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Abstract
Human can recognize and handle (pick and place) easily the objects with a variety of different shapes, colors, sizes,
and humans’ eyes are adaptable to various light environments with a certain tolerance. However, it is difficult for
robots to recognize deformable objects such as cloth, string, etc., especially if an object is unique. Additionally,
there have been difficulties for robots with vision sensors (cameras) to accurately detect and handle objects under
various light environments. This paper proposes a cloth handling system that recognizes an unique cloth appeared
in front of a robot by a photo-model-based approach. The photo-model-based approach has been adopted since
the photo-model can be made at once by taking a photo of the unique cloth. In proposed cloths’ pose estimation
method, a photo-model projected from 3D to 2D is used, where this system does not need defining the object’s size,
shape, design, color and weight. It detects the cloth through model-based matching method and Genetic Algorithm
(GA). The handling performance by the proposed method with dual-eyes cameras has been verified, revealing
that the proposed system has leeway to recognize and handle the unique cloth in lighting varieties from 100 lx
to 1300 lx. In addition, 3D recognition and handling accuracy have been confirmed to be practically effective by
conducting the recognition/handling experiments under different light conditions.

Keywords : Photo-model-based cloth recognition, Handling, Visual servoing, Genetic Algorithm, Dual-eyes cam-
eras, Illumination

1. Introduction

From the instant of birth, human beings are thought to be talented at managing their activities under such variability
as climates, light environments, temperatures, etc. While human beings can conduct intended tasks in pending circum-
stances, an automated robot is not adept at being similarly adaptable. Therefore, the researchers have tried to improve the
abilities of automated robots.

Nowadays, industrial robots have been utilized to perform a wide variety of tasks instead of human workers. These
automated robots are required to handle a wide variety of deformable objects including cloths, strings, ropes, electric
cables and so on. Of course, handling deformable objects is difficult than handling rigid objects. A robot control tech-
nology using visual information, called as visual servoing, has been playing an important role in the applications where
deformable things are recognized and handled by a robot.

Each item of the deformable target objects has various possibilities of the poses (positions and orientations) to be
recognized and handled, requiring ability with respect to both vision-based recognition and visual servoing. In (Maitin-
Shepard J et al., 2010), the cloth-grasping points are detected using four cameras without using other sensors for a towel
folding application by robots. The main task in (Maitin-Shepard J et al., 2010) is to detect the corners of cloth instead of
recognition a whole cloth. The recognition of cloth shape based on strategic observation during handling was reported in
(Yinxiao Li et al., 2014). Multi-views from trinocular stereo vision system were used in (Yinxiao Li et al., 2014). The
appearance of deformable cloth is susceptible not only to how they are placed in the view of the camera but also the light
condition that is one of main difficulties in visual servoing. Even though deformable cloths are handled in (Maitin-Shepard
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J et al., 2010) and (Yinxiao Li et al., 2014), 3D pose estimation of deformable cloths under different light conditions has
not been discussed in almost studies.

On the other hand, problems in recognizing a 3D solid object and estimating the object’s pose have been thought to
be a conundrum. Estimating poses of solid objects uses usually dual-eyes recognition methodology (W. E. L. Grimson,
1981)-(Z. Zhang et al., 1995). The dual-eyes image processing exploits epipolar geometry (W. E. L. Grimson, 1981)
to reduce the dimension of searching space that is defined in the dual-eyes images (Z. Zhang et al., 1995). Even though
epipolar geometry is effective for 3D image processing, the problem called “Corresponding Points Identification Problem”
that is how to make a point in one camera image correctly correspond to a point in another camera image – to confirm
whether the both two points in dual cameras’ images represent a point on the 3D target object –, has yet to be solved (T.
Poggio and S. Edelman, 1990), (S. Ullman and R. Basri, 1991). Then the reconstruction of an object’s pose in 3D space
from dual-eyes cameras has been still difficult, and estimated 3D space inevitably includes pose error.

Based on the above discussions, estimating 3D-pose of solid target with dual cameras of solid target seems not easy,
then pose estimation and handling deformable cloth deems challenging. In this circumstances of robotics researches, the
authors have been requested from T2K Co., Ltd (Logistics company to deal with cloths) to construct a robotic system to
handle the single/unique second-hand cloths. By considering the above backdrop, a photo-model-based cloth recognition
method has been devised (Funakubo R et al., 2016) - (Phyu KW et al., 2016), since the photo-model can be made at once
by taking a photo of the unique cloth.

The aim of the proposed system is to be applied in a mail delivery system of cloth for T2K Co., Ltd, in which as of
today employees classify a large number of second-hand cloths manually. Since the cloths are deformable objects and the
cloth is single/unique, no definition of cloths can be predefined in a computer. Consequently, it is difficult to handle a wide
variety of cloths that are irregular and unique in shape and size. T2K explained this condition to authors and requested to
collaborate with our research group to develop a cloth handling robot. Different 12 cloths samples have been chosen by
T2K so that those 12 cloths may represent enormous cloths varieties.

Despite that the authors has made efforts to find published papers concerning vision-based robot system using photo-
model, we could not discover any related paper. Since the practicality of industrial robots used in factories has been
indispensable, the pick and place accuracy with tolerances against illumination changing has been checked (Funakubo R
et al., 2016 and Funakubo R et al., 2017). This paper is an extension of (Funakubo R et al., 2016 and Funakubo R et al.,
2017), but it includes new evaluation results of illumination varieties and fitness function distribution, which can explain
why the proposed photo-model-based system can be tolerable against illumination varieties. In our previous study, two
different light sources, fluorescent light and light-emitting diode (LED), were used to provide with different illuminations
environments. Why these illumination conditions were chosen has been discussed in (Phyu, Khaing Win, et al., 2017).
According to the experimental results, the recognition performances under fluorescent light are better than light-emitting
diode.

The rest of the present paper is organized as follows: Section 2 describes the system configuration, Section 3
presents the photo-model-based recognition, Section 4 describes the experimental environment, Section 5 describes the
experimental contents with the results, followed by conclusion in Section 6.

2. System configuration

The developed vision-based robot system is shown in Fig. 1. In Fig. 1, the dual-eyes cameras that are fixed at the
end-effector of a PA-10 robot perform the cloth recognition and pose estimation process based on the digital photo model.
(Note that the term “photo model” will be used throughout the present paper from now on to shorten the word and to align
with our previous papers.) The cloth absorption pads as shown in Fig. 1 are possible to perform the absorption of the
target object (cloth). The aim of the PA-10 robot using proposed system is to pick up the cloth after recognition it and
set the cloth into a desired collection box as shown in Fig. 1. Figure 2 represents the cloth handling system that consists
of robot with a cloth’s pose measuring dual-eyes sensor unit, which includes transport conveyor. There are three cameras
(vision sensors) in this configuration. After a cloth being input on the conveyor from right-hand side of the figure, the
single camera makes the photo model. The model would be used to recognize the cloth and to measure the cloth’s pose at
the left-hand side, where the cloth is picked up and set inside an mailing box by the robot.

An unique cloth may be recognized by barcode if attached at the cloth, but the photo-model-based whole cloth
recognition is indispensable for non-erroneous identification of the unique cloth. Of course the photo-model-based recog-
nition may be combined with barcode for enhanced reliability. After recognizing and estimating the pose of the target
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cloth, handling the cloth was performed to pick and place the cloth. The proposed photo-model-based cloths recognition
system is intended to save the cost of staffworkers and to get better performance and higher accuracy than human workers.
Moreover, this system is aimed at being applied in the real world, regardless of lighting conditions varieties. Therefore,
the robustness of the proposed system against different illuminations was verified experimentally in this study.

Cloth absorption 

pads

Target object (Cloth)

PA-10 robot 

Collection box

Dual-eyes cameras

Fig. 1 A photo of a cloth handling robot system with dual-eyes cameras: PA-10 robot is equipped with two
cameras (vision sensors are used as dual-eyes vision system) for recognition and vacuum cups (four
absorption pads by the air compressor possible to perform the pick and place of the target object (cloth))
for handling. In the test, the robot picks up the cloth and places it into the collection box.
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Fig. 2 System configuration of a cloth handling system: During the application process, the cloth moves along
the conveyor automatically. The single camera set at the entry point of cloth in the beginning of conveyor
is used to generate a photo model. The left and right cameras which are attached at the end-effector of the
PA-10 robot are used to recognize and estimate the pose of the cloth that appears in the field of view of
two cameras using generated model. The cloth handling application of Fig. 2 is as same as the application
process of Fig. 1.
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3. Photo-model-based recognition

This section is to explain a photo-model-based cloth recognition method. The model-based matching method (Mi-
nami M et al., 2003) has been utilized with the adoption of a set-point-model-thinking. That is all points of the solid 3D
model in the 3D searching space as a group are projected onto the left and right camera image planes (2D images) without
the Corresponding Points Identification Problem that has been pointed out as the difficulty existing in pose estimation
by using plural cameras. Since all points on 3D model are projected into 2D camera images in our method , all projec-
tions for each point are correct. This means that forward projection of 3D object has been used, which dose not raise up
Corresponding Points Identification Problem. The following is description of the kinematics of stereo-vision before an
explanation of the proposed system in details.

3.1. Kinematics of stereo-vision
Figure 3 shows a perspective projection of the dual-eyes vision system. The coordinate systems of dual-eyes cameras

and the target object (cloth) in Fig. 3 consist of world coordinate system ΣW , j-th model coordinate system ΣM j, hand
coordinate system ΣH , camera coordinate systems as ΣCL and ΣCR, and image coordinate systems as ΣIL and ΣIR. In Fig.
3, the position vectors of an arbitrary i-th point of the j-th 3D model ΣM j based on each coordinate system are as follows:
• W r j

i : position of an arbitrary i-th point on j-th 3D model based on ΣW

• M r j
i : position of an arbitrary i-th point on j-th 3D model in ΣM j, where M r j

i is constant vector
• CRr j

i and CLr j
i : position of an arbitrary i-th point on j-th 3D model based on ΣCR and ΣCL

• ILr j
i and IRr j

i : projected position on ΣIL and ΣIR of an arbitrary i-th point on j-th 3D model
The homogeneous transformation matrix from the right camera coordinate system ΣCR to the target object coordinate

system ΣM is defined as CRTM(φ j
M , q), where φ j

M is j-th model’s pose and q means robot’s joint angle vector. Then, CRr j
i

can be calculated by using Eq. (1),
CRr j

i =
CRTM(φ j

M , q) M r j
i . (1)

where M r j
i is predetermined as fixed vectors since ΣM j is fixed on the j-th model. CLr j

i that represents the same i-th point
on j-th model based on ΣCL is also calculated by using CLTM(φ j

M , q). Since q can be measured by robot’s joint sensors, it
could be thought to have been known, then q is omitted hereafter. Equation (2) represents the projective transformation
matrix Pk.

Pk =
1

kzi


f
ηx

0 I x0 0
0 f

ηy
Iy0 0

 . (2)

where,
• k = CL, CR,
• kzi ; position of the i-th point in the camera sight direction in ΣCR and ΣCL,
• f ; focal length,
• ηx; [mm/pixel] in x-axis,
• ηy; [mm/pixel] in y-axis.

The position vector of the i-th point in the right and left camera image coordinates IRr j
i can be described by using Pk

as,
IRr j

i = Pk
CRr j

i = Pk
CRTM(φ j

M)M r j
i (3)

Then, IRr j
i can be described as, 

IRr j
i (φ

j
M) = fR(φ j

M ,
M r j

i )
ILr j

i (φ
j
M) = fL(φ j

M ,
M r j

i )
(4)

where ILr j
i can also be described as the same manner like IRr j

i .

3.2. Cloth model generation
There are two main portions in the proposed robot handling system. The first portion is for cloth model generation

and the latter is for relative pose estimation of actual cloths using generated model through model-based matching method.
This subsection is to describe the first portion.

The hue value in HSV color representation is used to describe cloths’ photo-model that comprises positions of plural
pixel dots and the hue value of each dot. By using the hue value, it is possible to make the color recognition tolerable
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Fig. 3 Perspective projection of dual-eyes vision-system: In the searching area, a 3D solid model is represented
by the picture of cloth with black point (j-th photo-model). The coordinate systems of photo-model,
camera and image are represented by ΣM j, ΣCL, ΣCR, ΣIL and ΣIR respectively. A 3D solid model that is
assumed to be in the searching area is projected from 3D space to 2D left and right camera images.

against the lighting condition varieties, which is given by the character of HSV representation.
In the proposed system, three cameras are used as the vision sensors. Among them, the first camera is used for

generating a model, which is depicted at the right-hand-side in Fig. 2. The model generation process is represented in
Fig. 4. Firstly, a background image is captured by the first camera as shown in Fig. 4 (a) and the averaged hue value of
the background image is calculated. Then, the cloth comes in on the conveyor with the green background as shown in
Fig. 4 (b). In Fig. 4 (c), the hue value of each predefined pixel point in the image is compared with the averaged hue
value of the background image, then the area of cloth is detected. The set made by dots on the cloth is named as Sin. The
dots defined in enveloping strip around the Sin constitutes a set of Sout. The combined set S with Sin and Sout made of dots’
position and the hue color of the dots represents the photo-model that is used for recognizing the single/unique cloth and
estimating the cloth’s pose. The procedure is explained next subsection.

3.3. 3D model-based matching
3D pose of the 3D model, including three positions and one orientation represented by angle, are defined as φ j

M =

[xM , yM , zM , θM]T . The angle θ is an angle around the normal direction of the clothing bench, that is θ is around z-axis
of ΣM j as shown in Fig. 3. The upper side of the Fig. 5 shows the appearance of a generated 3D solid model in the
3D searching space, and the left and right 2D searching models (sub-figures on the left and right bottom of Fig. 5) are
projected into 2D image planes. S (φ j

M) is made of Sin(φ j
M) (inner dotted points) and the outside strip Sout(φ

j
M) enveloping

Sin(φ j
M) denoted by outer dotted line. The sub-figures on the left/right bottom of Fig. 5 show the left/right 2D searching

models SL(φ j
M) and SR(φ j

M), where those two models are projected by using φ j
M that represents the pose of j-th model in

the evolution process of Genetic Algorithms as one of genes.
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Fig. 4 Model generation process: (a) get background image and calculate the hue value, (b) get image including
cloth and calculate the hue value of each point, (c) distinguish background from difference between the
hue value, (d) determine the frame of model. Generated surface space of model and outside space of model
are denoted as Sin and Sout.

3.4. Definition of the fitness function
The correlation function between the projected model and the actual cloth images input from the dual-eyes cameras

attached at the end-effector is used as a fitness function (Minami M et al., 2003). In the fitness distribution, the valuable
of position and orientation to give the highest peak represents the best pose of the model that coincides with the captured
cloth’s images from the left and right cameras as shown in Fig. 5. Then the pose φ j

M that gives the peak can be thought to
be representing the true pose of the target cloth that is placed in the 3D searching space as shown in Fig. 5. The concept
of the fitness function in this study can be said to be an extension of the work in (Minami M et al., 2003), in which
different models including a rectangular shape surface-strips model was evaluated using images from a single camera.
The correlation between the projected models including a pose of φ j

M and captured images with actual cloth that were
projected on the left and right 2D searching areas is calculated by Eqs. (5) - (7). F(φ j

M) is calculated by averaging the
fitness functions of both left camera image FL(φ j

M) and right camera image FR(φ j
M) as shown in Eq. (5).

F(φ j
M) =



( ∑

IR r j
i ∈

SR,in(φ j
M )

pR,in(IRr j
i (φ

j
M)) +

∑

IR r j
i ∈

SR,out(φ
j
M )

pR,out(IRr j
i (φ

j
M))
)
+
( ∑

IL r j
i ∈

SL,in(φ j
M )

pL,in(ILr j
i (φ

j
M)) +

∑

IL r j
i ∈

SL,out(φ
j
M )

pL,out(ILr j
i (φ

j
M))
)

/2

=
{
FR(φ j

M) + FL(φ j
M)
}
/2 (5)

The points on a 3D matching model, S (φ j
M) are projected to the left and right image plane. The projected points

on Sin(φ j
M) and Sout(φ

j
M) to the left camera image are described as ILr j

i ∈ SL,in(φ j
M) and ILr j

i ∈ SL,out(φ
j
M) respectively. For

detailed explanation of Eq. (5), the following definitions should be stated here.
• SL,in; the inside area projected to left image plane,
• SL,out; the space on a strip area surrounding SL,in,
• HIL(ILr j

i (φ
j
M)); the hue value of the left camera image at the point ILr j

i (φ
j
M),

• HML(ILr j
i (φ

j
M)); the hue value of the model at the point ILr j

i (φ
j
M) (i-th point on the j-th model),
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Fig. 5 A 3D solid model in the 3D searching space (sub-figure on the top of Fig. 5) and left and right 2D searching
models represented as SL(φ j

M) and SR(φ j
M) (sub-figures on the left/right bottom of Fig. 5).

• H̄B; the average hue value of the background image.
The next Eqs. (6) and (7) is used for calculating pL,in(ILr j

i (φ
j
M)) and pL,out(ILr j

i (φ
j
M)) that are included in Eq. (5).

pL,in(ILr j
i (φ

j
M)) =



2, if(|HIL(ILr j
i (φ

j
M)) − HML(ILr j

i (φ
j
M))| ≤ 30);

−0.005, if(|H̄B − HML(ILr j
i (φ

j
M))| ≤ 30);

0, otherwise.

(6)

pL,out(ILr j
i (φ

j
M)) =


0.1, if(|H̄B − HML(ILr j

i (φ
j
M))| ≤ 20);

−0.5, otherwise.
(7)

Equations (6) and (7) are designed to provide a peak in the fitness value distribution, F(φ j
M) when φ j

M coincides with
the true pose of the target cloth, which has been confirmed by (Phyu KW et al., 2016). Figure 6 (a) shows j-th model,
real cloth (target object), the evaluation points of Hue value, · · · ILr j

i−1(φ j
M), ILr j

i (φ
j
M), ILr j

i+1(φ j
M) · · · , in inside area SL,in,

and those in outside strip SL,out. Figure 6 (b) shows a situation that the overlapping area of real cloth and the model
increased than the one depicted in (a). The hue value of the left camera input image at the point ILr j

i (φ
j
M) is represented

by HIL(ILr j
i (φ

j
M)), and the i-th point of j-th model in SL,in and SL,out and the hue value of the same point ILr j

i (φ
j
M) on the

model is defined as HML(ILr j
i (φ

j
M)). The average hue value of background is defined as H̄B.

In Eq. (6), if the hue value of each point of captured images, HIL(ILr j
i (φ

j
M)), which lies inside the surface model frame

SL,in, and the hue value of corresponding same point in a model, HML(ILr j
i (φ

j
M)), have similar values with a tolerance less

than 30, that is |HIL(ILr j
i (φ

j
M))−HML(ILr j

i (φ
j
M))| ≤ 30 then this means that model’s hue value and input image’s hue value

have close hue distance at the same checking point of ILr j
i (φ

j
M) . This represents photo model overlaps to the real cloth

projected in left camera image in Sin, which are represented by dots designated by (A) in Fig. 6 (b). In this case the
fitness value would be increased with the voting value of “+2.” The fitness value will decrease with the value of “-0.005”
for every point of cloth in the left camera image, if model’s point ILr j

i (φ
j
M) positions on the background. This situation

is described by the condition, |H̄B − HML(ILr j
i (φ

j
M))| ≤ 30 in Eq. (6), and this means model’s clothes area overlaps with

green background and it also represents that the model does not overlap precisely, which are represented by (B) in Fig. 6

7
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(b). Then “-0.005” is given as a penalty to decrease F(φ j
M). Otherwise, the fitness value will be “0.”

Similarly, in Eq. (7), if the hue value of each point in the left camera image lying in SL,out has similar value to the
average hue value of background H̄B with the tolerance of 20, the fitness value will be increased with the value of “+0.1.”
This means SL,out strip area surrounding SL,in overlaps the green background, expressing the model and the clothes overlap
rather correctly as (C) in Fig. 6 (b). Since this situation means that the model’s position and orientation matches to the
real cloth, plus points “0.1” is given to the function pL,out, which is described in Eq. (7). Otherwise, the fitness value will
decrease with the penalty value of “-0.5.” This represents points on SL,out overlaps with the real cloth as (D) in Fig. 6 (b).
How designed fitness function explained above is effective and provides the robustness against illumination and lighting
source varieties is described in section 5.2.
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Fig. 6 Calculation of the matched degree of each point in model space (SL,in and SL,out)

3.5. Genetic Algorithm
The main problem of searching for the true pose of the object can be converted into an optimization problem because

the fitness function has been designed to give the maximum value if and only if the pose of the model (GA’s gene repre-
sented by φ j

M) and the target object coincide with the image in the 3D space (Phyu KW et al., 2016).
The maximum value of the fitness function can be searched by a number of optimization methods. Among them,

Genetic Algorithm (GA) is applied to find the maximum value as an optimal solution because of its simplicity, effective-
ness and easiness to implement.

Figure 7 shows the GA’s evolution process in which 3D models converge into the real target object (cloth). In Fig.
7, a target object is represented by cloth-shape and models are represented by a rectangular-shape with dotted lines. The
models have same shape and same color information with the target object since the model is made of the photograph
of the target cloth. But each model has a different pose φ j

M(j=1, 2, ..., 60) as shown in Fig. 7. The 60 individuals of
GA are used in this experiment. Each individual’s chromosome consists of four variables. Each variable is coded by
12bits that can easily implement to get the optimal solution. The first three variables of a model in 3D space (tx, ty, tz) are
represented as the position and the last one θ means angle around z-axis of ΣM j shown in Fig. 3. And then, the genes of
GA representing possible pose solution is defined as below;

tx︷   ︸︸   ︷
01 · · · 01︸   ︷︷   ︸

12bits

ty︷   ︸︸   ︷
00 · · · 01︸   ︷︷   ︸

12bits

tz︷   ︸︸   ︷
11 · · · 01︸   ︷︷   ︸

12bits

θ︷   ︸︸   ︷
01 · · · 10︸   ︷︷   ︸

12bits

.

These 60 individuals are evaluated by the fitness function value. The fitter ones are selected to regenerate the
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next generations. In the final generation, the gene that gives the highest fitness value stands for the most trustful pose as
shown at bottom-right part in Fig. 7. The spatial resolution in term of pixel is 0.89 [mm/pixel] for X position, and 0.92
[mm/pixel] for Y. The spatial resolutions in term of bit are 0.1 [mm/bit] for position, X, Y, Z and 0.00022 [quaternion/bit]
for orientation, θ in quaternion.

1st generation

i-th generation Final generation

2nd generation

Model

Target

Object

Fig. 7 GA evolution process in which 3D models with different poses converge to the real target object (cloth)
through GA operation, and the pose of the model with the highest fitness function represents the estimated
pose of the cloth.

4. Experimental environment

Figure 8 shows the experimental layout and the coordinate systems of the cloth-handling robot, i.e. the world
coordinate system (ΣW ), the hand coordinate system (ΣH) and the cloth coordinate system (ΣM) that are used in the
experiments respectively. The ΣM that defines the center position and neutral orientation is set at x=0 [mm], y=0 [mm],
z=685 [mm], with respect to ΣH . The offsets of the robot-base center and work table center in x-direction, y-direction and
z-direction are described in corrected new Fig. 8. The explanation of W xM , WyM and WzM are described in the caption of
Fig. 8. The structure of the robot also has been depicted in Fig. 9 with the lengths of all links being shown in the figure.

Figure 10 shows the 12 different cloths samples (No.1∼ No.12) that have been chosen by collaborating company,
T2K. Each cloth used in this experiment has different colors, sizes, shapes, and weights. This paper focuses on both
the recognition tolerance in light varieties and handling accuracy. All 12 cloths are recognized and handled individually
to confirm the influence of illumination on recognition and handling accuracy. The authors assumed that the clothing
condition in the real implementation be packed in the plastic bags. The proposed method can use even reflections on
plastic bag as a recognizable information in images. Even though the reflection could be changed at times depending
on some happenings, and it may disturb the recognition, total accuracy could be within allowable extent for practical
operations.

Since the thickness of the 12 cloths are different as shown in Table 1, the handling robot needs to detect the distance
from the origin of the ΣH to the surface of the vinyl package of the cloth. The authors have chosen dual-eyes pose
estimation method as shown in Figs. 1 and 8 that has been used for visual servoing (CUI Y et al., 2015) ∼ (Funakubo
R et al., 2017), since the method has been proved to be practical and credible. Depending on the application of this
proposed system, two cameras (vision sensors are used as dual-eyes vision system) for recognition and vacuum cups (four
absorption pads by the air compressor possible to perform the absorption of the target cloth) for handling are attached at
the end-effector of the PA-10 robot. The distance between two cameras is 323.4 [mm]. The positions of origin of ΣM

based on ΣW are depicted as (WxM ,
WyM ,

WzM) = (-1050, 0, -180) [mm] in Fig. 8.
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Σ�
Σ�

x�

500

685

180

510
950

525

220

345

580

360

Σ�

250

PA-10 base

1050

x�

z�

y�

y� x�

z�

y�

z�

Fig. 8 Coordinate systems of robot and end-effector: (hand coordinate system (ΣH), world coordinate system
(ΣW ) and target object coordinate system (ΣM)). Note that W xM , WyM , W zM are offsets of robot-base center
and work table center in x-, y-, z-directions. (unit is [mm] in Fig. 8.)

xW ; x0

zW ; z0

yW ; y0
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l2 l4 l6 l7

(70[mm]) (45[mm])

x3; y4; x5

y3; z4; y5

z3; x4; z5
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(480[mm])
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x8

y8

Dual-eyes cameras

Fig. 9 Sketch map of the manipulator. (Note that the distances, l2, l4, l5 are zero [mm], but the joints are illustrated
in figure to be seen clearly.)
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No.1

No.12No.11No.10No.9

No.8No.7No.6No.5

No.4No.3No.2

Fig. 10 Target objects (No.1 ∼ No.12) cloths: each has different colors, sizes, shapes, patterns and weights (unit
is [mm] and g in Table 1).

Table 1 Size, thickness and weight of all cloths (No.1 ∼ No.12).

No. Size
[mm]×[mm]

Thickness
[mm]

Weight
[g]

1 140×170 10 38
2 145×145 10 37
3 200×200 5 53
4 190×200 5 58
5 150×150 15 69
6 200×150 13 46
7 130×130 14 31
8 190×200 5 45
9 130×205 15 50
10 205×125 10 55
11 200×260 30 177
12 220×260 40 199
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5. Experiments
5.1. Accuracy with fixed illumination

In this section, each pose (x, y, z in ΣH in Fig. 8 and θ around z-axis) of all cloths in Table 1 is estimated 1000 times
repeatedly under fixed illumination of 700 lx. The average pose estimation errors and their extent of ±3σ of all cloths
(No.1 ∼ No.12) are shown in Fig. 10. Errors and the extent of ±3σ concerning x and y positions of all 12 cloths are less
than 10 [mm], and those of θ is less than 10 [degree] with the probability of 99.7%. However, the errors of z direction is
less than 30 [mm], which is 3 times bigger than the cases of x and y. The numerical data of Fig. 11 are listed in Table 2.
The frequency distributions concerning x, y, z, θ of cloth No.6 are shown in Fig. 12. We have chosen No.6 to show actual
data repeated 1000 times, where the reason of the choice of No.6 is that the cloth represents comparatively large 3σ value
in x, y and z direction. From the graph of (c) in Fig. 12, the recognition system tends to miscalculate the z value to be
nearer than the one in fact (the minus value indicates nearer position).
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Fig. 11 Average error and ±3σ concerning three positions (x, y, z) and one orientation (θ) of different cloths
(No.1 ∼ No.12) that have been confirmed by the experimental result of 1000 times recognition under
fixed illumination 700 lx, where σ is standard deviation.
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Table 2 Average error and standard deviation (3σ) measured by 1000 times recognition experiments of different
cloths (No.1 ∼ No.12) under fixed illumination 700 lx.

Cloth No.
Average error : upper row

Standard Deviation (3σ) : lower row
x [mm] y [mm] z [mm] θ [degree]

No.1 0.652 -0.565 -2.13 0.274
5.28 3.42 15.9 3.84

No.2 0.858 -1.20 -3.06 1.86
4.80 5.82 18.9 7.38

No.3 0.449 0.136 -3.46 0.379
3.69 3.03 17.8 2.83

No.4 0.0494 0.294 -4.26 0.31
3.45 2.79 19.5 2.94

No.5 0.244 0.00557 -7.31 0.908
4.50 3.75 23.7 6.21

No.6 -1.08 0.601 -6.75 0.235
6.36 8.49 22.5 5.49

No.7 0.197 0.488 -5.80 0.691
3.27 3.90 21.2 5.76

No.8 0.453 -0.0191 -2.94 0.128
3.33 3.75 17.0 3.06

No.9 0.764 0.683 -6.95 0.360
6.39 3.51 23.6 4.35

No.10 0.373 0.598 -5.91 -0.159
3.15 6.39 21.4 5.28

No.11 0.346 0.586 -6.70 0.205
4.71 4.29 23.2 3.84

No.12 0.137 -0.120 -3.74 0.0310
6.36 3.30 19.2 3.63
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Fig. 12 Frequency distribution concerning x, y, z and θ of cloth No.6 that has been resulted by conducting 1000
times recognition experiment.

13



2
© 2018 The Japan Society of Mechanical Engineers[DOI: 10.1299/jamdsm.2018jamdsm0047]

Phyu, Funakubo, Hagiwara, Tian and Minami,
Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.12, No.2 (2018)

5.2. Robustness confirmation against illumination and lighting source varieties
If the lighting source changes (e.g. light bulb, fluorescent lamp, mercury-arc lamp, sunlight, etc), it will be necessary

to check the robustness of the system against different light sources. We have already confirmed the verification of
illumination variations under two different lighting sources. Three different illumination conditions (100 lx, 700 lx, and
1300 lx) using fluorescent light and light-emitting diode (LED) separately were given as experimental environments in
(Funakubo R et al., 2017). In (Phyu, Khaing Win, et al., 2017), five different illumination conditions (100 lx, 400 lx, 700
lx, 1000 lx and 1300 lx) using fluorescent light and light-emitting diode (LED) were separately simulated for experiments.
Fluorescent light was used for the experiments of the present paper.

Figures 13 and 14 show the fitness distributions for position and orientation of cloth No.3 under the five different
illuminations (100 lx, 400 lx, 700 lx, 1000 lx and 1300 lx) and the two different lighting sources (Fig. 13; fluorescent
light and Fig. 14; LED). In the experiments, cloth No.3 was chosen because of its distinct characteristics such as colorful
patterns, small size and light weight. According to experimental results in Figs. 13 and 14, it can be seen that the height
of the peak of the fitness distribution changes with illumination variations. The difference between the height of fitness
distribution in position under 100 lx and 1300 lx can be clearly seen in Figs. 13 (a) and 14 (a). Even though the height of
the peak changes with illumination strength, it can be seen from Figs. 13 and 14 that there exist peaks at the position of the
cloth, and the positions represented by the peaks are maintained in all cases. It means that the proposed system is robust
against illumination and lighting source varieties. The reason why the system is robust is that the searching problem is
converted into the optimization problem in our proposed system. The conversion enables the pose estimation system to be
robust against lighting condition varieties since the optimization procedures do not care about height of the peaks, but the
existence of the highest peak at the pose to be estimated. These Figs. 13 and 14 are introduced from our previous paper
(Phyu, Khaing Win, et al., 2017).

The first conditions in Eqs. (6) and (7) contributed to make the peak higher, and second conditions of penalties in Eqs.
(6) and (7) helped lower peaks that were generated by image noises deleted. In the Figs. 13 (a) and 14 (a), the fitness
function values with minus sign were all replaced by zero, then all the fitness distributions in Figs. 13 (a) and 14 (a) look
like external form with single peak. The values set in Eqs. (6) and (7), that is, 2, -0.005, 0.1 and -0.5 are experimentally
set by adjusting the valuables that had been done before pose estimation and handling experiments.
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Fig. 13 Fitness function distribution of cloth No.3 in (a) x-y plane and (b) orientation (fluorescent light)
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Fig. 14 Fitness function distribution of cloth No.3 in (a) x-y plane and (b) orientation (LED light)

5.3. Accuracy with illumination varieties
Figures 15 to 19 show the average error of each cloth No.1∼No.12 under five different illuminations (100 lx, 400 lx,

700 lx, 1000 lx and 1300 lx). The numerical values of average error of pose estimation results are listed in Table 3 and
the standard deviation are in Table 4. From Figs. 15 to 19, the 100 times recognition experiment results of average error
under five different illuminations for all cloths (No.1∼No.12) have almost same tendency with Fig. 12. With the variation
of cloths and also with the varieties of light conditions (100 lx∼1300 lx), it has been confirmed that the ±3σ of the x, y
position are less than 10 [mm], z position being 30 [mm], θ being 10 [degree].
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Fig. 15 Average error and average error±3σ of 100 times recognition experimental result of 12 unique cloths
under 100 lx.
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Fig. 16 Average error and average error±3σ of 100 times recognition experimental result of 12 unique cloths
under 400 lx.
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Fig. 17 Average error and average error±3σ of 100 times recognition experimental result of 12 unique cloths
under 700 lx.
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Fig. 18 Average error and average error±3σ of 100 times recognition experimental result of 12 unique cloths
under 1000 lx.
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Fig. 19 Average error and average error±3σ of 100 times recognition experimental result of 12 unique cloths
under 1300 lx.
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Table 3 Average error measured by 100 times recognition experiments of each cloth No.1∼No.12 under different
light conditions (100 lx, 400 lx, 700 lx, 1000 lx and 1300 lx).

Average error
Cloth No. Illuminance [lx] x [mm] y [mm] z [mm] θ [degree]

No.1

100 -0.179 0.282 -1.586 0.169
400 -0.813 0.234 -2.273 0.533
700 -0.550 -0.291 -4.727 0.499

1000 -0.487 0.119 -2.459 0.233
1300 -0.645 0.181 -2.310 0.408

No.2

100 0.074 -0.067 -2.57 0.667
400 0.109 -0.227 -1.52 0.084
700 0.043 -0.239 -1.49 0.251

1000 0.182 -0.204 -1.84 0.335
1300 0.0840 -0.156 -0.968 0.381

No.3

100 0.287 0.170 -2.32 -0.364
400 0.250 0.543 -3.17 0.676
700 0.913 0.407 -6.68 0.7290

1000 0.715 0.254 -5.98 0.933
1300 0.521 0.399 -5.04 0.600

No.4

100 0.462 0.095 -5.124 -0.462
400 0.392 0.099 -1.416 0.435
700 0.113 0.042 -2.061 0.186

1000 0.057 0.222 -2.810 0.390
1300 0.185 0.208 -1.749 0.486

No.5

100 0.641 0.296 -4.312 0.2496
400 0.291 0.015 -2.314 0.008
700 0.209 0.027 -1.944 0.139

1000 0.234 0.062 -2.730 -0.017
1300 0.198 0.019 -2.466 -0.021

No.6

100 -0.545 -0.341 -3.880 -0.164
400 -0.278 -0.181 -0.100 0.027
700 -0.484 -0.676 -1.356 0.021

1000 -0.248 -0.561 -2.246 0.011
1300 -1.22 0.215 -1.909 -0.126

No.7

100 -0.308 -0.115 -1.260 0.413
400 -0.145 -0.291 -0.571 0.334
700 -0.143 -0.321 -1.112 0.288

1000 -0.168 -0.268 -1.257 0.472
1300 -0.253 -0.336 -1.973 0.263

No.8

100 1.319 -0.094 -3.551 -0.523
400 0.416 0.173 -1.984 0.582
700 0.893 -0.2976 -3.864 -0.492

1000 0.052 0.234 -2.495 0.821
1300 0.047 0.300 -2.018 0.5871

No.9

100 -0.103 0.186 -0.947 -0.166
400 -0.614 0.304 -1.185 0.116
700 -0.393 0.195 -1.507 0.255

1000 -0.197 0.195 -2.300 0.255
1300 -0.349 0.410 -3.043 0.213

No.10

100 1.622 2.194 -1.850 -0.795
400 0.773 0.497 -0.613 -0.878
700 0.349 1.691 -2.214 -1.449

1000 1.739 0.679 -1.153 -1.480
1300 0.525 1.437 -1.551 -1.376

No.11

100 -0.016 0.059 -3.49 -0.168
400 -0.740 1.67 -1.86 -0.122
700 -0.506 0.790 -1.55 -0.073

1000 0.103 -0.325 -2.95 0.197
1300 0.109 -0.235 -1.68 -0.092

No.12

100 0.674 -0.687 -3.910 0.226
400 0.625 -0.394 1.981 0.622
700 0.678 -0.861 -2.381 0.372

1000 0.537 -0.620 -3.981 1.028
1300 0.340 -0.733 -4.625 1.000
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Table 4 Standard deviation (σ) measured by 100 times recognition experiments of each cloth No.1∼No.12 under
different light conditions (100 lx, 400 lx, 700 lx, 1000 lx and 1300 lx).

Standard deviation (σ)
Cloth No. Illuminance [lx] x [mm] y [mm] z [mm] θ [degree]

No.1

100 0.829 0.713 3.796 0.535
400 1.869 1.270 6.577 1.510
700 2.093 1.619 6.508 1.823

1000 1.534 1.041 5.805 1.635
1300 1.685 1.117 5.964 1.591

No.2

100 1.02 0.699 5.68 1.48
400 0.570 0.874 4.22 0.877
700 0.455 0.858 4.39 1.02

1000 0.664 0.640 4.58 1.34
1300 0.793 0.755 3.57 1.05

No.3

100 0.812 0.739 4.62 0.795
400 0.988 1.12 5.64 1.21
700 1.54 1.12 7.28 1.35

1000 1.52 1.27 7.73 1.58
1300 1.26 1.28 6.50 1.34

No.4

100 1.124 1.148 5.988 1.289
400 0.974 0.837 3.440 0.808
700 0.571 0.500 4.646 0.844

1000 0.876 0.668 5.279 1.026
1300 0.634 0.716 4.154 0.932

No.5

100 1.468 0.824 6.729 0.889
400 0.855 0.355 5.325 0.762
700 0.697 0.489 4.884 0.752

1000 0.918 0.490 5.128 0.892
1300 0.957 0.460 5.515 0.863

No.6

100 1.426 2.462 6.847 1.821
400 1.096 0.794 2.922 0.748
700 1.653 1.797 4.439 1.626

1000 1.249 1.572 5.023 1.078
1300 2.237 1.087 5.217 1.425

No.7

100 1.105 0.954 3.495 1.166
400 0.730 0.875 2.767 1.019
700 0.639 0.907 3.747 1.015

1000 0.692 0.835 3.421 1.261
1300 0.984 1.074 4.625 1.079

No.8

100 1.865 1.071 5.846 1.476
400 1.213 0.888 4.816 1.429
700 1.565 1.630 6.011 1.582

1000 1.078 0.911 4.587 1.314
1300 0.872 0.782 4.863 1.174

No.9

100 1.060 0.578 3.825 0.869
400 1.773 0.734 4.493 0.803
700 2.192 0.686 4.807 0.795

1000 1.612 0.634 5.336 0.933
1300 1.944 0.772 6.114 0.889

No.10

100 1.542 2.557 4.978 2.202
400 1.360 1.596 3.220 1.946
700 0.950 2.637 4.686 2.411

1000 1.731 2.828 4.735 2.286
1300 1.067 2.720 3.655 2.536

No.11

100 1.01 1.28 6.01 0.952
400 1.83 2.05 5.26 1.20
700 1.45 1.28 3.79 0.905

1000 1.27 1.39 5.39 1.05
1300 0.813 1.08 4.20 0.924

No.12

100 1.693 1.442 6.711 1.314
400 2.472 1.629 7.233 1.635
700 2.398 1.999 6.368 1.331

1000 2.325 1.787 7.038 1.979
1300 1.768 1.98 7.801 1.864
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5.4. Handling experiment
Regarding the handling of clothing by the PA-10 robot, the four absorption pads that are inhaled by air pump are

used for picking up the cloth and putting into the collection box automatically. Figure 21 shows the four absorption pads
used in the experiment. Even though the required accuracy for grabbing is not high, but it relates to handling accuracy
finally, which has been confirmed and been shown in Fig. 22. This has shown that the proposed system can be useful in
practical view point.

Fig. 21 Four absorption pads under robot hand

In the mail order system of the company T2K, human workers classify and handle a large number of cloths manu-
ally every day. The robot to help human workers should be capable of automatically handling to classify cloths. Results of
100 times handling experiment at different light conditions (100 lx, 400 lx, 700 lx, 1000 lx and 1300 lx) were summarized
in Table 5 numerically and shown in Fig. 22. Table 5 lists the numerical data of average error and standard deviation
±3σ when handling No.2 cloth. As being depicted that maximum 3σ of z-axis is about 30 [mm], the hand of the robot
needs some adaptive mechanism to pick up the cloths, like spring-rubber siphon absorbing mechanism to adjust possible
z-axis hand position errors. Since the horizontal position errors in x, y-axis are less than 10 [mm] and orientation error is
roughly less than 15 [degree], the proposed handling robot can insert the cloths into a box with a size being 20 [mm] larger
the biggest size of the cloths’ varieties. Then the experimental results as shown in Fig. 22 and Table 5 have confirmed
experimentally that the proposed system is able to handle the 12 different cloths (No.1 ∼ No.12) under different light
conditions without the need for human assistance.
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Fig. 22 Average error and average error±3σ of 100 times handling experiments of No.2 cloth under different
light conditions (100 lx, 400 lx, 700 lx, 1000 lx and 1300 lx).
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Table 5 Average error and standard deviation (3σ) measured by 100 times handling experiments of cloth No.2
under different light conditions.

Illuminance [lx]
Average error : upper row

Standard Deviation (3σ): lower row
x [mm] y [mm] z [mm] θ [degree]

100 0.436 0.392 14.2 -0.466
10.2 6.93 15.5 12.1

400 1.20 0.527 13.6 0.559
8.37 7.59 17.6 9.87

700 0.732 0.666 13.0 -0.0440
9.00 6.93 17.0 11.2

1000 0.525 0.502 9.96 0.464
11.3 7.29 21.4 9.48

1300 0.366 0.772 13.4 0.0171
7.53 5.85 17.1 10.2

6. Conclusion

Verification of the unique cloth recognition and handling performance using the photo-model-based cloth recognition
under different illuminations under 100 lx to 1300 lx is presented. In addition, the handling performance by PA-10 robot
has been verified. The experimental results indicated that errors and the extent of ±3σ concerning x and y positions of all
12 cloths are less than ±10 [mm], and those of θ around z-axis is less than 10 [degree] with the probability of 99.7% in
recognition experiment with illumination varieties. According to the experimental result, the proposed system has been
confirmed to be able to recognize and handle the 12 unique cloths under different light conditions without the need for
human assistance.
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