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Abstract—Genetic algorithm (GA) has been applied for real-
time pose estimation in this research because of its simplicity,
global perspective and repeatable ability. In many of these
different situations or problems, optimum selection parameters
are a critical factors in the performance of GA. We have
developed visual-servo type underwater vehicle using dual-eye
camera and 3D marker using real-time pose tracking, named as
Real-time Multi-step GA. The relative pose between a vehicle
and a 3D-marker can be estimated by Model-based matching
method. To recognize the pose of the marker with respect to
the vehicle, it is needed to utilize the optimum searching in
real-time, and the real-time pose estimation problem can be
converted into an optimization problem over a time-varying
distribution function with multiple variables. Therefore, analyses
the convergence performance of real-time multi-step GA for 3D
model-based recognition for underwater vehicle was conducted
and reported in this paper. The main aim of this paper is to
choose the best parameters for GA that are optimized over
population size, selection rate, mutation rate based on their
relative fitness value to improve the performance of searching in
time domain. The experimental results show that the proposed
system effectively improved the searching performance of Real-
time multi-step GA for real time pose tracking, having enable
an automatic docking of underwater vehicle by dual-eyes visual
servoing.
Keywords: Real-time Multi-step GA, Visual-servoing, Perfor-
mance analysis, Underwater vehicle

I. INTRODUCTION

GA is an evolutionary algorithm for searching and op-
timization based on natural selection and natural change of
generation. It have been applied to a wide range of complex
problems in numerous areas of science, engineering and etc.
Genetic algorithms (GAs) are generally able to find optimal
solutions of hard problem in reasonable amounts of time. But
when GA is applied to complex and difficult problems, it needs
an increase in the time required to find good solutions. Since
GA only needed the way to evaluate the performance of its
solution then it can be applied generally to any optimization
problem without assumptions.

Optimization problems are used to find the optimal solution
based on the evaluation function of the system. There are many

Fig. 1. Underwater Vehicle and 3D Marker

typical optimization techniques such as linear programming,
iterations, simple heuristic functions, depth first search and
breadth first search. To the best author knowledge, there is
few related works in which advanced optimization techniques
are applied in applications where real time performance is
dominant.

In today world, visual servo based underwater vehicles
have being conducted for many purposes such as inspection,
repair oil and gas, docking task, scientific studies of the
deep ocean, etc. The task of visual servoing is to use the
feedback information to control the position and orientation
of the robot with respect to a target object. The studies on
visual servoing based underwater vehicle have been conducted
all over the world in recent year. Almost studies are based
on single eye camera to estimate the pose of the target
object[1][2]. However, the visual servoing performance using
single camera is often gauged inaccurately especially in term
of 3D depth information. To solve this problem, visual servo
type underwater vehicle using dual-eye camera and 3D marker
has been developed using real-time pose tracking by means
of visual servoing as shown in Fig.1. To the best of author’s
knowledge, visual servoing using stereo vision with two cam-
eras is initiated by our group research. The vehicle’s pose with
respect to the target is estimated in real-time by using model-
based matching and real-time multi-step genetic algorithm. To
recognize the pose of the target object with respect to the
vehicle, it is needed to utilize optimum searching for real-time.
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The proposed system is performed by applying the real-
time multi-step GA for optimization problem of searching
for the optimum solution. Conventional GA has been proved
that it is useful for many optimization problems but they
have limitation especially in time domain. Instead of getting
the best accuracy with limitation for real-time application, an
approach that is simple, be able to converge for real-time
performance with repeatable ability is considered in proposed
system. However, the configuration of GA effects the recogni-
tion performance. Therefore, performance analysis of GA for
real-time 3D model-based recognition for underwater vehicle
was conducted and reported in this paper. There are many
researches related to the analysis of GA performance based
on modification of GA parameter [3]-[8]. Even though there
are many powerful optimization methods, Genetic algorithm
is used in this experiment because of its simplicity, repeatable
ability and especially effectiveness in real-time performance.
The main aim of this paper is to analyse the parameters value
of GA that generate the best population size, selection rate and
mutation rate that improve the performance of searching for
real time operation. Finally, we confirmed that the proposed
system could perform the real-time recognition performance
using the best GA parameters experimentally.

II. PROPOSED SYSTEM

A. 3D Model-based Matching Method with Stereo Vision Sys-
tem

Visual servoing is used to control of robot motion by uti-
lizing feedback information from vision sensor that is mounted
on the vehicle. In this experiment, the pose (position and
orientation) of the robot relative to the target object is estimated
by applying 3D model-based matching method and dual-eyes
camera. In proposed system, applying dual-eyes cameras can
support better performance than using one camera. 3D Model-
based pose estimation using dual-eyes vision system is shown
in Fig.2.

∑
CR and

∑
CL are the reference frames of dual-

eye camera which are mounted in front of the vehicle.
∑

H
is reference frame of the ROV. The search space of the vision
system is already defined as can be seen in Fig.4. 3D marker
which is composed of three spheres whose color are red, green
and blue is used as a target object. There are many models
located in search area with different poses. The solid model
of the marker is the captured 2D image by dual-eye camera
and the dotted-line model is the projected image from 3D to
2D image. The different relative pose between the vehicle and
the target object is calculated by comparing the projected 2D
image and the solid object image captured by dual-eye camera.
Finally, the best model that represents truthful pose can be
obtained based on its highest the fitness value of each model.
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Fig. 2. 3D Model-based Matching Method with Stereo Vision System

III. GENETIC ALGORITHM

Genetic algorithm is utilized to solve searching problem
by means of optimization one. Firstly, Genetic algorithm
generates random population of GA individual candidates,
where strings of bits are used to represent the candidate as
chromosomes. A population comprises a set of chromosome
that contained of genes candidate. Every gene of chromosome
is expressed as the two possible values 0 and 1. Each individual
candidate get its pose information by evaluating using fitness
function shown in equation (3) based on the maximum fitness
value. This evolution process carried out the maximum fitness
value of each generation of every individual model to form
the next generation. At this time, the set of generation have
fitter position and orientation with good fitness value than
the previous generations, that is closer toward the maximum
value near the fitness function that represents the object. These
possible models reproduce new generations by selection and
recombination method which represents a better solution to
the real target pose estimation. Then again new generations
are formed from mutation or crossover operations of GA. By
performing this process repeatedly, GA searched the optimum
value that indicates the pose of the object relative to the
vehicle. Initial population of GA is generated in random
and GA candidates are evaluated by the operators; selection,
crossover and mutation.

A. Selection Operator

The selection operator selects the chromosome from the
current generation based on fitness value and chooses the
better chromosome to reproduce the next generation. The
fitness function execution is dependent on the specify as a
condition. The fitness function supported the GA to analyse
the performance of each chromosome in the population. There
are different types of selection process such as Roulette-Wheel
selection, Ranking-based selection, Tournament selection and
Elitism. In this paper, the process of ranking based selection is
considered. Generally, if the maximum fitness value of number
of chromosomes are increased the probability of selection rate
will increase. It will not be possible that the optimum solution
is obtained by running the GA in one time. But, the probability
of selection operator will converge to the real solution, if the
GA is run repeatedly.

B. Crossover Operator

The crossover operator generates and creates the new
chromosome from the current string. The performance of
crossover operator is to exchange the position between the
strings randomly. There are many ways to be chosen more
crossover points such as two-point crossover and multi-point
crossover. For the specific problem, it is needed to determine
specific crossover so that the performance of GA can be
improved. Two point crossover is used in this experiment.

C. Mutation Operator

After the crossover had performed the mutation will oper-
ate. This operator randomly changes one or some bits in the
result from crossover process within the population.
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D. Real-time Multi-step GA

Real-time multi-step GA is used for searching problem
of pose recognition based on time domain. It means that the
real-time multi-step GA can evaluate the optimum solution by
the sampling rate (video rate) of 33 [ms] in the experiment.
The pose of the individual represents by six parameters in
the population. The upper 36 bits (12 bits for each x, y, z)
represents the position coordinate of the three dimensional
model of the gene. The remaining 36 bits (12 bits for each
ε1, ε2, ε3) describes the orientation defined by quaternion.
Therefore, the sufficient evolution time and population size will
be analysed in the next section. Fig.3 represents the flowchart
of real-time multi-step GA and Fig.4 shows the GA searching
area.

x︷ ︸︸ ︷
011000100111︸ ︷︷ ︸

12bits

y︷ ︸︸ ︷
000011000111︸ ︷︷ ︸

12bits

z︷ ︸︸ ︷
001100111101︸ ︷︷ ︸

12bits
ε1︷ ︸︸ ︷

110101001001︸ ︷︷ ︸
12bits

ε2︷ ︸︸ ︷
000101111001︸ ︷︷ ︸

12bits

ε3︷ ︸︸ ︷
001101111001︸ ︷︷ ︸

12bits

Fig. 3. Flowchart of Real-time Multi-step GA
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Fig. 4. GA Search Area

IV. ANALYSIS AND DISCUSSION OF RESULTS

A. Experimental setup

Figure.5 shows the experimental tank which is an indoor
pool (length 750[mm]× width 570[mm] × height 490[mm])

filled with water and the distance between the vehicle and
static 3D marker was 350[mm]. ROV received the dynamic
image information through the cable connected to PC. In this
experiment, not only dynamic images but also static images
are used to analyse performance of real-time multi-step GA.
The next section will discussed on experiment and results in
detail.

X
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Z

Marker

ROV

Fig. 5. Experiment Layout

B. Fitness Function

The poses of the 3D-marker could not be recognized
directly by image features in model-base matching method.
But the optimal solution can be obtained based on the fitness
value of each model of the target by searching with genetic
algorithm. Fig.6 shows the real target and model of 3D marker.
In this system, only hue value is used for recognition of 3D
marker because of less sensitive to environment. In each ball
in each model consists of two portions, the first portion is the
inner area which is the same size with the target and the second
portion is the background area. The capture image (pixel) is
detected in 2D image as (green or blue or red) in hue space.
If the capture image(pixel) situated in inner portion the fitness
value will be increased and the capture image (pixel) is situated
in outer portion, the fitness value will be decreased. Therefore,
the fitness value will be maximum when the model and the real
target are identical. Finally, the averaged fitness value of the
dual-eyes cameras is calculated as the following equations (1-
3). Detailed explanation about GA method and fitness function
is referred to our previous paper [11].

FR(ϕ) =
1
∧

m∑
k=1

(
∑

IRri∈SR,in,k(ϕ)

δ(h(IRri) − bk))

−
∑

IRri∈SR,out,k(ϕ)

δ(h(IRri − bk)) (1)

FL(ϕ) =
1
∧

m∑
k=1

(
∑

ILri∈SL,in,k(ϕ)

δ(h((ILri) − bk))

−
∑

ILri∈SL,out,k(ϕ)

δ(h((ILri) − bk)) (2)

F (ϕ) = (FR(ϕ) + FL(ϕ))/2 (3)
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Fig. 6. Real Target and Model of 3D-marker

TABLE I. SETTING PARAMETER OF GA

Population 40 60 80

Selection rate [%] 20, 40, 60 20, 40, 60 20, 40, 60

Mutation rate [%] 5, 1, 15 5, 1, 15 5, 1, 15

Crossover Two point

Number of Evolution[times/33ms] 9

C. Choosing of Selection Rate and Mutation Rate

Our experiment was conducted using 60% elitism, two
points crossover, 1% mutation. We began with instance popu-
lation size of 40, 60 and 80. Firstly, the recognition accuracy
was analysed based on different population size (40, 60, 80),
selection rate (0.2, 0.4, 0.6) and mutation rate (0.5, 1, 1.5).
TableI shows the setting parameters for analysing of GA
performance. In this experiment, ranking based selection, two
points crossover and termination in 33 [ms] were considered.
According to the experimental results selection rate 0.6 and
mutation rate 0.1 are selected.

D. Choosing of Population Size

Genetic parameters namely as selection, crossover, muta-
tion and population size are key factor to obtain the optimum
accuracy of the system, these parameters are considered as
primarily parameters. Fig.7 shows the analysis of evolution
times based on different population size from 10 to 500. Firstly,
we analysed how many evolution time will be generated within
33 [ms] based on different number of population sizes. The
evolution times within 33 [ms] (video rate) is inversely propor-
tional to the number of population size. In this case, we have to
choose the optimum number of population size with reasonable
number of evolution time for real-time performance. Based on
the experimental result of evolution times data, we analysed
the convergence performance of real-time multi-step GA by
using dynamic images and static images as can be seen in
Fig.8 and Fig.9.

In Fig.8, graph shows that the time response of the conver-
gence performance has been achieved for all population size
but not the same quick response time of the fitness value. The
population size at the end of evolution time within 33 [ms] (
based on different evolution time) from best to worst is 40, 60,
80, 100, 200, 300, 400, 500. Even though the fitness value of
the different number of population sizes are maintained above
0.8 the quick response time of population size 40 is faster than
other population sizes. In this experiment, the fitness value
needed to have the value of 0.5 or more for good performance
of GA recognition accuracy. Fig.9 shows the result of real-
time GA convergence performance using static images. In this
figure, the convergence performance of eight population sizes
with different fitness values have been obtained. It is clear that

TABLE II. BEST PARAMETERS FOR GA

Number of genes 40

Search area [mm] [x, y, z] = ±400 ± 200 ± 400
Selection probability 0.6%

Mutation probability 0.1%

Number of Evolution 14

Control Period [ms] 33

Target variable Position (x[mm])

the determination of population size is importance for real-
time recognition accuracy based on the evolution times. The
quick response time of the population size (100, 200, 300,
400 and 500) gradually increase until 0.8 and the stabilization
was occurred after 0.8 seconds. Population size 40, 60 and
80 will converge quickly within a few seconds. However,
population size 40 is the best population size for the real-
time performance according to the experimental result by using
static and dynamic images.

N
u

m
b

er
 o

f 
ev

o
lu

ti
o

n
 t

im
e 

w
it

h
in

 

3
3

 [
m

s]

Fig. 7. Evolution Time of GA

Time 

F
it

n
es

s 
V

al
u

e

Fig. 8. Convergence Performance of GA with Dynamic Image

F
it

n
es

s 
V

al
u

e

Fig. 9. Convergence Performance of GA with Static Image

978-1-5090-5607-1/16/$31.00 ©2016 IEEE Techno-Ocean 2016 522



E. Comparison of GA Search and Full Search using Off-line
Adaptation

We evaluated the recognition accuracy by using full search
multi-step GA. Fig.10 shows the recognition comparison of
position Y-Z plane between the GA search and the full search
process. The full search is a method to evaluate the result
of real-time multi-step GA by analysing the specific image
where real-time multi-step GA get the corresponding fitness
value. The main idea of full search is to calculate the fitness
of every points which are 1[mm] apart in the entire searching
area. By using GA search process, the recognition accuracy of
maximum fitness value is (1.213) and the position is 14.0625
[mm] in Y plane and -72.3711 [mm] in Z-plane. In full search
process, the maximum fitness value is (1.3611) and the position
of (Y,Z) plane are 15 [mm] and -72 [mm] respectively. It is
obvious that the small error will be occur in (y,z) plane about
0.9[mm] and -0.3711[mm]). Finally, we obtained the best GA
parameters for the real-time recognition performance as shown
in Table.II.
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Y

Z

Fig. 10. Full search and GA search

V. DOCKING PERFORMANCE USING THE BEST GA
PARAMETER

Finally, We conducted the repeated docking experiment in
indoor pool to verify whether the the proposed system can
operate the real-time performance using the best GA parameter.

A. Structure of Docking Station

Docking station was designed as shown in Fig.11. The
target object and the docking hole is fixed in docking station.
The diameter of the docking hole is 70 [mm] and the center
distance between the marker and the docking hole is 160 [mm].
The structure of docking experiment and the three underwater
cameras are mounted as shown in Fig. 11.

B. Experiment Environment

The ROV was designed and fabricated by KOWA cooper-
ation as shown in Fig.5. In this robot system, the eye visual
sensor is used as a main sensor. There are totally four cameras
(imaging element CCD, 380,000 pixel, signal system NTSC,

Underwater 

Cameras

Docking hole

Marker

70 [mm]

160 [mm]

Fig. 11. Structure of Experiment Layout

Minimum Illumination 0.8[1X], without zoom) are mounted
in this model and the two front cameras are used to perform a
three-dimensional object recognition in visual servoing. Four
thrusters are used in system, maximum thrust force is (9.8[N])
in horizontal and maximum vertical thrust force is (4.9[N]). In
addition, the LED lights (5.8W) has been equipped for illumi-
nation ensure. The ROV obtains the camera image information
and control signal from the PC through a tether cable (200[m]).
It can operate in maximum water depth 50[m]. Then, a simple
pool ( length 2870[mm] width 2010[mm] height 1000[mm])is
used as an experiment tank which was filled with tap water.
Fig.12 shows the layout of underwater experimental device.
Power supply and transmission of the control signal from the
PC is made through a tether cable (200 [m]).

Fig. 12. Underwater Experiment Environment

C. Controller

Proportional controller is used to control the vehicle. The
four thrusters that are mounted on the underwater robot are
controlled by sending the command voltage based on the
feedback relative pose between the underwater robot and the
object (xd[mm], yd[mm], zd[mm]). The block diagram of the
control system is shown in Fig.13. The control voltage of the
four thrusters are controlled as the following equations.

The depth direction : v1 = kp1(xd − x) + 2.5 (4)

Vertical axis rotation : v2 = kp2(ε3d − ε3) + 2.5 (5)

Vertical direction : v3 = kp3(zd − z) + 2.0 (6)

Horizontal direction : v4 = kp4(yd − y) + 2.0 (7)
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Fig. 13. Block Diagram of Visual Servo Control

Where v1, v3 and v4 are the control voltage of the four
thrusters of x, z, y direction respectively. xd, yd, zd are the
desired relative pose between the vehicle and the target. ε3d is
the rotation direction around the z-axis and it is expressed as
the value of v2. According to the experimental result, the gain
coefficient is adjusted to perform the best condition for visual
servoing.

D. Docking Performance

We conducted the repeated docking experiment in indoor
pool. In this experiment, the desired pose( xd = 600, yd =
−10, zd = −10 and ε3d = 0) between the target and the ROV
are predefined so that the robot will perform station keeping
through visual servoing. After the docking had performed each
time it will go back to the predefined distances. There are
totally 27 points of predefined distance as shown in Fig.16.
We can see one of the docking experiment result in Fig.14
where the starting point is 1. Fig.14 (a) shows the fitness
value of GA recognition that is maintained above 0.6, it means
that the real target and model are matching well. Fig.14 (b)
to (e) shows the position between desired and the estimated
pose of the 3D marker recognized by GA and the relative
target pose. At the start condition, the visual servoing state
will be occurred in x, y, z and position around in z-axis
within a few minutes. In visual servoing state, the robot detect
the 3D marker and relative pose with respect to the vehicle.
After visual servoing had performed, the docking operation
was started around at time=3[s]. In docking state, the rod is
attached to the vehicle to dock into the docking hole as shown
in Fig.16. When the robot is stable within desired relative
error ±20 [mm] in Y-Z plane for 165 [ms], the rod is fitted
into the docking hole by decreasing the desired value of xd.
Finally, the docking operation completed successfully about
15 [s]. It can be confirmed that it is possible to regulate the
surrounding region of the relative target pose. Fig.14 (g) to
(J) represent the thrust to restore the error respectively. Fig.14
(f) describes the 3D trajectory for underwater vehicle during
docking process. According to the experimental result from
these figure, it can be confirmed that the proposed system can
perform the successful docking operation.

E. GA Performance Analysis of Docking Experiment

Even though the top gene is searched and selected to
represent truthful pose, the rest genes are analysed to check
they are distributed well so that top genes can converge to
the solution quickly and also other genes are diverged enough
to cover the searching area. Fig.15 shows real-time multi-
step GA performance analysis of docking experiment. Fig.15

600  [mm]

-67 [mm]X
H

Z
H

Y
H

∑
H

X
M∑

M ZM

YM70 [mm]

370 

[mm]

160 [mm]

100 [mm]

100 [mm]

100 [mm]

Fig. 16. Docking Coordinate and Predefined Points

(a) shows the 3D trajectory tracking during docking process.
Fig.15 (b) represents the distribution of all gene value in x-
axis direction. 60% of top gene in x-axis direction converged
to the real solution and 40% of other genes are divergent as
shown in Fig.15 (c) and (d). According to the result as shown
in Fig.15 (c), it was confirmed that top gene 60% convergence
to the real solution following the selection rate of 0.6. On
the other hand, the bottom-gene 40% diverge enough not to
miss the target when ROV moves quickly. Fig.15 (f) shows the
accuracy comparison of the recognition in position Y-Z plane
between the GA search and the full search process at sampled
point (t=12.262 [s]) while docking operation. By using GA,
the recognition accuracy of maximum fitness value is (1.21)
and the position is -14.9492 [mm] in Y plane and 11.3281
[mm] in Z-plane. In full search process, the maximum fitness
value is (1.11) and the position of (Y,Z) plane are -14[mm] and
12 [mm] respectively. It is obvious that the small error will be
occur in (y,z) plane about -0.94292[mm] and 0.6719[mm]).
We can clearly see the position of each top genes from the
2D graph in Fig.15 (e). The standard deviation of recognized
position in Y-axis and Z-axis direction is shown in Fig.15
(g). Therefore, it was confirmed that the selection rate 60%
is convergence to the real solution.

VI. CONCLUSION

In this study, performance analysis and optimization of
real-time multi-step GA for real time recognition for under-
water vehicle by using 3D marker and dual-eye camera is
presented. Population sizes, selection rate and mutation rate
that influences on the recognition accuracy are analysed and
selected for proposed system. We confirmed and analysed the
data of the repeated docking experiment by using the best GA
parameter. Investigating these result, it can be concluded that
the real time recognition accuracy of the system is effective.
Experimental results show that the recognition accuracy of the
system is optimized with the error in [mm] level for real time
recognition.
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