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Vision-based underwater exploration and exploitation require a robust computer vision
system, particularly for operation in turbid water that may govern the poor visibility of the un-
derwater environment. Additionally, visual servoing is largely dependent on not only turbidity
level but also lighting changing in the real sea environment. This paper presents the turbidity
tolerance of the proposed dual-eye based docking system using an active 3D marker under chang-
ing lighting condition. Pool docking experiment was conducted against turbidity using an ROV.
In proposed system, Real-time Multi-Step GA (RM-GA) and model-based matching method are
applied for real time 3D pose estimation. The experimental results have confirmed the docking
performance of the proposed system against turbidity under different lighting conditions.
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1 Introduction

The visual servoing based underwater vehicles have been
developed for many applications such as inspection, repair oil
and gas, pipeline tracking, docking task, scientific studies of
the deep ocean, etc [1], [2] all over the world in recent year.
Some studies are based on single eye camera to estimate the
pose of the target object [3]-[5]. A binocular vision was used
in some of these studies to estimate the relative pose of the
target object [6], [7]. Even though two cameras were used in
[6], one was facing downward for shooting the sea-floor images
and the second camera was pointing forward for the purpose
of obstacle avoidance. In [7], Girona 500 AVU was developed
for inspection and intervention tasks for the seafloor survey.
In that work, several sensors such as sonar, GPS, pressure sen-
sor, velocity, fiber optic gyro, and two video cameras are used
to localize an object. But the two cameras look at different
targets, then these approaches do not materialize parallactic
nature.

In the real sea areas, investigating using visual servoing
inevitably has the difficulties in recognition of object when
detected scene images are disturbed by lighting effect, wa-
ter current and turbidity, etc. Therefore, the technologies for
observing underwater situations correctly and robustly from
cameras of the visual servoing systems are needed.

The role of turbidity should be considered in the underwater
environment because it can degrade the visual quality. In [8],
[9], two cameras and three cameras are used to increase the
image recognition robustness by analyzing degradation fac-
tors in turbid water. But the discussion about turbidity is
not enough in these references. They evaluated the multiple
features of detectors and compared the performance of detec-

Left and right camera images

ROV Active marker

Fig.1 Docking experiment in turbid water using an active
marker under changing lighting environment.

tors on images degraded by turbidity. They did not perform
the pose estimation. According to the authors’ knowledge,
there is no study on turbidity tolerance of 3D pose estimation
for real-time vision-based underwater vehicle.

The authors have proposed a new 3D pose estimation
method with dual-eye cameras that exploits the parallactic
nature that enables reliable 3D pose estimation in real-time.
Visual servoing using stereo vision and parallactic character
for the underwater vehicle utilizing 3D model-based recogni-
tion and Real-time Multi-step Genetic Algorithm (RM-GA)
has been developed, and have confirmed the effectiveness of
the proposed system in [10]-[12]. The dual-eye cameras based
on perception means solving the corresponding points prob-
lem. If the corresponding points in the real object are not con-
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nected with the corresponding points in images during 2D to
3D reconstruction, the true 3D object cannot be represented
because of the wrong reconstructed 3D points. Instead, the
point is projected from 3D real target object into the both 2D
images correctly using the forward projection from 3D to 2D
generates unique points in 2D images without errors. Based on
this point, 3D model-based recognition is implemented. Fur-
thermore, solid object that is represented a group of points
on the sphere of the 3D marker is projected rather than the
individual pixel.

In previous works, the robustness of the proposed system
was confirmed using passive marker by conducting the differ-
ent experiments [10]-[12]. In this study, the active marker was
developed to improve the 3D pose estimation in high turbid-
ity. Illumination variation is one of the challenging problems
to be solved for robust recognition systems in unknown envi-
ronment. Turbidity and changing illumination can disturb the
recognition of the target object in real sea area. Additionally,
this study presents the docking performance using an active
marker under the condition whereby the turbidity and chang-
ing illumination degrade the visual quality in order to confirm
the performance of the proposed system.

The remainder of the paper is organized as follows: Section
2 describes the method of 3D pose estimation. Experiment
results are reported in section 3 with discussion and conclude
in section 4.

2 3D Pose Estimation Method
2.1 Model-based Matching Method

In proposed system, the model-based matching method is
used to estimate the relative pose between the vehicle and
a known 3D marker. In another conventional methods, the
pose estimation method is implemented using the feature-
based recognition based on 2D to 3D reconstruction. In that
approach, the set of image points in different images is used
to determine the information of the target object. The main
drawback is complex for searching the corresponding points
and time taken. Apart from this, the model-based pose es-
timation approach based on 3D to 2D projection is applied
in this work avoiding the effects of wrong mapping points in
images using dual-eye cameras.

Figure 2 shows the model-based matching method using
dual-eye cameras for 3D pose estimation and Fig. 3 shows
the GA searching area. In Fig. 2, ΣCR and ΣCL are the
reference coordinate frame of the right camera and the left
camera. ΣH is the reference frame of the ROV. ΣM is the ref-
erence frame of the real target object. The solid model of the
real target object in space is projected naturally to the dual-
eyes cameras images and the dotted 3D marker model, where
the pose is given by one of GA’s genes, is projected from 3D
to 2D. The different relative pose is calculated by comparing
the projected 2D image and the solid model captured by the
dualeye cameras. Finally, the best model of the target object
that represents the true pose can be obtained based on its
highest fitness value. There are some works done on visual-
servoing experiments concerning hand-eye manipulator in the
air using 3D model-based matching method utilizing genetic
algorithms and dual-eyes camera [13], [14], which are used as
fundamental knowledge for this research.

2.2 Fitness Function

The fitness function is constructed to evaluate the matching
degree between the projected model and the captured image.
The optimum searching and the GA convergence speed were
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Fig.2 Model-based matching method using dual-eye
cameras and 3D marker
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effected by the construction of the fitness function. The cal-
culation of fitness value of each individual model can be done
repeatedly in genetic algorithm. Figure 4 shows the real target
and model of 3D marker. Only hue value is used for recogni-
tion of 3D marker because of less sensitive to the environment.
Each model consists of three spherical balls (red, green and
blue). Each spherical ball consists of two portions, where the
inner portion is the same size as the real target object and the
outer area is the background area. The dots in each ball mean
points to calculate the correlation degree on how much the in-
ner area overlaps the target object and the outer area does
not overlap the target object. The captured image (pixel) is
detected in 2D image as (green or blue or red) in hue space.
If the captured image (pixel) situated in inner portion, the
fitness value will be increased and the captured image (pixel)
is situated in the outer portion, the fitness value will be de-
creased. Therefore, the fitness value will be maximum when
the model and the real target are identical. Finally, the pose
of the model with the maximum fitness value is thought to
represent the pose of the real target 3D marker. Detailed ex-
planation about the fitness function is referred to our previous
paper [15].

2.3 Real-time Multi-step GA

The genetic algorithm is used as a search and an optimiza-
tion method to estimate the relative pose between the ROV
and 3D marker. Real-time multi-step GA means the capable
of real time recognition of the true pose of the target object
within 33 ms. Figure 5 shows an individual of GA population
and Fig. 6 shows the flowchart of the RM-GA. Position and
orientation of the three-dimensional model are represented as
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Fig.4 Real 3D marker and model: (a) real 3D marker, (b)
model, (c) enlarged view of the blue ball model,
where the inner area is the same size as the real
target object (blue ball) and the outer area is the
background area. The dots in (c) mean points to
calculate the correlation degree on how much the
inner area overlaps the blue ball and the outer area
does not overlap the blue ball.

individual of the chromosome. The former 36 bits represent
the position of the 3D marker and the later 36 bits describe
the orientation defined by a quaternion.

Firstly, a random population of the chromosome is gen-
erated. A new pair of left and right images is input. The
RM-GA procedure is performed within 33 ms. The real-time
multi-step GA evolves the chromosomes with as many gener-
ations as possible within the video frame rate for each image.
In the present study, the number of iterations of the RM-GA
is chosen to be nine, which is a maximum that the computer
used in the present study could calculate within 33 ms (deter-
mined by the video frame rate) during the GA evolution pro-
cess. The RM-GA find repeatedly the solutions to get the best
pose of the target object within the video frame rate to deal
with time varying distribution for newly input images. The
fitness function is designed to get the maximum value when
the model and the real target exactly coincide. The true pose
of the target object is expressed with the peak of the moun-
tain shape in the fitness distribution. Instead of catching the
peak point with a long time, the RM-GA find the true pose
of the target object using the group point within the short
time. The RM-GA quickly evaluated each gene in the fitness
distribution by changing the group of point for finding the op-
timum solution to represent the true pose of the target object
with the peak of the mountain shape. Finally, the best pose of
the individual can be made to approach the real target’s pose.
Although the pose of the target object is evaluated in 2D, con-
vergence occurs in 3D. For the next input, a new video image
is used. The convergence performance to an optimum value
of GA’s evolution function used as fitness function has been
proved mathematically by a Lyapunov analysis in a previous
work [16]. The effectiveness of the GA was demonstrated in
a previous study on visual servoing for catching fish using a
GA search [17].

2.4 Controller

The proportional controller is used to control the vehicle.
The four thrusters that are mounted on the underwater robot
are controlled by sending the command voltage based on the
feedback relative pose between the underwater robot and the
object (xd[mm], yd[mm], zd[mm]). The block diagram of the
control system is shown in Fig. 7. The control voltage of the
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Fig.5 An individual of GA population: 12 bits for each
x, y, z represents the position coordinate of the
three dimensional model of the gene and 12 bits
for each ε1, ε2, ε3 describes the orientation defined
by a quaternion.
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Fig.6 Flowchart of the real-time multi-step GA: (a) the
recognition process of the target pose is evalu-
ated in 2D, convergence occurs in 3D (b) the
flowchart of the RM-GA, the best solution is eval-
uated within 33 ms through the GA process.

four thrusters is controlled as the following equations.

The depth direction : v1 = kp1(xd − x) + 2.5 (1)

Vertical axis rotation : v2 = kp2(ε3d − ε3) + 2.5 (2)

Vertical direction : v3 = kp3(zd − z) + 2.5 (3)

Horizontal direction : v4 = kp4(yd − y) + 2.5 (4)

Where v1, v3 and v4 are the control voltage of the four
thrusters of x, z, y direction respectively. xd, yd, zd are the
desired relative pose between the vehicle and the target. ε3d

is the rotation direction around the z-axis and it is expressed
as the value of v2. According to the experimental result, the
gain coefficient is adjusted to perform the best condition for
visual servoing.

2.5 Active Marker

In our previous research, the passive marker was used to
conduct the experiment. In the present study, the active
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Fig.7 Block Diagram of Visual Servo Control.

marker was designed and constructed to improve the pose es-
timation at high turbidity level in day and night time. Figure
8 shows the appearance of the active marker. The circuit
was created by combining the variable resistors, resistors, and
the light emitting diodes such as red, green, and blue. The
resistance value of the variable resistors, and the number of
resistors are determined by trial and error. The 3D marker
is constructed from a water proof box (100 mm × 100 mm
× 100 mm) and the white spheres (diameter: 40 mm) are at-
tached to the water proof box. The red, green and blue LED
were installed into the white spherical ball and covered by the
color balloon as shown in Fig. 8. This marker can be used as
the passive marker when the light is switched off. The active
marker allowed the ROV to recognize in day and night time
by emitting the light of LED. The effectiveness of the active
marker will be discussed in the next section.

Active 3D marker

Fig.8 Active 3D marker: Red, green and blue LED were
installed into the white spherical ball and covered
by colour balloon.

3 Experimental Results and Discussion
3.1 3D Pose Estimation in Turbid Water

The 3D pose estimation was performed when the ROV and
3D marker was fixed in position at 600 mm under different
turbidity levels in day and night time. The amount of turbid-
ity is controlled by adding mud in water in the tank. Mud is
chosen in order to simulate the natural condition. In this ex-
periment, the turbidity level (Formazin Turbidity Unit, FTU)
is measured by using a portable turbidity monitoring sensor
TD-M500.

The ROV performed the visual servoing at about 600 mm
in docking operation. It is the aware distance for docking
operation to recognize the target object. Therefore, we give
prominence to discuss 600 mm distance for recognition perfor-
mance. Figure 9 shows the fitness value and turbidity using
mud and the ROV and the 3D marker were fixed in distance
600 mm. The horizontal axis is described by the amount of

mud (ml/m3) and the vertical axis is expressed in terms of
fitness values and FTU values.

According to graphical results, the fitness value is decreased
from 1.3 to 0.1 in the case of day time and from 0.6 to 0.1
in the case of night time when the turbidity is gradually in-
creased from 0 FTU (0 ml/m3) to 50.2 FTU (375.875 ml/m3).
The fitness value is nearly same at day and night time above
30 FTU. According to the experimental results, the perfor-
mance of 3D pose estimation under different turbidity levels
is analyzed and the maximum turbidity can be determined
according to the defined threshold of fitness value.
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Fig.9 Fitness values against turbidity at the distance 600
mm between the ROV and 3D marker. The fitness
value is nearly same in day and night time above
30 FTU.

3.2 Docking Performance Against Turbidity Under
Changing Lighting Condition
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Fig.10 Illumination simulated for each docking time.
Lighting condition is changed from day time to
night time gradually.

This experiment was conducted in an indoor pool and the
turbidity was created by adding mud (40 FTU). The desired
pose (xd = 600 mm, yd = 15 mm, zd = -20 mm, and ε3d =
0 deg) between the target and the ROV is predefined so that
the ROV performs stationary hovering through visual servo-
ing. The P controller is used to control the four thrusters of
the vehicle in this docking experiment. The totally 17 times
continuous docking was performed successfully by changing
lighting from day time to night time as shown in Fig.10. Fig-
ure 10 shows the lighting simulation for each docking time.
The horizontal direction is described by the number of dock-
ing times and the vertical direction is expressed with the il-
lumination [Lx]. In lighting condition, we used the lighting
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that can adjust from maximum to minimum condition. By
adjusting the lighting condition, the maximum illumination is
1280 Lx in day time and minimum illumination is 80 Lx in
night time.

The results of docking performance against turbidity at the
maximum illumination 1280 Lx (day time) are shown in Fig.
11, and the results of docking performance at the minimum
illumination 80 Lx are shown in Fig. 12. In Fig. 11 (a), the
fitness value is above 0.8 for the few seconds of the recognition
process and then increased to 1, which means that the system
could recognize the 3D pose of the active marker well. Figures
11 (b), (c), (e), and (f) represent the relative pose between
the desired pose and the estimated pose of the active marker
recognized by RM-GA. Figure 11 (d) indicates the trajectory
of the underwater robot based on ΣH in Fig. 13 during the
docking process.
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Fig.11 Docking performance against turbidity (40 FTU)
in the case of mud using dual-eye images recog-
nition at 1280 Lx (maximum lighting condition):
(a) fitness value, (b) position along the x-axis, (c)
position along the y-axis, (d) 3D trajectory of the
underwater vehicle, (e) position along the z-axis,
and (f) orientation along the z-axis.

In docking strategy, visual servoing starts when the 3D
marker is detected, which means the fitness value is above
a defined threshold (0.4 in the present study). When the pose
of the vehicle is within the allowable error range of ±40 mm
of the desired pose, as shown in Figs. 11(b), (c), and (e), and
the orientation around the z-axis (f) is controlled to within 7
deg for the desired period (165 ms, which is equal to five times
the control loop period) in this experiment, docking starts by
decreasing the distance between the ROV and the 3D marker
from 550 mm to 350 mm, as shown in Fig. 11(b). The dotted
line labeled A in each subfigure of Fig. 11 indicates the visual
servoing state, where the desired position along the x-axis is
600 mm, and the desired position along the y-axis is within
the allowance error range, as shown in Fig. 11(c). Visual
servoing continues until the desired pose is within the error
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Fig.12 Docking performance against turbidity (40 FTU)
in the case of mud using dual-eye images recogni-
tion at 80 Lx (minimum lighting condition): (a)
fitness value, (b) position along the x-axis, (c) po-
sition along the y-axis, (d) 3D trajectory of the
underwater vehicle, (e) position along the z-axis,
and (f) orientation along the z-axis.

range for the y and z directions and the orientation around
the z-axis, as shown in Figs. 11(c), (e), and (f). At time B,
as shown in Figs. 11(b), (c), and (d), the docking criteria are
satisfied and docking operation starts. Note that the position
in the x direction at point B is approximately 500 mm because
only the positions in the y and z directions and the orientation
around the z-axis are considered in the docking criteria. The
docking operation started approximately 7 s after starting the
experiment. Finally, the docking operation was successfully
completed approximately 20 s after starting the experiment.
The dotted line labeled C in each sub-figure of Fig. 11 indi-
cates the state whereby the docking is complete.

In the case of 80 Lx (night time), the fitness value is about
0.8 in recognition of active 3D marker at the start of the exper-
iment and then decreased to about 0.5 as shown in Fig. 12(a).
The ROV could recognize the active marker even though the
environment is dark. The desired position along the orienta-
tion around the z-axis are out of error range at 3 s as shown
in Fig.12 (f). Therefore, visual servoing continues until the
desired pose of other direction y, z, and orientation around
the z-axis is within allowance error range. The time for dock-
ing from the start of the experiment is 25 s in this case. The
underwater robot was confirmed to maintain the desired pose
while docking was performed under changing lighting condi-
tion at high turbidity, as shown in Figs. 11 and 12(a) through
(f). According to the experimental results, even though the
lighting condition was changed from day to night in high tur-
bidity, the relative pose of the 3D marker can keep recognize
well and the docking has been done successfully against tur-
bidity under changing lighting condition.
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4 Conclusion
In the present study, visual-servoing based 3D pose estima-

tion and docking performance against turbidity for underwa-
ter vehicle in changing lighting environment is presented. A
real-time pose detection scheme was implemented by means
of 3D model-based recognition and real-time multi-step GA
using dual-eye cameras and active 3D marker. According to
the experimental results, the proposed system using RM-GA
can keep recognizing the relative pose of the 3D marker and
can perform the docking operation against turbidity under
changing lighting condition.
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