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Marker in Turbidity and Illumination Variation
Environments
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Abstract—To extend the persistence time of an underwater
operation of AUVs in the sea, many studies have been performed
worldwide. The docking function takes place as an important
role not only for battery recharging but also for other advanced
applications. Therefore, we developed the visual-servoing-based
underwater vehicle using 3D perception based move on sensing
(3D-MoS) system with dual-eye cameras and 3D marker for
the docking operation. The vision-based underwater vehicle
cannot avoid the turbidity and low illumination in the deep
sea. In the present study, the active/lighting marker was newly
designed and constructed to improve the recognizing ability of
the proposed system for the real-time 3D pose estimation. The
experiments were conducted in a simulated pool against different
turbidity levels and illumination variations by adjusting the
LED’s brightness of the active marker in both day and night
environments. This paper presents the analyses on the relations
of the currents of LED installed inside each ball of the 3D marker
and recognition results under turbidity and changing illumination
conditions. According to the experimental results, the optimum
current was chosen for the docking.

Index Terms—Pose estimation, Turbidity, Illumination varia-
tion, Active/Lighting 3D marker, LED’s current

I. INTRODUCTION

Japan has wide areas of the sea from which natural resources
can be taken out using advanced technologies. Autonomous
Underwater Vehicle (AUV) has been expected to play impor-
tant roles in a deep sea such as oil pipe inspection, the survey
of seafloor, searching rare metal, etc. Methane hydrate could
be a future energy solution. To realize such tasks that take
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long period in the deep sea, one of the main hinders of AUVs
is limited power capacity. To solve this problem, underwater
battery recharging with a docking to the charging station is
one of the solutions to extend the operation time of AUVs.

Most of the studies related to vision based navigation for
underwater vehicle are based on single camera[1][2]. Apart
from them, we have been studying a stereo-vision based
docking approach for AUV. In our approach, the relative pose
between the underwater vehicle and a 3D marker is estimated
using Real-time Multi-step GA (RM-GA) that is real-time 3D
pose estimation method. Avoiding the disadvantages of dual-
eyes 3D perception by features based recognition methods that
has been researched and are based on 2D-to-3D reconstruction,
3D model based matching method that is based on 3D-to-
2D projection method is used in our approach. One of the
main drawbacks of 2D-to-3D reconstruction is that incorrect
mapping between corresponding points in images, resulting in
erroneous pose estimation.

Since the underwater environment is complex, there are
many disturbances for vision-based underwater vehicles.
Therefore, it is important to devise how to overcome the
possible disturbances before testing in the sea. The common
disturbances for the vision-based underwater vehicle are light
environment changing and turbidity. Since underwater battery
recharging units are supposed to be installed at the sea
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bottom, the deep sea docking experiments cannot avoid the
turbidity and low light environment. As far as the authors have
researched, there is no practical system for recharging with
performances of tolerance against illumination and turbidity
varieties. In our previous works [3]-[7], the 3D pose estimation
and the docking operation were conducted by using the
passive marker and the Remotely Operation Vehicle (ROV) in
clear water environment. However, the recognition accuracy
using the passive marker and ROV’s LED is limited to
lower turbidity environment. To expand recognition tolerance
against turbidity and illumination, an active 3D marker has
been designed and constructed. The difference between the
passive marker and the active marker is that the LEDs were
installed inside the three balls of the marker, and the former
not. The recognizing ability in turbidity environment can be
improved by making the marker emit instead of ROV’s LED
lighting source for a passive marker. However, the recognition
accuracy changes depending on the LED’s brightness of the
active marker due to the reduction of color information of
the 3D marker when the lower or higher currents of LED
are given. Recognition experiments to find the relations of
currents of LED and recognition results under different light
and turbidity levels have been conducted to decide appropriate
LED’s current. We aim to construct the system which adapts
all environments.

This paper is organized as follows: Section II discusses 3D
move on sensing using Real-time Multi-step GA. Section I
describes the experiments, results and discussion. Conclusion
and areas of future work are presented in section I'V.

II. 3D MOVE ON SENSING (3D-MO0S) USING REAL-TIME
MULTI-STEP GA

The 3D-MoS system that uses three dimensional measure-
ment with solid object recognition based on visual servoing
technology was already introduced and explained in [8]. In this
system, model-based matching method is used to estimate the
relative pose between the vehicle and a known 3D marker.
Here, 3D pose estimation using RM-GA briefly for the back-
ground of readers is discussed in this section. Figure 1 shows
the model-based matching method using dual-eye cameras for
3D pose estimation. In Fig. 1, ¥, and ¢ R are the reference
coordinate frames of the right camera and the left camera.
Y. is the reference frame of the ROV. X, is the reference
frame of the real target object. ¥, is the reference frame
of the i-th model. The real target object in 3D search space
is projected naturally to the dual-eyes cameras images and
the dotted 3D marker model, where the pose is given by one
of GA’s genes, is projected from 3D-to-2D. The correlation
function of each projected model is evaluated by designed
fitness function. Finally, the best model of the target object that
represents the true pose can be obtained based on its highest
fitness value. Equation 1 shows the fitness function. The fitness
function is constructed and designed to evaluate the matching
degree between the projected models and the captured images.
The fitness function has maximum value when the model and

the real target exactly coincide. The true pose of the target
object is expressed with the peak of the mountain shape in the
fitness distribution. Detailed explanation of the fitness function
is referred to our previous paper [9].
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Fig. 1. Model-based matching method using dual-eye cameras and 3D marker.
A solid object in 3D space is the real target and dotted ones in 3D and
2D space are models. The correlation function of each projected model is
evaluated by designed fitness function.
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A. Real-time Multi-step GA

In the proposed 3D model-based recognition method,
searching for all possible models is time consuming
for real-time recognition. Therefore, the problem of find-
ing/recognizing the 3D marker and detecting its pose is
converted into an optimization problem with a multi-peak
distribution. The genetic algorithm is selected and utilized as
RM-GA to search the best solution within 33[ms]. Figure. 2
shows the flowchart of the RM-GA. Position and orientation of
the three-dimensional model are represented as an individual
of the chromosome that is 72 bit string in RM-GA. The former
36 bits represent the position of the 3D marker and the later 36
bits describe the orientation defined by a quaternion. Firstly,
a random population of the chromosome is generated. A new
pair of left and right images is input. The RM-GA procedure
is performed within 33 [ms]. The RM-GA finds repeatedly
the solutions to get the best pose of the target object within
the video frame rate to deal with time varying distribution for
newly input images. Finally, the best pose of the individual
represents the true pose of the real target. Although the pose
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of the target object is evaluated in 2D, convergence occurs in  C. Active/Lighting 3D marker

3D. For the next input, a new video image is used. In our previous works [1]-[5], we conducted the experiments

using the passive marker. In the present study, the 3D pose esti-
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Fig. 2. Flowchart of the real-time multi-step GA
, Fig. 4. Active/Lighting 3D marker
B. Remotely Operated Vehicle & ghting

Hovering type underwater vehicle (manufactured by Kowa
cooperation) was used as a test bed as shown in Fig. 3. Two
fixed cameras installed at the front of the vehicle are used as AC 100V “C Toov] DC 12V~
the main sensor. In thruster unit, four thrusters are controlled :D: [ ©
with maximum thrust force of 4.9 [N]. The vehicle can dive DC 12V 6Np 1002 Red LED
in maximum water depth 50 [m] and two LED light sources
are also installed on the vehicle.
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Fig. 5. Internal circuit diagram of the active marker.

III. EXPERIMENTS, RESULTS AND DISCUSSION

Fig. 3. Photograph of ROV (a) Front view showing two cameras, (b) Side
view showing traverse thruster, (c) Back view showing horizontal thrusters,

and (d) Top view showing vertical thruster. Turbidity (Formazin Turbidity Unit, FTU) is defined as the
degree of water muddiness. The turbidity level was measured

A. Turbidity and Illumination
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by using a portable turbidity sensor (model: TD-M500 manu-
factured by OPTEX) as shown in Fig. 6(A). Figure 7 shows the
appearance of the left and right camera images under different
turbidity levels ((A) O [FTU], (B) 8 [FTU]). llumination (lux,
Ix) is defined as the degree of lighting power and it was
measured by using a portable waterproof lux meter (model:
MW-700 manufactured by Milwaukee) as shown in Fig. 6(B).
Figure 8 shows the appearance of the left and right camera
images under different illumination conditions ((A) 1400 [Ix],
(B) 200 [Ix]).

Fig. 6. Measuring instrument : (A) Portable turbidity sensor TD-M500, (B)
Portable waterproof lux meter MW-700

Fig. 7. The appearance of left and right camera images at different turbidity
levels under the same illumination and current of LED inside the active
marker: (A) 0 [FTU], (B) 8 [FTU].

B. Experimental layout

The 3D pose estimation experiment was conducted in the
simulated pool by changing illumination in different turbidity
levels. Figures 9 and 10 show the experimental layout and
coordinate system of the ROV. In this experiment, the ROV
and the active marker were fixed in position at the distance
600 [mm]. The amount of turbidity was controlled from 0
to 12 [FTU] by adding milk in water in the tank. Milk was

Fig. 8. The appearance of left and right camera images at different illumi-
nations under the same turbidity levels and current of LED inside the active
marker: (A) 1400 [Ix] (B) 200 [Ix].

selected to simulate the turbidity because it can provide all
types of scattering [10][11]. The illumination was simulated
from 0 to 1400 [Ix] in each turbidity level by controlling four
lighting sources that are placed at the four corners of the pool
as shown in Fig. 9.
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Fig. 9. Experiment environment with simulated lighting and turbidity

C. 3D pose estimation experiment

The results of the experiment are shown in Figs. 11-13. The
brightness of the LED of the active marker was increased from
0 [mA] to 16 [mA] with difference 2 [mA] for changing illumi-
nation conditions from 0 [Ix] to 1400 [Ix] with difference 200
[1x] for each turbidity level. The experiment was conducted in
the cases of four turbidity levels such as 0 [FTU], 4 [FTU],
8 [FTU], and 12 [FTU], respectively. Figure 11(A)-(D) show
the mean fitness values of each current of LED inside active
marker by changing illumination conditions in each turbidity
level. The vertical axis is fitness value and the horizontal axis



Fig. 10. Coordinate system of ROV and 3D marker

is described by illumination in [Ix]. The mean fitness value
was calculated in 60 [s]. According to the graphical results,
the fitness value of each current of LED gradually decreased
from above 1 to about 0.2 when the turbidity was increased
under the different illuminations. Figure 12 shows the average
fitness value and standard deviation of each current of LED in
turbid water. The vertical axis is fitness value and horizontal
axis is current in [mA]. It can be concluded that the fitness
values for the current value 2 [mA], 4 [mA], and 6 [mA] were
above 0.7 in the case of 0 [FTU] and 4 [FTU]. In 8 [FTU],
the fitness value was above 0.4. When the turbidity increased
to 12 [FTU], the fitness was above 0.3 in the case of 2 [mA],
4 [mA], and 6 [mA]. Three current values 2 [mA], 4 [mA]
and 6 [mA] were choose as the appropriate once because the
average fitness value is higher and standard deviation is lower
than the others. To confirm the best current among these three
current values, we checked the fitness distribution by using
full search method and hue distribution in 8 [FTU] under dark
environment (0 [1x]). The environmental condition of 8 [FTU]
and O [1x] was considered based on the conditions of previous
experiments in the sea.

The full search is a method in which the result of real-time
multi-step GA was evaluated by analysing the left and right
images where real-time multi-step GA gets the corresponding
fitness value. The main idea of full search is to calculate the
fitness of every points which are 1 [mm] apart in the entire
searching area. The fitness distribution and the hue distribution
against turbidity under dark environment in the case of 6 [mA],
4 [mA], and 2 [mA] are shown in Fig. 13 (I), (I), and (IIl). The
first row of Fig. 13 I(a) shows the fitness value distribution in
x-y plane by 3D graph where the position in z-direction and
orientation were fixed in the full search method. The peak of
the mountain shape represent the true pose of the target. The
2D graph of fitness distribution is shown in Fig. 13 I(b). The
intersection shape of “X” type can be seen in x-y plane, and the
distribution peak appears at the intersection point as shown in
2D graph. Fig. 13 I(c) shows the left and right camera images
and hue distribution in the case of 6 [mA]. Figures 13 (II) and

(IT) show the result of 4 [mA], and 2 [mA] respectively. In
fitness value distribution, it can be seen that the highest peak
occurs in the case of 4 [mA] with the maximum fitness value
Friae 0.87. In hue distribution, the hue value of blue ball is
out of hue range that is defined in the experiment, therefore,
the proposed system did not recognize the blue ball in the
case of 6 [mA]. At 4 [mA] and 2 [mA], the hue values of all
balls exist in the hue range of each color. According to the
experimental results, 4 [mA] is the best current for each LED
against turbidity and illumination.

IV. CONCLUSION

In the present paper, checking the relationship between
turbidity, illumination and current of LEDs installed in active
3D marker and choosing appropriate current of LEDs was pro-
posed. The results of 3D pose estimation experiment against
turbidity under day and night environment in the simulated
pool were presented. According to the experimental results, 4
[mA] is appropriate LED’s current. The docking experiments
will be conducted in the real sea with turbid environments
using this LED’s current.
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Fig. 11. The mean fitness value of each current of LED inside the active marker under different illuminations and turbidity levels : (A) O [FTU], (B) 4 [FTU],

(C) 8 [FTU], (D) 12 [FTU].
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[FTU], (C) 8 [FTU], (D) 12 [FTU]. The corresponding numerical data are shown in Fig. 11.
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