複眼立体認識システムを搭載させた Tuna-Sand 2の嵌合実験

向田直樹 (岡山大学) 西田祐也 (九州工業大学) 李想 (岡山大学) 米森健太 (岡山大学) Myo Myint (岡山大学) Khin Nwe Lwin (岡山大学) 松野隆幸 (岡山大学) 見浪護 (岡山大学)

1. 緒言

今日,AUV の水中での長時間作業を可能にすべく世 界中で多くの研究が行われている.その中の一つとし て水中給電技術があるが,いまだにその手法が確立して いない. 嵌合動作には,給電のみではなく様々な応用が 可能である.一般的に,嵌合動作は次の三つの工程に分 けられる.(1) 長距離航行工程,(2) 接近工程,(3) 嵌合工 程. この嵌合動作について,様々なセンサ,手法 [1]-[3] を用いて多くの研究が行われている.外乱に対する航 行の精度,ロバスト性が高いとき,嵌合工程は重要な役 割である.大きな網を用いてAUV を手繰り寄せること は行われているが,この手法ではAUV,嵌合設備の双方 に損傷を与えてしまう.このような問題を解決すべく, 嵌合工程に対して我々は複眼カメラの画像を用いた嵌 合システムを考案した.

先行研究 [4]-[5] では二つのカメラと 3D マーカーを 用いて、我々の視覚情報に基づく嵌合システムのロバス ト性を確認するため、様々な実験を行っている. さらに 小型の ROV を用いて海での嵌合実験も成功させている [6]. いくつかの改善点を踏まえ、視覚情報に基づく嵌合 システムの性能を確認するため、AUV に我々のシステ ムを搭載させた. したがって、本論文では二つのカメラ と 3D マーカーを用いて行った、AUV の視覚情報を用い た嵌合実験について述べる. Hovering 型 AUV"Tuna-Sand 2"を図 1 に示す. Tuna-Sand 2 は深度 2000m ま で潜水が可能で 5 自由度を持っており、実時間三次元追 従システムを組み込んだ GA-PC を搭載している. 我々 は、室内のプールにおいて海底でのバッテリー充電を想 定した実験を行った.

2. 複眼カメラを用いた実時間認識

図 2 にシステムのブロック線図を示す. Tuna-Sand 2 に搭載した複眼カメラから画像を取得し,GA-PC へ入 力される. GA-PC には 3D model matching 法と Real-

図1 複眼立体認識システムを搭載させた Tuna-Sand 2

図 2 (a) システムのブロック線図 (b) GA-PC の外観

time Multi-step GA を組み込んだソフトウェアがあら かじめ導入されている. Tuna-Sand 2 と嵌合ステーショ ン間の実時間相対位置・姿勢認識,嵌合制御シーケンス に基づき,GA-PC は Tuna-Sand 2 ヘコマンドを送信す る. ここで,通信方法は TCP/IP を用いている.

2.1 3次元位置·姿勢認識

3D model matching 法と Real-time Multi-step GA を用いた実時間三次元位置・姿勢認識法については [7] で報告している.取得画像に対しモデルをばらまき,認 識対象物と強い相関を持つモデルを探索し,そのモデ ルから位置・姿勢情報を得ることを目的とした手法で ある.

2.2 嵌合制御シーケンス

嵌合を行う上で,3つの動作状態を定義する.それぞれ(a)Approaching(Tuna-Sand2自体の制御による
 嵌合ステーションへの接近),(b)Visual Servoing(3Dマーカーへの正対),(c)Docking(嵌合)であり、これらを含んだ嵌合制御シーケンスを図3に示す.

(a) Approaching step

このステップでは Tuna-Sand 2 が 3D マーカー を認識するまで嵌合ステーションに近づく. 音響 センサのような様々なセンサを用いたロングナビ ゲーションが可能である.本実験では,DVL と深度 センサを用いて事前に設定した座標に従って Tuna-Sand 2 が移動する.

(b) Visual Servoing step

Tuna-Sand 2 が二つのカメラを用いて 3D マー カーを認識したとき,Tuna-Sand 2 自体の制御か ら,ビジュアルサーボによる Tuna-Sand 2 の制御 に切り替える. 3D model matching 法と Real-time

図3 嵌合制御シーケンス

Multi-step GA が搭載されている GA-PC は目標 位置・姿勢に基づき Tuna-Sand 2 に指令値を送り, ビジュアルサーボを行う.

(c) Docking step

Docking は Tuna-Sand 2 が嵌合開始範囲内で 安定した時に開始する. このステップでは,Tuna-Sand 2 が前方に進み Tuna-Sand 2 と 3D マーカー の距離を減らすことで嵌合棒を嵌合穴へ挿入する. Docking 終了後,GA-PC によって記録されたデー タを保存し,Tuna-Sand 2 はプールの水面に浮上 する.

3. 実験環境

3.1 Autonomous Underwater Vehicle "Tuna-Sand 2 "

Tuna-Sand 2 の仕様を表 1 に示す. Tuna-Sand 2 に は,障害物検出,三次元マッピング,試料採取を行うため の装置やソナーが搭載されている.今回,視覚ベース嵌 合実験を行うために実時間姿勢認識システムを搭載し た GA-PC を Tuna-Sand 2 の前面に設置した.本実験 で使用する Tuna-Sand 2 と認識対象物の座標系を図 4 に示す.

表 1 Juna-Sand 2 の仕体	
寸法 m	$1.4 (W) \times 1.2 (L) \times 1.3 (H)$
重量 kg	380
最大深度 m	2,000
最大持続時間 h	8
スラスター数	4 (水平方向), 2 (垂直方向)
センサ	INS, DVL, 深度センサ, USBL, カメラ

表1 Tuna-Sand 2 の仕様

3.2 嵌合ステーション

図5に嵌合実験に用いた嵌合ステーションを示す.嵌 合ステーションの大きさは60cm×45cm×300cmで ある.Tuna-Sand2を用いた嵌合性能を確認するため, 水中カメラを3台嵌合ステーションに取り付け嵌合時 の様子を記録する.実験時,嵌合ステーションはプール の壁面に固定している.

3.3 実験プール

図 5 に実験プールを示す. プールの大きさは,8m × 8m × 8m であり, プールの上に格子状の板で床が作ら れており, 機材等がおけるようになっている. この床の 上で,GA-PC をリモートデスクトップで操作するため の PC, 嵌合ステーションに取り付けたカメラで Tuna-Sand 2 を観測するための PC,Tuna-Sand 2 制御用 PC を配置し実験を行った.

4. 自動嵌合実験の結果および考察

先述したプールにおいて、嵌合実験を行った. まず、TCP/IP 通信を用いて GA-PC と Tuna-Sand 2の CPU との通信が行えているかを確認し、Tuna-Sand 2 が水中で嵌合実験する前に水面での Tuna-Sand 2の操 作、ワイヤレス通信を使った Tuna-Sand 2の状態のモ ニタリングの確認も行った. ビジュアルサーボ中のデー タは GA-PC に格納され、水面に Tuna-Sand 2 が浮上 した後データの解析を行った. このような工程を経て、 完全自動嵌合実験は成功した.

4.1 嵌合ステーションへの移動

最初に,設定した座標に従い,二つのカメラで 3D マー カーを認識する場所まで Tuna-Sand 2 は移動する.図 6 に示すように,P0 から P8 の座標の順に Tuna-Sand 2 は 移動する.P8 に Tuna-Sand 2 が到達したとき 3D マー カーは認識され,ビジュアルサーボによって Tuna-Sand 2 の制御を行う.設定した座標を移動中は,DVL と深度 センサのデータを用いて Tuna-Sand 2 のコントロール を行っている.

4.2 Visual Servoing · Docking step

Tuna-Sand 2 が嵌合ステーションに向けて移動し、二 つのカメラの視野に 3D マーカーが入った時、Approaching step から Visual servoing step へと移行する. この ステップでは、Tuna-Sand 2 は次式に示す目標位置・姿 勢を満たすように制御を行う. この目標位置・姿勢を 嵌合開始目標位置と設定した.

$$x_{d} = {}^{H}x_{M} = 600 \text{mm}$$

$$y_{d} = {}^{H}y_{M} = -78 \text{mm}$$

$$z_{d} = {}^{H}z_{M} = 0 \text{mm}$$

$$\varepsilon_{3d} = 0 \text{deg}$$

図 7 に嵌合実験の結果を示す. (a) は適合度, (b) は Tuna-Sand 2 の三次元移動軌跡, (c)~(f) は順に, y 軸 方向, z 軸方向の位置, z 軸回転の姿勢の認識結果を示し ている. 本実験では, 適合度が0.5 以上の時信頼できる 認識結果としてビジュアルサーボを行っており, 適合度 が低いときの認識は位置・姿勢は測定不可とした. その

図 4 Tuna-Sand 2 と認識対象物の座標系

図 5 実験プールに設置した嵌合ステーションと認識対 象物

ため、図7の(a)に示しているように、適合度が0.5以上になった時ビジュアルサーボを開始していることが確認できる.図7の(b)に示している移動軌跡の開始地 点は、図6のP8を意味しており、終了地点はDocking stepが終了したことを示している。Tuna-Sand 2が嵌 合条件をみたす位置で安定しているとき、200mm前進 命令を送信し、嵌合動作を行う.図7の(c)に示してい る x 軸方向の認識値のグラフから、すべての嵌合開始条 件を満たした83s あたりで嵌合動作を行っていること が確認できる.嵌合動作完了後、ビジュアルサーボ中の データがハードディスク内に保存され、Tuna-Sand2は 後方へ移動した後、水面へ浮上し嵌合実験は終了した.

5. 結言

本報告では、Tuna-Sand 2の複眼カメラの視覚情報に 基づく嵌合実験について述べた. 嵌合動作による海底 におけるバッテリー充電の機能を室内プールで模擬す ることができた. Approach ステップでは、DVL や深度 センサを用いて Tuna-Sand 2 は設定した座標へ移動し、 Docking の最終ステップでは、二つのカメラからの視覚 情報を用いて Tuna-Sand 2 の自動制御が行えた. 得ら れた実験結果では、三次元認識性能と嵌合の精度を確認 することができた. よって、複眼カメラの視覚情報に基 づく位置・姿勢認識システムを用いた完全自立型の水 中ロボットで嵌合が行えることを実証した.

今後の研究として、実海域へ向けた我々のシステムの 改良を行い、このシステムを用いて水中自動給電へ向け た、Tuna-Sand 2の実海域での嵌合実験を行いたい.

謝辞

本実験は、九州工業大学の浦環先生、西田祐也先生、東京 大学生産技術研究所の巻俊宏先生の協力によって行う ことができました.改めてお礼申し上げます.本研究 は、JSPS 科研費 JP16K06183 の助成を受けたものです.

図 6 Tuna-Sand 2の設定座標間の移動軌跡

図7 嵌合実験結果: (a) 適合度, (b) 三次元移動軌跡, ((c)-(e)) x,y,z 座標の認識値 (f) z 軸回転の認識値

参考文献

- Steve Cowen, Susan Briest and James Dombrowski: "Underwater Docking of Autonomous Undersea Vehicle using Optical Terminal Guidance", Proc. IEEE Oceans Engineering, Vol.2, pp.1143-1147, 1997.
- [2] Michael D. Feezor, F. Yates Sorrell, Paul R. Blankinship and James G. Bellingham: "Autonomous Underwater Vehicle Homing/Docking via Electromagnetic Guidance", IEEE Journal of Oceans Engineering, Vol. 26, NO. 4, pp.515-521, October 2001.
- [3] Robert S. McEwen, Brett W. Hobson, Lance McBride and James G. Bellingham: "Docking Control System for a54-cm-Diameter (21-in) AUV", IEEE Journal of Oceanic Engineering, Vol. 33, NO. 4, pp. 550-562, October 2008.
- [4] Myo Myint, Kenta YONEMORI, Akira YANOU, Shintaro ISHIYAMA and Mamoru MINAMI: "Robustness of Visual-Servo against Air Bubble Disturbance of Underwater Vehicle System Using Three-Dimensional Marker and Dual-Eye Cameras", Proceedings of the International Conference OCEANS15 MTS/IEEE, Washington DC, USA, pp.1-8, 2015.
- [5] Myo Myint, Kenta YONEMORI, Akira YANOU, Khin Nwe Lwin, Mamoru MINAMI and Shintaro ISHIYAMA: "Visual-based Deep Sea Docking Simulation of Underwater Vehicle Using Dual-eyes Cameras with Lighting Adaptation", Proceedings of the Interna-

tional Conference OCEANS16 MTS/IEEE, Shanghai, China, pp.1-8, 2016.

- [6] Myo Myint, Kenta YONEMORI, Akira YANOU, Khin Nwe Lwin, Maoki Mukada and Mamoru MINAMI: "Dual eyes visual based sea docking for sea bottom battery recharging", Proceedings of the International Conference OCEANS16 MTS/IEEE, Monterey, USA, 2016.
- [7] Myo Myint, Kenta YONEMORI, Akira YANOU, Khin Nwe Lwin, Mamoru MINAMI and Shintaro Ishiyama: "Visual servoing for underwater vehicle using dualeyes evolutionary real-time pose tracking", Journal of Robotics and Mechatronics, Vol. 28, No. 4, pp. 543-558, Aug. 2016.
- [8] Yuya Nishida, Takashi Sonoda, Shinsuke Yasukawa, Jonghyun Ahn, Kazunori Nagano, Kazuo Ishi and Tamaki Ura: "Development of and Autonomous Underwater Vehicle with Human-aware Robot Navigation" Proceedings of the International Conference OCEANS16 MTS/IEEE, Monterey, USA, 2016.
- [9] Xiang Li, Yuya Nishida, Myo Myint, Kenta Yonemori, Naoki Mukada, Khin Nwe Lwin, Takayuki Matsuno and Mamoru Minami: "Dual-eyes Vision-based Docking Experiment of AUV for Sea Bottom Battery Recharging", Proceedings of the International Conference OCEANS17 MTS/IEEE, Aberdeen, Scotland, 2017.