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1. Introduction

Nowadays, autonomous underwater vehicles
(AUVs) are essential in applications such as in-
spection of underwater structures (e.g., dams and
bridges) and underwater cable tracking [1]. Docking
operation is very useful not only for battery recharg-
ing applications but also other applications such as
sleeping under the mother ship, and a new mission
downloading [2]. Therefore, there are many studies
on underwater docking [2]-[5]. However, a number
of challenging issues hinder these applications, which
require high accuracy and robustness against distur-
bances that occur in the underwater environment.
To achieve these tasks in underwater vehicles, we
have developed a vision-based docking system using
stereo vision.

In an underwater vehicle with a lighting unit in-
stalled on it, especially, dynamic lighting environment
addresses challenges when the own lighting system is
dominant in a deep sea or during a night operation.
Additionally, when an underwater vehicle approaches
the sea bottom, water turbidity comes in picture as
disturbance to be considered and solved for visual ser-
voing. According to the authors’ knowledge, there are
few studies on the 3D pose estimation under turbid-
ity for underwater vehicles. In [6], detection of inter-
est points in turbid underwater images was reported.
Collection of images acquired by a trinocular system
under gradually increasing turbidity levels were used
in that study. In [7], the robustness on underwater
images local feature detection was reported. A new
dataset, called TURBID, that is real seabed images
with different amount of degradation, was used and
the robustness of different feature detectors were ana-
lyzed in that report [7]. However, the studies in both
reports [6],[7] do not include about the real-time vi-
sual servoing for underwater vehicles.

In previous works [8]-[10], different experiments
to confirm the robustness of our vision-based system
using two cameras and a known 3D marker were con-
ducted. Sea trial docking using an ROV as a test bed
was conducted in a real sea near Wakayama city in
Japan successfully [11]. In [12], dual-eyes vision-based
docking experiment was verified using an AUV “Tuna-
Sand 2”. Even though the robustness of the pro-
posed system against different kinds of disturbances
was confirmed in previous works, we have not con-
firmed the robustness of the proposed system against
the effect of the water turbidity. Based on this mo-
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Fig.1 ROV and 3D marker in turbid water.

tivation, we conducted some experiments as shown
in Fig.1 to confirm the effectiveness of the proposed
system under a certain level of turbidity.

2. Stereo vision-based real-time 3D
pose estimation

Figure 2 shows model-based pose estimation us-
ing the dual-eyes vision system. Knowing the infor-
mation of the target such as shape, size and color, the
solid model of the target is predefined in the computer
system and projected onto 2D images. By comparing
the projected solid model image with the captured
2D images by the dual-eye cameras, the relative pose
difference is calculated. The target object is a 3D
marker that consists of three spheres (40 mm in di-
ameter) whose colors are red, green, and blue. In
the pose estimation process, the main task is to de-
fine the number of solid models with different poses
within the search space that is defined according to
the field of view of the cameras. Then, models that
match with the target in 2D images to a defined de-
gree are searched for. Finally, the pose of the model
that has the highest degree of matching with the tar-
get in 2D images is selected as the estimated relative
pose. Figure 2 shows how a solid model is defined in
3D space and projected onto 2D images to match the
captured real target in 2D images.

Real-time 3D pose estimation using 3D model-
based recognition and Real-time Multi-step GA (RM-
GA) was presented in detail in a previous paper [13].
The main task is to search the best model with an ap-
propriate pose that is strongly correlated with the real
3D marker. Figure 3 shows the flowchart of RM-GA
and how the best model is searched. Real time pose
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Fig.2 Model-based pose estimation using dual-eye
vision system.

is estimated for every image with image frame rate of
30 fps. Please note that recognition and convergence
are done in 3D space and evaluation is performed in
2D images.
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Fig.3 Pose estimation using Real-time Multi-step GA.

3. Experiment for 3D pose estimation
against turbidity

3·1 Experiment layout
In this experiment, 3D pose recognition using the

proposed system under different turbidity levels was
conducted. Figure 4 shows the experimental layout
for 3D pose estimation under different turbidity lev-
els. In this experiment, the distance between the ROV
and the 3D marker is fixed and illumination is con-
stant by setting two LED units of the ROV to emit
directly to the 3D marker as shown in Fig.1 with an
illumination intensity of 200 Lx. The illumination in-
tensity is measured by a Lux sensor LX-1010B when
the sensor is set in front of the LED of the ROV with a
distance of 600 mm. The experiments were conducted
in the dark environment.

Water turbidity was simulated by adding milk.
According to literature review [6],[7], the diameter
range of milk molecules is from 10 to 600 nm. Parti-
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Fig.4 Experimental layout for 3D pose estimation
against turbidity.

cles with size of 10 nm do scattering of light with equal
amount of lightforward and backward. The forward-
scattering starts dominating for particles about 100
nm and, close to 1000 nm, there is strong small-angle
forward scattering and weak backscattering. There-
fore, milk is selected as main particles for turbidity
since it can provide all types of scattering. Compar-
ing to the maximum milk of 0.19 ml/l (190 ml for 1000
liter of water) in [6] and 1.5 ml/l in [7], we conducted
experiment adding milk up to 0.12 ml/l of milk (95 ml
for 800 liters of water). Please note that light sources
used in [6] and [7] are different. Two fluorescent light
strips were used in [6] and a halogen lamp was used
in [6]. In this experiment, two LED units installed
on the ROV as shown in Fig.6 was used as a light
source. The position of the ROV is set in front of the
3D maker with a fixed distance of 600 mm as shown
in Fig.4. To be similar to a real sea environment, a
background sheet as shown in Fig.5 including sea en-
vironment patterns is placed behind the 3D marker
as shown in Fig.4. The pool size is 1580 [mm] × 1100
[mm] × 590 [mm]. The amount of water filled up
into the pool is 800 liters. Then, we added milk by
adding 2 g for each time for different level of turbid-
ity up to 30 g and added 4g of milk up to 98g. The
turbidity of water is measured by a turbidity sensor
TD-500 that has a measurement range of 0.0 to 500
FTU (Formazin Turbidity Unit).
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Fig.5 Photo of background sheet.
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3·2 Underwater Vehicle

The remotely controlled underwater robot
(Kowa, maximum depth 50 m) used in this experi-
ment is shown in Fig. 6. Two fixed forward cameras
with the same specifications (imaging element CCD,
pixel number 640 × 480, pixel focal length 2.9 mm,
signal system NTSC, minimum illumination 0.8 lx,
no zoom) are mounted on the ROV. These two
fixed cameras are used for 3D object recognition.
The thruster system of the ROV consists of two
horizontal thrusters with a maximum thrust of 4.9
N each, and one vertical thruster and one lateral
thruster with a maximum thrust of 4.9 N each. In
this experiment, only recognition was conducted and
the thrusters of the ROV were not controlled. The
ROV is equipped with two units of LED lights (5.8
W) as an illumination source.

3·3 Evaluating 3D recognition

In this experiment, fitness value is used to eval-
uate the performance of the recognition under differ-
ent turbidity levels. A correlation function of the real
target projected in camera images with the assumed
model, represented by poses in the chromosomes, is
used as the fitness function in the GA process. We
modified the fitness function based on the voting per-
formance and the target’s structure (color, size, and
shape). Please refer to [14], [15] for a detailed defi-
nition of the fitness function. In this study, the av-
eraged fitness value for the period of 60 s is used to
verify the performance of the proposed system under
different levels of turbidity.

4. Results and Discussion
The performance of the 3D pose estimation un-

der different turbidity levels in terms of fitness value is
shown in Fig. 7. It can be seen that the fitness value
decreases from about 0.8 to 0.1 when the turbidity
increases gradually from 0 FTU (0 ml/m3) to 27.8
FTU( 118.83 ml/m3). Two parameters of the tur-
bidity expressed in this study are FTU measured by
turbidity sensor TD-500 and amount of milk in terms
of ml/m3. There is a defined fitness value to control
the ROV in our system. According to the defined fit-
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Fig.7 Fitness value and FTU measurement for dif-
ferent turbidity with milk.

ness value, the maximum value of turbidity, to which
the proposed system can recognize the 3D marker to
perform visual servoing, can be determined from the
experimental results in this study. For example, if the
fitness value of 0.4 is defined as a threshold to control
the ROV, the maximum value of turbidity is about 10
FTU.

Figure 8 shows left and right camera images with
recognized pose by RM-GA under different turbidity
levels. The increase of turbidity level can be seen
through the photos that are arranged from top to
bottom in Fig.8. According to sensitivity of turbidity

0 FTU 0 ml/��

12.2 FTU 65.48 ml/��

27.8 FTU 118.83 ml/��

(a)

(b)

(c)

Fig.8 Left and right camera images with recog-
nized pose for different turbidity (a) 0 FTU,
(b) 12.2 FTU, and (c) 27.8 FTU when the
distance between ROV and 3D Marker is
600 mm. Dotted circles in each photo is
recognized pose by RM-GA. Water turbid-
ity measured by TD-500 sensor is shown in
term of FTU and added milk is expressed
in term of ml/m3.



sensor, there is no variation in measured FTU from
0 ml/m3 to 16.98 ml/m3. The increase of turbid-
ity level can be also seen based on the appearance
of the background sheet. For example, the photo
in Fig. 8(a) is in the state of clear water and Fig.
8(c) shows the highest turbidity level in which the 3D
marker can not be recognized at all in this experi-
ment. Additional to an evaluating parameter that is
fitness value, the accuracy of recognition can be visu-
ally determined by interpreting the dotted circles in
each photo. When the dotted circles and 3D marker
in images are matched well, it means that fitness value
is high and the system can estimate the relative pose
with high accuracy. As shown in Fig. 8, the system
can recognize the 3D marker in the conditions of tur-
bidity up to 12.2 FTU (Fig.8(b)).

5. Conclusion

In this work, real-time pose estimation using 3D
model-based matching method and RM-GA under
different turbidity levels was verified. Turbidity in
a pool was simulated by adding milk. Fitness value
that is a correlation function between model and cap-
tured 3D marker is used as an evaluating parameter.
Experiments were conducted in a dark environment.
According to experimental results, the performance
of 3D pose estimation under different turbidity levels
are analyzed and the maximum turbidity can be de-
termined according to the defined threshold of fitness
value.
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