϕ))/2 (3)

There are two portions as shown in Fig. 5, the first por-
tion is the inner one that is the same size with the target
area and the second one is outer portion that is the back-
ground area. When the captured portion of the right cam-
era image situated in the inner one, the fitness value will
increase and it situated in the background area, the fitness
value will decrease. Similarly, the good fitness value of
the left camera image is calculated. The fitness value will
maximum when the target and the model are identical.
Finally, the optimum fitness value F (ϕ) is evaluated by

Target 

object
Model
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Target 
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Fig. 5 Target Object and Model

adding the average value of the left and right image at the
same time.

2.4. Optimization Method Using Real-time Multi-
step GA

The proposed system can recognize the vehicle’s pose
through the (3D-Mos) by utilizing multi-step GA and
model-based matching method. By using the fitness
function described in the previous section, the problem
of searching for the pose of the object can be replaced
by optimum searching method for real time. GA is the
optimization method to obtain the optimum solution
in a short searching time. Position and orientation of
the three-dimensional model (3D-Mos) is represented
as individual of chromosome. The upper 36 bits of
one chromosome represents the position coordinate
of a three-dimensional model and the next 36 bits
represent the orientation of the three-dimensional model.

x︷ ︸︸ ︷
011000100111︸ ︷︷ ︸

12bits

y︷ ︸︸ ︷
000011000111︸ ︷︷ ︸

12bits

z︷ ︸︸ ︷
001100111101︸ ︷︷ ︸

12bits
ε1︷ ︸︸ ︷

110101001001︸ ︷︷ ︸
12bits

ε2︷ ︸︸ ︷
000101111001︸ ︷︷ ︸

12bits

ε3︷ ︸︸ ︷
001101111001︸ ︷︷ ︸

12bits

Genetic algorithm searches a solution starting with
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Fig. 6 GA Searching Area

all possible models which is called population. These
possible models reproduce new models (new generation)
by selection and recombination method which represents
a better solution to the real target pose estimation. In
each generation, every individual model is evaluated
using the fitness function value. Then, again new models
are formed from mutation or crossover. The procedure
is performed continuously until 33 [ms] that is video
rate. Multi-step GA is means the capable of real time
recognition of the target object. Termination of GA
generation is defined by video rate 33 [ms] in this work.
Therefore, GA generation with 9 times evolution will
perform for every image with video rate of 33 [ms].
Detection of target is defined by fitness value that is
0.6 in this work. It means that if the pose represented
by the highest fitness value after 9 times evolution for
one image is less than 0.6, this pose will not be used in
feedback system telling that the target may not be in the
field of view. Approaching step in which vehicle will
approach the target to have the vehicle to be in field of
view will be future work using other navigation systems.
Therefore, assumption in this work is that the target exit

1361



Yes

No
33[ms]

Evaluation
(Fitness evaluation of each 

individual)

Sorting
(Sort individual based on their 

fitness value)

Input new population 

Output
(Position and orientation of 

the best individual)

Selection
(Select chromosome from new 

offspring according to their 

fitness)

Crossover and mutation

Initialization
(Generate a population of 

chromosome)

Fig. 7 Flowchart of Multi-step GA
Table 1 Parameters of GA

Number of genes 60
Search area [mm] {x,y,z}={±400, ±400,

±200}
Selection rate [%] 60
Mutation rate [%] 10

Crossover 2 point crossover
Evolution number of

generations[Times/33ms] 9

in search space of GA as shown in Fig.6. Even though
there are many powerful optimization methods, we
selected GA and modified as Real-time Multi-step GA
because of its simplicity and especially effectiveness in
real-time performance. There is no story about powerful
optimization that applied properly in real-time domain.
Since our strategy is based on the thinking way that
simple optimization method with high repetition is more
effective than sophisticated method with low repetition
and much calculation time when the calculation time
used for the optimization is limited, we have been
making effort to make the repetition number of simple
GA increase so far. Then, detailed explanation about GA
method and fitness function is referred to our previous
paper[11]. Fig7. shows the flow chart of multi-step GA
and indicated the parameters are shown in Table.1.

3. EXPERIMENT ENVIRONMENT
3.1. Remotely Operated Vehicle

The ROV was designed and fabricated by KOWA co-
operation as shown in Fig. 1 . In this robot system, the
eye visual sensor is used as a main sensor. There are to-
tally four cameras (imaging element CCD, 380,000 pixel,
signal system NTSC, Minimum Illumination 0.8[1X],
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Fig. 8 Block Diagram of Visual Servo Control

without zoom) are mounted in this model and the two
front cameras are used to perform a three-dimensional
object recognition in visual servoing. Four thrusters are
used in system, maximum thrust force is (9.8[N]) in hor-
izontal and maximum vertical thrust force is (4.9[N]). In
addition, the LED lights (5.8W) has been equipped for
illumination ensure. The ROV obtains the camera im-
age information and control signal from the PC through a
tether cable (200[m]). It can operate in maximum water
depth 50[m].

3.2. Controller
Proportional controller is used to control the vehicle.

The four thrusters that are mounted on the underwater
robot are controlled by sending the command voltage
based on the feedback relative pose between the under-
water robot and the object (xd[mm], yd[mm], zd[mm]).
The block diagram of the control system is shown in Fig.
8. The control voltage of the four thrusters are controlled
as the following equations.

The depth direction : v1 = kp1(xd − x) + 2.5 (4)
Vertical axis rotation : v2 = kp2(ε3d − ε3) + 2.5 (5)

Vertical direction : v3 = kp3(zd − z) + 2.5 (6)
Horizontal direction : v4 = kp4(yd − y) + 2.5 (7)

Where v1, v3 and v4 are the control voltage of the four
thrusters of x, z, y direction respectively. xd, yd, zd are
the desired relative pose between the vehicle and the tar-
get. ε3d is the rotation direction around the z-axis and it
is expressd as the value of v2. According to the experi-
mental result, the gain coefficient is adjusted to perform
the best condition for visual servoing.
3.3. Structure of Docking Experiment

In our previous research, the autonomous docking sys-
tem was conducted successfully in simulated pool. To
confirm that docking performance using proposed sys-
tem is achieved successfully in real sea, this experiment
was conducted in the sea within Wakayama Prefecture,
Japan, where the water depth is 3.5 [m] and there were
some gentle waves. The buoyancy force was nearly 1.03
times the one of fresh water. In order to respond the en-
vironmental change in freshwater and sea water, we need
to adjust the buoyancy balance of the ROV to ensure for
the stable. Docking station was designed as shown in Fig.
9. The ROV and PC is connected with the tethered cable
which has the length of 200 [mm]. Generally, the vari-
ous sensors are used for long navigation until the target
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is in the field of view of camera in ROV. In this system,
the manual operation is necessary to appear the image of
the target object in the field of view of ROV’s cameras
due to the searching area is limited. The coordinate sys-

Underwater 

Camera
Docking

direction

Docking Hole

Target Object
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70 [mm]

160 [mm]

Fig. 9 Structure of Experiment Layout

tem of the underwater robot is shown in Fig. 10. The
target object and the docking hole is fixed in docking sta-
tion. The diameter of the docking hole is 70 [mm] and
the center distance between the marker and the docking
hole is 160 [mm]. The structure of docking experiment
and the two underwater cameras are mounted as shown
in Fig. 9. Regarding to computation speed of the sys-
tem with respect to the speed of movement of ROV with
maximum speed about 0.2 m/s, we selected the best GA
parameter to converge the solution in real-time based on
PC performance. According to experimental results, we
confirmed that the system can perform real-time perfor-
mance not only in pose estimation but also in controlling
the vehicle.
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Fig. 10 Coordinate System of Docking Experiment

4. UNDERWATER DOCKING
EXPERIMENT

We conducted the underwater docking experiment to
confirm the proposed system achieved successfully in
real sea. The four operating states were conducted to per-
form the docking operation. These are Manual operation
(Approach), Visual servoing (to keep the relative pose),
Docking (fitting to the fixed docking hole) and Comple-
tion of docking (fully fitting into the docking station).
The results of docking experiments are shown in Figs.
(12-15). In each figure, Fig. (a) shows the fitness value
recognized by multi-step GA with the time relationship
and Fig. (b), (c) and (d) show the error of position in
different axial during the docking experiment.

Fig. 11 shows the tracking chart of AUV. In this fig-
ure, the docking trajectory is simulated based on the pose
which was estimated by multi-step GA. Figs. (16-19) is a
sequence of continuously images taken by two underwa-
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ter cameras. (a) Manual operation (ROV start), (b) Visual
servoing (Automatic control), (c) Docking (fitting to the
homing unit) and (d) Completion of docking (fully fitting
into the homing unit).

In the first state of manual operation, the robot moved
from the start point to the nearby region of the marker
as can be seen in Fig. 12. During this state, the signif-
icant continuous oscillation occurs until 30 [s] because
this duration is for long navigation of initial state. In this
experiment, GA recognition accuracy needed to have fit-
ness value of 0.5 or more for detection of 3D marker. In
Fig. 16 (a), it can be seem that the vehicle did not cor-
rectly recognized the object at initial state meaning pose
estimation during manual operation is not truthful and not
applied in feedback control.

After finished manual state, the underwater robot goes
forward and transit to a visual servoing by switching the
automatic control from manual operation after 32 [s]. In
this stage, the underwater robot moved to the desired rel-
ative target pose. When the range of error of the relative
target position in image plane (yd and zd) is within ± 20
[mm] and the stable duration within the desired relative
pose error is more than 165 [ms], the rod is fitted into the
docking hole by decreasing the distance in x-axis with
the velocity of 30 [mm/s] until the desired value of (xd)
is 350 [mm]. This is the proceeding state for the docking
to perform the fitting to the docking station. It can be seen
from Figs. (14-15) show the position in y-axis and z-axis
direction. The robot maintained to perform the docking
operation in the area between the dash line (−10 ≤ y ≤
30 and −80 ≤ z ≤ −40). In x-axis direction in Fig. 13,
it can be confirmed that the robot performed the dock-
ing operation after 35 [s]. However, if the underwater
robot did not performed precisely fitting and right condi-
tion, it will keeps visual servoing process for executing
the docking process again. The robot moved to reach
(xd = 600[mm], yd = 0, zd = −67[mm] , ε3d = 0)
by performing visual servoing in docking process.

In completion of docking state, the robot maintained
constantly at desired relative pose between the vehicle
and the object by visual servoing for application. In Fig.
(15), it can be confirmed that the underwater vehicle have
completed the docking within 40[s]. It can be said that
successful underwater docking in real sea was conducted
using proposed system.

5. CONCLUSION

Experiments of underwater docking were conducted
the development of proposed system for underwater
recharging application. In this paper, we proposed visual
servo based underwater vehicle through real time pose
docking with stereo vision system. The performance of
real time 3-dimensional recognition of the relative pose
of the 3D marker using multi-step GA was confirmed
to be able to achieve recognition with an pose error of
docking process is less than ±5[mm]. According to the
experimental result, it can be confirmed that docking per-
formance using proposed system is achieved successfully

with centimetre level accuracy in recognition and visual
servoing.
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