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Abstract
This paper presents the verification of the turbidity tolerance of a stereo-vision-based 3D pose estimation system for under-
water docking applications. To the best of the authors’ knowledge, no studies have yet been conducted on 3D pose (position 
and orientation) estimation against turbidity for underwater vehicles. Therefore, the effect of turbidity on the 3D pose estima-
tion performance of underwater vehicles and a method of operating under turbid conditions were studied in this work. A 3D 
pose estimation method using the real-time multi-step genetic algorithm (RM-GA) proposed by the authors in the previous 
works shows robust pose estimation performance against changing environmental conditions. This paper discusses how and 
why the RM-GA is well suited to effective 3D pose estimation, even when turbid conditions disturb visual servoing. The 
experimental results confirm the performance of the proposed 3D pose estimation system under different levels of turbidity. 
To demonstrate the practical usefulness of the RM-GA, docking experiments were conducted in a turbid pool and a real sea 
environment to verify the performance and tolerance of the proposed system under turbid conditions. The experimental results 
verify the robustness of the system against turbidity, presenting a possible solution to a major problem in the field of robotics.

Keywords  Visual servoing · 3D pose estimation · Sea docking · Stereo-vision · Robustness against turbidity · Real-time 
multi-step genetic algorithm

1  Introduction

Autonomous underwater vehicles (AUVs) play an impor-
tant role in many undersea operations, such as the inspec-
tion of underwater structures (e.g., dams [1] and bridges), 
ship-hull inspections [2], and deep-water archaeology [3]. 
Despite recent advancements to power storage technolo-
gies, the operation time of underwater vehicles is a limiting 
factor. A recharging unit with an underwater docking func-
tion can enable the extended operation of AUVs in the sea 
independent of a surface vehicle to which they must return 
for recharging. Docking is very useful not only for battery 

recharging but also for other applications, such as sleeping 
under the mother ship and downloading new missions [5]. 
Therefore, many studies have been conducted on underwater 
docking [4–16]. However, a number of challenging issues 
hinder these applications, which require high accuracy and 
robustness against disturbances that occur in actual undersea 
environments. To overcome these problems in underwater 
vehicles, we have developed a vision-based docking system 
using stereo-vision [7]. Depending on the application, dif-
ferent homing sensors have been used for the docking of 
AUVs. However, each sensor has its own limitations. In [8], 
a novel approach to docking using an electromagnetic guid-
ance system was proposed. However, the accuracy of this 
approach is limited by the presence of magnetic abnormali-
ties near a station. For acoustic-based sensors used in AUVs 
[5], the effects of undesirable acoustic reflections and attenu-
ation may reduce the accuracy of AUV navigation. Simi-
larly, there remain some limitations in systems using vision 
sensors applied in AUVs. The limitations to vision-based 
underwater vehicles with lighting units are particularly chal-
lenging. The motion of such vehicles produces fluctuations 
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in the lighting direction, which cause the lighting condi-
tions to change. This type of variable lighting environment 
presents challenges when the available light is dominated 
by the lighting system of the AUV, as in deep-sea missions 
or during nighttime operation. In addition, when a vision-
based underwater vehicle approaches the sea bottom, a com-
bination of water turbidity and fluctuations in the lighting 
direction produces artifacts in camera images and acts as a 
disturbance for visual servoing, as shown in Fig. 1.

To the best of the authors’ knowledge, there have been 
no studies on the 3D pose estimation of underwater vehicles 
under turbid conditions. The detection of points of interest 
in turbid underwater images has been investigated using a 
collection of images acquired by a trinocular camera sys-
tem under gradually increasing turbidity [17]. In [18], the 
robustness of local feature detection in underwater images 
was analyzed using a new data set called TURBID, which 
consists of real seabed images with different amounts of deg-
radation. In addition, methods of underwater image quality 
assessment, visibility enhancement, and disparity computa-
tion under turbid conditions have been proposed in [19]. 
None of the above studies consider image recognition in 
real-time dynamic images, which is an indispensable tech-
nology for visual servoing in underwater vehicle docking. 
The papers concerning image processing of fog environment 
have been found. [20–22] are concerned with static images 
analyses in the field of car guidance and safety technology, 
then they are difficult to be utilized as real-time control feed-
back information. [23] has discussed analysis in dynamic 
images about how to distinguish fog, but this idea has not 

yet been utilized for automatic driving as a visual feedback 
sensor.

Our research group has conducted a number of studies on 
our vision-based docking system, which uses the real-time 
multi-step genetic algorithm (RM-GA) method [24–28]. 
In [24–26], several experiments were conducted using two 
cameras and a known 3D marker to confirm the robustness 
of the docking system. The development system has been 
named “Three Dimensional Move on Sensing” (3D-MoS) 
[7]. Docking trials using a remotely operated vehicle (ROV) 
as a test bed were also successfully conducted in a real sea 
environment near the city of Wakayama in Japan [27]. In 
[28], docking experiments with the AUV Tuna-Sand 2 were 
conducted in a pool. The robustness of the 3D pose estima-
tion system against air bubbles [24] and target occlusion [29] 
has been verified experimentally. The effectiveness of the 
proposed system in tracking the pose of a moving 3D object 
has been reported in [24]. In [25], visual servoing while a 
physical disturbance was applied in a specific direction by 
pushing the AUV with a stick and the docking performance 
of the AUV were tested. Through these experiments, the 
authors have demonstrated the robustness of the proposed 
RM-GA method against a number of disturbances.

However, we have yet to confirm the robustness of the 
proposed system against the effects of the water turbidity. 
The most important points of investigation regarding the 
RM-GA method are the reasons it shows robust against tur-
bidity and how much turbidity it can tolerate. These aspects 
have not been examined despite being closely connected to 
the practicality of the method when applied in real undersea 
environments.

Based on the above motivation, some experiments were 
conducted to confirm the practicality of the proposed system 
against turbidity in the present paper. In this study, three 
experiments were conducted in three different environ-
ments, as shown in Fig. 2, to assess the system performance 
in turbid environments and demonstrate the potential of the 
proposed system for real undersea applications. The rec-
ognition performance against different turbidity levels was 
verified first in a small pool, as shown in Fig. 2a. After this 
assessment of the recognition performance, the turbidity 
tolerance was verified by conducting docking experiments 
under different turbidity levels in a larger pool, as shown 
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Fig. 1   Visual servoing in a deep-sea environment with turbidity

Fig. 2   ROV and 3D marker 
in turbid water. a Recognition 
experiment in a small pool. b 
Docking experiment in a large 
pool. c Continuous iterative 
docking experiment in the sea
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in Fig. 2b. Finally, a continuous iterative docking experi-
ment was conducted in a shallow sea region near the town 
of Ushimado, Japan, as shown in Fig. 2c. Because this study 
focused on turbidity tolerance, a turbid coastal environment 
was selected over clear oceanic water to conduct the dock-
ing experiments.

This paper is organized as follows: Sect. 2 introduces the 
problem statement. Section 3 explains the stereo-vision-
based real-time 3D pose estimation method. Section 4 out-
lines the experiments for real-time 3D recognition under 
different turbidity levels. Section 5 describes the docking 
experiments under different turbidity levels in a pool. Sec-
tion 6 presents the continuous iterative docking experiment 
in the sea. The final section contains the conclusions of this 
study and plans for future work.

2 � Problem statement and contributions 
of this study

2.1 � Social demand for deep‑sea operations

Recently, social demand for deep-sea resources, such as food 
and energy, has increased rapidly with the aid of developing 
technologies. At present, almost all metal and industrial min-
eral extraction is conducted onshore. Deep-sea extraction 
would expand the available resource pool and provide a level 
of independence from onshore resource extraction. Among 
the available deep-sea resources, expensive rare metals and 
methane hydrate in the seabed are of particular economical 
importance. Japan has been considering the deep-sea min-
ing of methane hydrate, which is expected to be a future 
energy resource. Furthermore, the information that can be 
gathered from deep-sea exploration is useful in the predic-
tion of disasters such as earthquakes and tsunamis and can 
help us understand how we are affecting and being affected 
by changes in Earth’s climate and atmosphere. Therefore, 
the advancement of deep-sea research technologies would 
be highly beneficial in a number of applications.

2.2 � Energy supply for autonomous underwater 
vehicles

To meet the above-mentioned social demands for deep-sea 
operations, underwater robots have been developed world-
wide. AUVs have become essential in deep-sea operations 
such as ocean bottom exploration and underwater surveying. 
However, the operation time of AUVs is limited because 
of their limited power capacity. Returning to the surface 
to recharge their batteries reduces their efficiency because 
of the time lost returning to the surface and the manpower 
required on the surface vessel. One possible solution to 
overcome this problem is the use of an underwater battery 

recharging unit with a docking function that would allow the 
AUV to continue its operation in the seabed without return-
ing to the surface station for recharging.

2.3 � Turbidity

Although AUVs do not need to descend to the sea bottom 
for some tasks, such as bottom topology surveys, working 
near the sea floor is necessary for most ocean exploration 
operations, including oil pipe inspection and the detection 
and extraction of precious metals. At this time, the most 
challenging and unavoidable problem in deep-sea opera-
tions is turbidity, which deteriorates the visual capabili-
ties of AUVs. Turbidity is defined as cloudiness in a liquid 
caused by the presence of suspended particles that scatter 
and absorb light. Therefore, the verification of the turbid-
ity tolerance of an AUV and the development of a method 
to overcome disturbances caused by turbidity are important 
research questions not only for AUV development but also 
for the field of vision-based underwater systems. Because 
the intended application in this study is underwater battery 
recharging at the sea bottom to extend the operation time of 
AUVs, turbidity cannot be avoided by simply operating the 
AUVs in clean water.

Some studies on underwater image processing related to 
turbidity have been conducted [19, 30]. However, most are 
based on static images rather than real-time dynamic images. 
When visual servoing—in which only visual information is 
used as feedback in the real-time control of the underwater 
vehicle—is performed in the sea, where the environment 
dynamically changes with turbidity, the tolerance of the 
proposed visual-servoing approach against turbidity must 
be verified. The difficulty with this is that turbidity can vary 
from site to site based on the characteristics of the suspended 
materials, including their particle shape, refractive index, 
and color. Unfortunately, there are no universal techniques 
for analyzing the effects of turbidity on the performance 
of image-based approaches for different applications, even 
though the limits at which each approach achieves an accept-
able level of accuracy must be identified. Therefore, it is 
critical to develop a systematic assessment method that can 
derive a meaningful link between the on-site conditions and 
the performance of image-based methods.

2.4 � Contributions of the present study

As discussed above, turbidity is a practical problem for 
AUVs that are operated at the sea bottom. To the best of 
the authors’ knowledge, the turbidity tolerance of real-time 
visual-servoing-based docking at the sea bottom has not 
yet been investigated through experiments conducted in 
an actual sea environment. In addition, the robustness of 
the proposed stereo-vision-based pose estimation method 
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against turbidity has not yet been discussed, and the perfor-
mance of the proposed system in a turbid sea environment 
has not yet been experimentally validated. Therefore, the 
main contribution of this study is that it is the first experi-
mental investigation of the practicality of undersea docking 
under turbid conditions in an actual undersea environment. 
Visual servoing in a turbid environment using a dual-eye 
camera for pose estimation was verified experimentally 
through the analysis of the performance of the proposed 
method against different turbidity levels. Although visual 
servoing is not the only solution for the docking of AUVs, 
it is practically important to evaluate its tolerance before 
combining visual-servoing technology with an integrated 
control system. Docking experiments were conducted under 
turbid conditions in pools and an actual undersea environ-
ment to verify the effect of turbidity on pose estimation and 
assess the real-time visual-servoing performance and turbid-
ity tolerance of the proposed method. This study is expected 
to extend the applications and capabilities of underwater 
robotics research and technology.

3 � Stereo‑vision‑based real‑time 3D pose 
estimation

Apart from image-based visual servoing, position-based 
visual servoing has been developed for the vision-based 
docking approach proposed by our research group. A tuto-
rial on the visual-servoing technology developed in field of 
terrestrial robotics can be found in [31]. We introduced and 
explained our approach in which the real-time relative pose 
of a 3D marker relative to the underwater vehicle is esti-
mated using stereo-vision through a model-based matching 
method [7]. This section presents a brief explanation of the 
proposed 3D pose estimation method to provide background 
for the present study for the reader’s convenience; a more 
detailed discussion can be found in the previous report [7].

The left and right cameras are fixed to the ROV with 
parallel lines of sight. The coordinate frames of the ROV 
and the 3D marker are shown in Fig. 3. As shown in this 
figure, the search space was set to be around the target on the 
assumption that there should exist a real 3D marker in the 
genetic algorithm (GA) search space. When the 3D marker 
is not found in the search space, the fitness value—a scalar 
that indicates how well the 3D model matches the real 3D 
marker—remains low at approximately 0.1 or 0; thus, the 
vehicle controller can determine the vehicle is not near the 
3D marker. This judgment can cause the vehicle to globally 
search for the 3D marker. However, this recovery behav-
ior is not discussed in the present report. The relative pose 
between the ROV and the 3D marker is determined from 
six parameters: x, y, z, �1 , �2 , and �3 ; the first three are the 
Cartesian coordinates of the 3D marker in the ROV frame 

of reference, and the latter three are the orientation of the 
marker in the ROV frame represented by a unit quaternion 
avoiding singularities.

3.1 � 3D model‑based matching method

A model-based matching method was used to recognize the 
3D marker and estimate its pose in real time using stereo-
vision. Figure 4 shows the 3D marker coordinate system �M , 
the ith model coordinate system �Mi

 , the left and right cam-
era coordinate systems �CL and �CR , and the left and right 
image coordinate systems �IL and �IR . The target is a 3D 
marker that consists of three spheres of 40 mm in diameter 
colored red, green, and blue, and the origins of �M and �Mi

 
are the intersections of the three lines perpendicular to the 
faces to which the spheres are attached.

In conventional approaches, object recognition including 
relative pose information is implemented by feature-based 
recognition using 2D-to-3D reconstruction calculations, in 
which the information of the target object is determined from 
a set of points in different images, generally using epipolar 
geometry. The main challenge in this type of approach is 
ensuring that points are correctly mapped. If a point in one 
image is incorrectly mapped to a point in another image, 
the pose of the reconstructed object does not represent that 
of the real 3D object. Figure 4 shows the incorrect recon-
struction of a point through 2D-to-3D reconstruction result-
ing from incorrect mapping. To avoid incorrect mapping, 
which results from the original problem being ill posed, a 
model-based pose estimation approach based on 3D-to-2D 
projection was applied in this study, because the forward 
projection from 3D to 2D generates unique points in 2D 
images without any errors, meaning incorrect mapping is 
avoided. As shown in Fig. 4, the jth point on the ith model in 

800  mm
800  mm

400  mm

ROV

GA searching space

Target

Right camera
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Fig. 3   Coordinate systems of the ROV and 3D marker. �
M

 and �
H

 
denote the coordinate systems of the 3D marker and the ROV, respec-
tively. The pose of the marker relative to the ROV, represented by the 
position and orientation of �

M
 with respect to �

H
 , is considered to be 

the unknown in the 3D pose estimation process
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3D space is projected onto the left and right camera images 
correctly. With this approach, 3D model-based recognition 
can be implemented.

A solid model of the target is defined in the computer 
system based on known information about the target, such 
as its shape, size, and color, and this model is projected onto 
2D planes. The relative pose is then calculated by comput-
ing the correlation between the projected solid model image 
and the 2D images captured by the dual-eye cameras. In the 
pose estimation process, the main task is to plot the num-
ber of solid models with different poses within the search 
space, which is defined according to the field of view of the 
cameras. The next step is to search for models that match 
the target in the 2D images to within a defined fitness value. 
Finally, the pose of the model that most closely fits the target 
in the 2D images is selected as the estimated relative pose. 
Figure 4 shows how a solid model is defined in 3D space and 
projected onto 2D images to match the captured real target in 
2D images. To measure the fitness value between the target 
in the image and the projected model with its pose, a cor-
relation function called the fitness function in this study was 

designed, as explained in the next section. Note that the pose 
calculation and convergence are executed in 3D space and 
the evaluation is performed using the 2D images.

3.2 � Fitness function

The fitness function was designed for use as an evaluation 
parameter in the pose estimation process. It is defined the 
correlation between a projected model and a real target in 
the image. In Fig. 5a, the three solid circles and the cir-
cles outlined with broken lines (broken circles) represent 
the spheres on the real target and those on the jth model 
obtained from 3D-to-2D projection, respectively. The pose 
�
j

M
 (j means jth point on a model and M stands for model’s 

coordinates, �M ) of the 3D model is an unknown variable 
composed of six parameters (x, y, z, �1 , �2 , �3 , where the 
first three are position and the latter are orientation) and 
is determined in the pose estimation process by RM-GA. 
The 2D projection of each sphere in the model is divided 
into two regions, as shown by the dashed circles in Fig. 5b. 
Instead of evaluating the positions of all of the points in 
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Fig. 4   Model-based pose estimation using the dual-eye vision sys-
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(solid object), and the model (represented by a dotted box and dotted 
spheres). The jth point on the ith model in 3D space can be described 

in each coordinate system using these coordinates and homogene-
ous transformations. Similarly, a 3D model with its pose defined as a 
group of points in 3D space is projected onto the left and right cam-
era images through 3D-to-2D projection

Fig. 5   a Real target (solid 
circles with three colors, red, 
green, and blue) and projected 
3D model (circles with broken 
lines) in a 2D image obtained by 
the right camera. b Projection 
of the green sphere of a model 
with selected sample points. 
There are a total of 60 points 
(36 and 24 points in the inner 
and outer regions, respectively) 
in the projection, and the diam-
eter of the inner region is same 
as that of the actual sphere. 
(Color figure online)
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the model, only select points are considered, as shown 
in Fig. 5b. When the jth model is projected onto the 2D 
images of the left and right cameras, the value of fitness 
function for that model is calculated. Note that the value of 
fitness function is hereafter referred to as fitness value and 
defined as F. Portions of the target object that lie inside the 
inner and outer regions of each corresponding sphere of 
the projected model proportionally increase and decrease 
the fitness value, respectively. Therefore, the fitness func-
tion is maximized when the pose of the model fits that 
of the target object depicted in the images of the left and 
right cameras. Then, solving the pose estimation problem 
has been converted into optimization problem, then how 
much the height of the peak does not concern with the 
solving procedure of optimization. The evaluation param-
eters of the fitness function were designed to reduce the 
effect of noise, which is considered here as peaks in the 
fitness function that represent incorrect poses of the target. 
A detailed definition of the fitness function can be found 
in [7, 32], and [33]. The concept of the fitness function 
in this study can be said to be extension of the work in 
[33], in which different models, including a model with 
rectangular surface strips, were evaluated using images 
from a single camera.

3.3 � Real‑time multi‑step genetic algorithm

In the process of 3D pose estimation, it is assumed that there 
are many models in the search area, as shown in the top left 
image in Fig. 6. To determine which model is closest to the 
actual target, the fitness function defined in the previous 

Fig. 6   Pose estimation using 
the RM-GA. In the initialization 
step, 60 models with different 
random poses are generated. 
The models with the best fit are 
selected based on their fitness 
values and evaluated using GA 
processes (selection, crossover, 
and mutation). The pose of the 
model with the highest fitness 
value in the final generation of 
the GA process within 33 ms 
is output as the estimated pose 
of the 3D marker relative to the 
vehicle 33 ms
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Fig. 7   Fitness distribution. The peak represents the true pose detected 
by the designed fitness function. The noise, which represents incor-
rect poses, is generated in the fitness distribution as a result of image 
deformation caused by environmental effects
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section was used to quantify the correlation between the 
models and the target. The main task of the pose estimation 
process is to search for the optimal model with the pose that 
is most strongly correlated with that of the real 3D marker. 
Therefore, the problem of finding the target object and 
detecting its pose can be converted to searching for the pose 
�
j

M
 that maximizes the fitness value F

(

�
j

M

)

 . To solve this 

optimization problem, the RM-GA was developed. The time 
convergence performance of the RM-GA as a dynamic eval-
uation function has been confirmed by Lyapunov analysis in 
[34]. Real-time 3D pose estimation using 3D-model-based 
recognition and the RM-GA has been presented in detail in 
the previous papers [7, 29]. Figure 6 shows the flowchart of 
the RM-GA and how the best model is obtained. The real-
time pose can be estimated for every image with an image 
frame rate of 30 fps. We explained why and how RM-GA 
was developed for real-time 3D pose estimation in a previous 
study [7].

3.4 � Turbidity tolerance

The fitness distribution with respect to a position in the 
XY plane based on �H (see Fig. 3) is illustrated in Fig. 7. 
Because the pose of the target is composed of six param-
eters (three for position and three for orientation), the fit-
ness distribution with a peak at the true pose can be seen 
in 3D space, including the fitness value and any pairs of 
dimensions of pose parameters, as shown in Fig. 7. In the 
plot in Fig. 7, there is a large peak that corresponds to the 
true pose, and some additional peaks that correspond to 
other incorrect poses are present. The proposed system 
can be considered robust as long as the highest peak of the 
fitness distribution represents the true pose and the effect 
of the noise that represents incorrect pose is significantly 
less than this peak. The shape of the fitness distribution 
will change in a dynamic image with a video rate of 30 fps. 

In the sea, turbidity is one of the greatest disturbances to 
visual servoing and a major source noise. When the turbid-
ity level is high enough to render the designed fitness func-
tion ineffective, there will be no peak that represents the 
true pose of the target. The reason the proposed system can 
be considered robust against turbidity is that the problem 

Fig. 8   Photograph of ROV
Fig. 9   ROV and 3D marker in turbid water. The turbidity range was 
from 0 to 27.8 FTU, as measured by the turbidity sensor, and the dis-
tance between the ROV and the 3D marker was varied from 400 to 
1000 mm

Fig. 10   Experimental layout for 3D pose estimation against turbidity. 
The system was implemented in a PC (Intel ® Core™ i7-3770 CPU 
3.40 GHz, 8.00 GB RAM, 64 bits)
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of finding the target object and detecting its pose has been 
converted to an optimization problem. Therefore, it is nec-
essary to verify the turbidity tolerance of the proposed 
system. To do this, it is critical to simulate the turbidity 
levels using a suitable medium and assess the performance 
of the proposed system against different turbidity levels. 
The turbidity tolerance of the proposed system was veri-
fied in this study, and the experimental results provide an 
assessment of the system performance against turbidity 
and demonstrate the potential of the proposed approach 
for actual sea docking applications.

4 � Real‑time 3D pose estimation 
against turbidity

4.1 � Underwater vehicle

The remotely controlled underwater robot (Kowa, maximum 
depth 50 m) used in this experiment is shown in Fig. 8. Two 
fixed forward-facing cameras with the same specifications 
(imaging element: CCD, pixel number: 640 × 480, pixel 
focal length: 2.9 mm, signal system: NTSC, minimum 
illumination: 0.8 lx, no zoom) were mounted on the ROV. 
These two cameras were used for 3D object recognition. 
The thruster system of the ROV consists of one vertical, one 
lateral, and two horizontal thrusters with a maximum thrust 
of 4.9 N each. In this experiment, only recognition was con-
ducted, and the thrusters of the ROV were not controlled. 
The ROV is equipped with two LED light units (5.8 W) as 
an illumination source.

4.2 � Experimental layout

In this experiment, 3D pose recognition was conducted using 
the proposed system under different turbidity levels. In this 
experiment, the ROV was fixed at the same distance from 
the 3D marker, and illumination was kept constant by setting 
the two light-emitting diode (LED) units of the ROV to emit 
light aimed directly at the 3D marker, as shown in Fig. 9, 
with an illuminance of 200 lx. The illuminance was meas-
ured using a lux sensor (model: LX-1010B manufactured 
by Milwaukee) placed 600 mm in front of the LED of the 

ROV. Figure 10 shows the experimental layout for 3D pose 
estimation under different turbidity levels. The experiments 
were conducted in a dark environment, where the LED of 
the ROV is the dominant light source.

Water turbidity was simulated by adding milk to the 
water in which the system was submerged. According to the 

Fig. 12   Projection of the recog-
nized pose onto images taken by 
the left and right cameras with 
dotted spheres indicating the 
positions of the three spheres 
for user visualization during 
experiments and analysis

Table 1   Average fitness value distribution for different turbidity lev-
els and distances between the ROV and 3D marker [the first column 
gives the turbidity level measured by the turbidity sensor (FTU) and 
the corresponding amount of milk (ml/m3 ). The fitness values, repre-
sented by F, are given at each of the considered turbidity levels and 
with the distance between the ROV and 3D marker ranging from 400 
to 1000 mm. Area I represents the controllable area ( F ≥ 0.60 ). Area 
II represents the recognition area ( 0.22 ≤ F < 0.60 ). The remaining, 
Area III, is the loss of recognizable area ( F < 0.22 ). The labels A–F 
represent the conditions in which docking experiments were con-
ducted in another pool.]
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previous literature reviews [17, 18], the diameter of milk 
molecules ranges from 10 to 600 nm. Particles with a diam-
eter of 10 nm scatter equal amounts of light forward and 
backward. The forward scattering begins to dominate for 
particles with diameters of approximately 100 nm, and close 
to 1000 nm, there is strong small-angle forward scattering 
and weak backscattering. Therefore, milk was selected to 
model the turbidity, because it can provide all types of scat-
tering. On the basis of the maximum milk concentrations of 
0.19 ml/l (190 ml milk in 1000 l water) in [17] and 1.5 ml/l 
in [18], the experiments in this study were conducted with 
milk concentrations of up to 0.12 ml/l (95 ml milk in 800 l 
water). Note that the light sources used in [17] and [18] are 
different from that used here. Two fluorescent light strips 

were used in [17], and a halogen lamp was used in [18]. 
In the present experiment, two LED units installed on the 
ROV, as shown in Fig. 8, were used as a light source. The 
ROV was positioned in front of the 3D marker at a fixed 
distance ranging from 400 to 1000 mm. During an actual 
docking operation, the ROV approaches the 3D marker from 
a distance of approximately 1000 mm. It then performs vis-
ual servoing and the final docking stage from distances of 
approximately 600 mm and 400 mm, respectively. Details of 
this docking process are provided in Sect. 5.1.

To provide an experimental environment similar to a real 
undersea environment, a background sheet printed with 
an image similar to what would be observed in a real sea 
environment was placed behind the 3D marker, as shown 

Fig. 13   Real-time and average 
fitness values under the condi-
tions labeled a A, b C, and c F 
in Table 1
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in Fig. 10. The pool size is 1580 mm × 1100 mm × 590 
mm, and the pool was filled with 800 l of water. Milk was 
added to the water in increments of 2 g and 4 g up to a 
total of 30 g and 98 g, respectively, to run the experiment at 
different levels of turbidity. The turbidity of the water was 
measured using a turbidity sensor (model: TD-500 manu-
factured by OPTEX) with a measurement range of 0.0–500 
FTU (Formazin Turbidity Unit). The relationship between 
the measured turbidity and the milk concentration is illus-
trated in Fig. 11.

4.3 � Evaluation of 3D recognition

In this experiment, the fitness value was used to evaluate the 
performance of the proposed pose recognition method at dif-
ferent turbidity levels. The correlation function of the real 
target projected onto the camera images and the assumed 
model, which was represented by poses in the chromo-
somes, is used as the fitness function in the GA process, in 
which selection, crossover, and mutation are performed to 
reproduce the next generation via evaluation by the fitness 

Fig. 14   Left and right camera images under the maximum turbidity 
conditions in the control and recognition areas at each considered dis-
tance. Images taken at the maximum and minimum distances in clean 

water and at the maximum turbidity, in which the 3D marker is not 
observable, are also shown at the top and bottom, respectively
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function. The fitness function was modified based on the vot-
ing performance and the characteristics of the target (color, 
size, and shape). In this study, the fitness value averaged 
over 60 s was used to verify the performance of the proposed 
system under different turbidity levels. In addition to using 
the fitness value to evaluate the recognition performance, 
the recognized pose was visually evaluated by projecting the 
spheres on the target onto the left and right camera images, 
as shown by the dotted circles in Fig. 12. Moreover, to evalu-
ate the accuracy of RM-GA, a full-search method in which 

the vehicle searches globally for the 3D marker is performed 
using left and right cameras images for offline analysis.

4.4 � Pose recognition against turbidity

A total of 132 iterations of this experiment were conducted 
at different turbidity levels and distances between the ROV 
and the 3D marker. The turbidity tolerance in terms of the 
fitness value under each set of conditions was analyzed. The 
maximum amount of milk added to the 800 l of water in 
the pool was 98 g (118.825 ml/m3 ); this corresponds to a 

Fig. 15   Left and right camera 
images with the pose recog-
nized by the pose estimation 
system at different turbidity 
levels and a distance of 600 
mm between the ROV and 3D 
marker. The recognized pose 
is indicated by dotted circles in 
each photograph. The water tur-
bidity measured by the turbidity 
sensor is shown in units of FTU, 
and the amount of added milk is 
given in units of ml/m3
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Fig. 16   Fitness value distributions confirming the robustness of the 
system at a distance of 600 mm. The position of the peak correspond-
ing to the true pose of the marker was maintained even though the 

height of the peak was reduced by increasing turbidity. The gradual 
reduction in the height of peak shows the effect of turbidity on image 
recognition
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maximum turbidity of 27.8 FTU, as measured by the turbid-
ity sensor. The maximum amount of milk was selected as the 
value at which the system could not detect the 3D marker 
from a distance of 400 mm. Table 1 gives the fitness values 
at all considered turbidity levels and distances between the 
ROV and the 3D marker. The first column gives the turbid-
ity level measured by the turbidity sensor in units of FTU 
and the corresponding amount of milk in units of millilit-
ers per cubic meter. The remaining columns give the fitness 
values at each of the given turbidity levels with the distance 

between the ROV and the 3D marker ranging from 400 to 
1000 mm. The fitness values were calculated by averaging 
the fitness values over a real-time recognition period of 60 
s in each case. Figure 13 shows the time profiles of the real-
time and average fitness values for some illustrative cases.

There exists a fitness value threshold below which the 
ROV cannot reliably recognize the 3D marker. Thus, in an 
actual docking scenario, the ROV would not be controlled 
by visual servoing when the fitness value is less than the 
threshold. Area I, shown in Table 1, represents the con-
trollable area ( F ≥ 0.6 , F means fitness function value 
detected RM-GA), which is the area in which the ROV can 
be controlled by visual servoing. This upper fitness value 
threshold of 0.6, hereafter called the control threshold, was 
determined experimentally. Area II is the recognizable area 
( 0.22 ≤ F < 0.6 ), in which the ROV can still recognize the 
3D marker but the ROV can no longer be reliably controlled 
using visual servoing. According to the experimental results, 
the system cannot recognize the 3D marker when the fitness 
value is less than this lower control threshold of 0.22. Area 
III in Table 1, the loss of recognition area, represents the 
cases in which the fitness value is below the recognition 
control threshold. Figure 14 shows examples of the left and 
right camera images with the recognized pose of the 3D 
marker under conditions near the control and recognition 
thresholds. Example images at the minimum and maximum 
considered distances and turbidity levels are also shown for 
comparison. Figure 15 shows examples of the left and right 
camera images under different turbidity levels at a distance 
of 600 mm between the ROV and 3D marker. According 
to the experimental results, the system can recognize the 
3D marker up to a turbidity of 12.2 FTU at this distance, 
which corresponds to the recognition threshold (Table 1). 
Similarly, the maximum turbidity at which the marker can 
be recognized for each distance is given in Table 1.

Fi
tn

es
s v

al
ue

0 20 40 60 80 100 120

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Milk concentration ) 

Control 
threshold

Distance of 1000 mm
Distance of 800 mm
Distance of 600 mm
Distance of 400 mm

A B

Fig. 17   Fitness value plotted against milk concentration at differ-
ent distances between the ROV and 3D marker. The fitness value 
decreased with increasing milk concentration (increasing turbidity). 
The maximum turbidity levels for approaching from 1000 mm, visual 
servoing from 600 mm, and docking at 400 mm determined experi-
mentally according to the defined control threshold are indicated by 
vertical lines. For example, given the defined control threshold of 0.6, 
approaching from 1000 mm, visual servoing and docking can be per-
formed up to a milk concentration of 2.43 ml/m3 that is indicated by 
A  in this figure, and visual servoing and docking can be performed 
from 600 mm up to a milk concentration of approximately 33.95 ml/
m3 indicated by B  . (Refer to Table I for more accurate numerical 
values.)

Fig. 18   Docking operation 
steps, including approaching, 
visual servoing, and docking. 
Note that approaching is per-
formed by manual control at the 
beginning of the docking opera-
tion in this study. The error 
allowance for docking is ± 20 
mm in the y- and z-directions 
and ± 7

◦ in the rotation about 
the z-axis

Approach homing unit

Visual servoing to 
standby Position

Position 
sufficiently 
accurate?

Marker 
found?

Docking motion

Docking 
within allowed 

error?

Fitting
complete?

Fitting process

Yes

No

Yes

No No

Yes

A

A

Docking Approaching 

Visual servoring

Yes

No
P

Start

Stop



	 Journal of Marine Science and Technology

1 3

Figure 16 shows the fitness distributions at different tur-
bidity levels for a distance of 600 mm between the ROV and 
3D marker. The height of the peak of the fitness distribution 
decreased with increasing turbidity. However, in areas I and 
II, the pose represented by the peak corresponded with the 
true pose even though the height of the peak was reduced 
by increasing turbidity.

These experimental results confirm that the proposed 
system is robust against turbidity up to 12.2 FTU at a dis-
tance of 600 mm. When the turbidity level reached 20.4 
FTU, there was no peak at the true pose (Fig. 16), indicat-
ing that the 3D marker could not be recognized. In a real 
undersea environment, it is necessary for the ROV to be 
able to determine whether the turbidity level is too high to 
conduct the docking operation. To enable this independ-
ent determination, the control threshold could be defined 
based on the experimental results, as shown in Fig. 17. 
The recognition results given in terms of the fitness are 
useful as a turbidity indicator during docking operations. 
For example, the ROV can return to the sea surface or 
wait until the turbidity level is low enough to dock and 
recharge its battery. In Fig. 17, fitness value is plotted 
against milk concentration at different distances between 
the ROV and 3D marker. When the control threshold is 
determined experimentally as 0.6, approaching from 1000 
mm, visual servoing and docking can be performed up to 
a milk concentration of 2.43 ml/m3 , and visual servoing 

and docking can be performed from 600 mm up to a milk 
concentration of approximately 33.95 ml/m3 with the tur-
bidity of 7.5 FTU. Based on this experimental result, the 
docking performance were verified under selected different 
turbidity levels and explained in the next section.

5 � Docking experiment under turbidity 
in a pool

5.1 � Docking method

In an underwater battery recharging operation, the AUV 
must navigate to a seafloor station and dock at the station for 
recharging. Normally, a cone-shaped docking station with light 
sources mounted around its entrance is used for a torpedo-
shaped AUV. The hovering-type AUV studied in [15] docks by 
descending to the station. To perform docking experiments for 
underwater automatic charging using the proposed approach, 
a rod was installed on the right side of the underwater robot, 
and a matching cylindrical hole was attached to the left side of 
the target. When the ROV is in the correct pose relative to the 
object, it must move forward to insert the rod into the hole. A 
flowchart of the proposed docking method is shown in Fig. 18. 

Fig. 19   Layout of the docking 
experiment showing the process 
of aligning the ROV with the 
3D marker. a Desired pose 
in the visual-servoing step. b 
Desired pose at the completion 
of the docking step
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This method is divided into the three steps: approaching, vis-
ual servoing, and docking. In the approaching step, the AUV 
estimates its approximate position relative to the station using 
other methods, such as an acoustic method, and approaches 
the station. The approaching step was performed manually in 
this study. In the visual-servoing step, the AUV measures the 
precise relative pose using stereo-vision-based estimation and 
remains at the entry point for the final docking step, as shown 
in Fig. 19a. In the docking step, the AUV moves to the final 
desired pose, as shown in Fig. 19b, at a speed of 30 mm/s in 
the x-direction as long as the errors of the y- and z-components 

of the position of the ROV and that of its orientation about the 
z-axis relative to the target remain within ± 20 mm and ± 7◦ , 
respectively, for a minimum of 165 ms (five times the length 
of the control loop). Whenever any of these components of the 
error of the relative pose exceeds this allowance, the process 
switches to visual servoing, as shown by the path labeled “P” 
in Fig. 18. This process of switching between the visual servo-
ing and docking steps was implemented to avoid any physical 
damage that could result from contact between the rod and the 
hole in the target.

Fig. 22   Fitness value results for 
experiment B. The photographs 
show examples of the left and 
right camera images from which 
the pose was estimated using 
the RM-GA. From left to right, 
the photographs show selected 
images from the visual-servoing 
step, the docking step, and after 
the completion of the docking 
step. The poses estimated using 
the RM-GA and the full-search 
method are indicated in the 
fitness value distributions for 
each of these docking steps. 
The area around the peak of the 
fitness distribution was searched 
by scanning all planes of the 
images. The presence of a peak 
in the distribution indicates the 
robustness of the recognition 
method against turbidity, and 
the correspondence between 
the peak and the black points 
indicates the accuracy of the 
RM-GA results. The black 
point represents each gene of 
RM-GA. The pose yielded by 
the RM-GA is shown in Fig. 24
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5.2 � Motion controller using proportional controller

The proportional controller is used to control the vehicle. 
The four thrusters that are mounted on the underwater robot 
are controlled by sending the command voltage based on the 
feedback relative pose between the underwater robot and the 
object. The block diagram of the control system is shown in 
Fig. 20. The control voltage of the four thrusters is given by 
the following equations:

(1)Surge direction ∶ v1 = kp1(xd − x) + 2.5

(2)Vertical axis rotation ∶ v2 = kp2(�3d − �3) + 2.5

where v1 , v3 , and v4 are the control voltage of the four thrust-
ers of x, z, and y directions, respectively, shown by �H in 
Fig. 3. xd, yd, zd are the desired relative pose between the 
vehicle and the target. �3d is the rotation direction around 
the z-axis and its command voltage is expressed as the value 
of v2 . According to the experimental results, the gain coef-
ficients have been adjusted to perform the best condition for 
visual servoing.

(3)Heave direction ∶ v3 = kp3(zd − z) + 2.5

(4)Sway direction ∶ v4 = kp4(yd − y) + 2.5,

Fig. 23   Same as Fig. 22 for 
experiment E. The pose yielded 
by the RM-GA is shown in 
Fig. 25
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5.3 � Docking task

The docking experiment was conducted under turbid condi-
tions in a large pool (length 2870 mm × width 2000 mm × 
height 1000 mm) filled with 4000 l of clear water. Experi-
ments were conducted in a dark environment, and turbidity 
was simulated by adding milk in amounts ranging from 0 to 
250 g in increments of 50 g, corresponding to the concen-
tration conditions labeled A – F  in Table 1; these docking 
experiments are hereafter referred to as experiments A–F, 
respectively. A photograph of this experiment is shown in 
Fig. 21. This experiment was conducted to verify whether 
each of the considered conditions were in the control area. In 
this system, the images acquired from the dual-eye camera 
are sent to the PC. The real-time recognition of the 3D pose 
of the target is then executed using the model-based match-
ing method and the RM-GA in the PC software. Finally, 
based on the error between the actual and recognized poses, 
command signals generated by a position controller for the 
thrusters are input into the ROV to ensure it maintains the 
target pose. In the docking experiments, the ROV is placed 
at a distance of approximately 600 mm in front of the 3D 

marker with an arbitrary initial orientation. The docking 
alignment process is shown in Fig. 19 along with the marker 
and ROV coordinate systems.

Among the six docking experiments conducted in the 
large pool, experiments B and E (milk concentrations of 
12.125 ml/m3 and 48.5 ml/m3 , respectively) are discussed in 
detail. Figures 22 and 23 show the fitness values for experi-
ments B and E, respectively. The results obtained using the 
full-search and RM-GA methods were compared for some 
sample points during the visual servoing and docking steps 
and after docking completion. The poses estimated by all 
of the genes in the RM-GA are represented by black points, 
and the peak fitness value represents the estimated pose. 
The fitness distribution for each pose was searched using 
the full-search method, which involves scanning all planes 
to find the true pose. A comparison of the fitness values 
obtained in experiments B and E, especially those obtained 
during visual servoing, reveals that increasing the turbidity 
reduces the fitness value.

Figures 24 and 25 show the desired pose of the 3D 
marker and the pose estimated by the RM-GA. Note that 
the ROV is controlled manually until the 3D marker is 
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recognized by the system. For example, the recognized 
poses during the first 10 s in Fig. 23 are not meaning-
ful, because the fitness value is less than 0.22. Therefore, 
visual servoing started at approximately 8 s in this case 
as a result of the system switching from manual mode to 
visual-servoing mode. Visual servoing continued until the 
y- and z-components of the estimated position were within 
the error allowances of the desired pose. When these dock-
ing criteria were satisfied, the docking step was initiated. 
During the docking process, the rod is inserted into the 

docking hole by gradually decreasing the desired value of 
the position along the x-axis. Note that the desired posi-
tion along the x-axis reduces until it reaches a distance 
of approximately 350 mm from the 3D marker, at which 
point docking is complete. In experiments A–E, the dock-
ing operation was completed successfully within 60 s after 
the start of visual servoing. The longest time required for 
completion among the five successful docking experiments 
was 60 s in experiment E. In experiment F, in which the 
turbidity level was 11.2 FTU (60.6 ml/m3 of milk), the 3D 
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marker could not be recognized by the system, as shown in 
Fig. 26, because the fitness value was less than 0.2. Thus, 
docking was successfully executed under the turbidity lev-
els in experiments A–E, and the system failed to recognize 
the target under the conditions of experiment F.

6 � Continuous iterative docking experiment 
in the sea

Continuous iterative at-sea docking trials were conducted 
near Ushimado, Japan, as shown in Fig. 27. The docking 
station (length 600 mm × width 450 mm × height 3000 mm) 
was oriented with its long sides perpendicular to the pier. 
Underwater cameras were installed in the docking station 
to observe the performance of the ROV during operation, 

as shown in Fig. 28. Docking tests began with the vehicle 
at a distance of 1.5 m in front of the dock. A shallow sea 
area was selected as the docking area, because the high tur-
bidity in a shallow region would allow the verification of 
the robustness of the proposed system against turbidity. The 
turbidity level measured by the turbidity sensor during the 
experiment was 7.7 FTU; as indicated by Table 1, a turbid-
ity of approximately 7 FTU is within the control area. The 
turbidity was measured at the position of 600 mm in front 
of the 3D marker in the sea. The depth of the sea floor in 
the docking area is 2.1 m. Natural waves in the sea contin-
ued, while the experiments were conducted. The ROV was 
tethered to an onshore platform with a cable of 200 mm in 
length. To demonstrate the underwater battery recharging 
operation, a docking rod was attached to vehicle, and a dock-
ing hole affixed with a 3D marker was designed. The main 
task for the vehicle was to automatically insert the dock-
ing rod into the docking hole under visual-servoing control. 
First, the vehicle was guided to the dock by manual control 
until the 3D marker was in the field of view (at a distance 
of approximately 600 mm from the target). In the visual-
servoing step, the vehicle took the desired pose for dock-
ing. When the vehicle stably achieved the position within 
an error of ±30 mm in the image plane (y, z) for 165 ms, 
it began to insert the docking rod by gradually decreasing 
the distance between the vehicle and target in the x-direc-
tion until it reached 350 mm, as shown in Fig. 18. After the 
docking operation was complete, the vehicle returned to a 
distance of 600 mm from the target in the x-direction for the 
next docking iteration.

Continuous iterative docking was conducted success-
fully for 19 iterations. The fitness function and desired 
position in the x-direction in this experiment are shown 
in Fig. 29. Among the 19 iterations, docking iteration 3, 
which was one of the shortest docking operations, and 
docking iteration 7, which was one of the longest, were 
analyzed in detail; the results of these two iterations 
are shown in Figs. 30 and 31, respectively. Figure 30a, 
b, c–f shows the fitness function, the vehicle trajectory 
in 3D space, and the components of the recognized and 
desired poses, respectively, for docking iteration 3. The 
same results are shown in Fig. 31 for docking iteration 
7. Docking iteration 3 was completed successfully within 
30 s. In contrast, the completion of docking iteration 7 
took more than 60 s. The position along the y-axis and 
the rotation about the z-axis fluctuated significantly, which 
delayed docking completion. This fluctuation seems to 
have been an effect of the waves. Therefore, the vehicle 
trajectory in docking iteration 7 (Fig. 31b) shows much 
larger variations than that of docking iteration 3 (Fig. 31b). 
As shown in Fig. 31c, there was a gap between the desired 
and estimated positions along the x-axis, because the error 
allowance for the docking operation is defined for only the 

Fig. 27   ROV and a frame in which docking station has been installed. 
The docking station is shown in Fig. 28

Fig. 28   Continuous iterative docking experiments in the sea. These 
photographs were taken by two underwater cameras installed in the 
docking station and from a pier
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positions along the y- and z-axes and the rotation about the 
z-axis. Additionally, the desired position along the x-axis 
remained constant for some periods during the docking 
step because of some fluctuations in the position along 
the y-axis and especially the rotation about the z-axis that 
exceeded the error allowance, as shown in Fig. 31d, f. This 
condition triggers a switch from the docking step to the 
visual-servoing step, as shown by the path labeled “P” in 
Fig. 18.

During the undersea docking experiments, all data were 
stored for offline analysis. However, the left and right camera 
images were stored only up to docking iteration 7 because of 
limitations to the memory of the PC. As shown by the exper-
imental results of the docking iterations, the docking opera-
tions conducted in the sea at turbidity levels below 7.7 FTU 
were executed successfully with good agreement between 
the analysis of the recognition accuracy in the pool under 
turbid conditions and the experimental docking results; 
the turbidity limit of 7.7 FTU agrees well with the set of 

conditions labeled E in Table I. A comparison of the docking 
performance in the sea in docking iteration 7 with that in the 
pool in experiment E reveals that the docking period in the 
sea docking experiment was nearly twice that in the pool 
docking experiment and the fluctuation in the pose in the sea 
docking experiment, especially regarding the position along 
the y-axis and the rotation about the z-axis (Fig. 31d, f, was 
larger than that in the pool docking experiment (Fig. 25). 

Fig. 29   Results of continuous 
iterative docking experiment. 
a Fitness value plotted against 
time. b Desired position in the 
x-direction during 19 dock-
ing iterations in the sea. The 
numbers along the bottom of 
the plot represent the docking 
iteration number, and the dura-
tion of each docking iteration 
is represented by the length 
of the corresponding arrow. 
Examples of the left and right 
camera images taken during the 
visual-servoing and docking 
steps and after docking comple-
tion are shown above and below 
the plot. Detailed results for 
docking iterations 3 and 7 are 
presented in Figs. 30 and 31, 
respectively
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Fig. 30   Results for docking iteration 3. a Fitness value plotted against 
time. b Vehicle trajectory in 3D space. c–f Recognized position along 
the x-, y-, and z-axes and rotation about the z-axis obtained by the 
RM-GA. The desired position along the x-axis remained constant 
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ment of the ROV in the y-direction when the rotation of the ROV 
about the z-axis was almost zero

▸



Journal of Marine Science and Technology	

1 3

0
0.2
0.4
0.6
0.8

1
1.2
1.4

120 125 130 135 140 145 150
Time [s]

Fi
tn

es
s v

al
ue

(a) (b)
x

z

y

0

100

200

300

400

500

600

700

120 125 130 135 140 145 150

Time [s]

Po
si

tio
n 

al
on

g 
x-

ax
is

 [m
m

]

(c)

Desired position
Estimated position

Visual servoing Docking Docking

completion(B)

(A)

-100
-80
-60
-40
-20

0
20
40
60
80

100

120 125 130 135 140 145 150

Time [s]

Po
si

tio
n 

al
on

g 
y-

ax
is

 [m
m

]

(d)

Visual servoing Docking Docking completion

(B)

A1 A2 A3

Left and right camera images taken at A1

Tip of docking rod

A1 A2 A3

A1 A2 A3

-30

-20

-10

0

10

20

30

120 125 130 135 140 145 150

R
ot

at
io

n 
ab

ou
t z

-a
xi

s [
°]

Time [s]
(f)

Visual servoing Docking Docking completion

(A)

A1 A2 A3

Desired rotation
Estimated rotation
Error allowance

Desired position
Estimated position
Error allowance

-100
-80
-60
-40
-20

0
20
40
60
80

100

120 125 130 135 140 145 150

Po
si

tio
n 

al
on

g 
z-

ax
is

 [m
m

]

Time [s]
(e)

Visual servoing Docking Docking

completion

A1 A2 A3

Desired position
Estimated position
Error allowance

Left and right camera images taken at A2

Left and right camera images taken at A3

(g)



	 Journal of Marine Science and Technology

1 3

(b)Time [s]

Fi
tn

es
s v

al
ue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

220 240 260 280 300 320 x

z

y

Time [s]

Po
si

tio
n 

al
on

g 
y-

ax
is

 [m
m

]

(d)

-100
-80
-60
-40
-20

0
20
40
60
80

100

220 240 260 280 300 320

Visual servoing Docking Docking completion

(B)

(a)

Time [s]

Po
si

tio
n 

al
on

g 
x-

ax
is

 [m
m

]

(c)

0

100

200

300

400

500

600

700

220 240 260 280 300 320

Visual servoing Docking

(A)

(B)

Docking

completion

Left and right camera images taken at A2

A1 A2 A3

Left and right camera images taken at A1

Tip of docking rod

A1 A2 A3

A1 A2 A3

Desired position
Estimated position
Error allowance

R
ot

at
io

n 
ab

ou
t z

-a
xi

s [
°]

Time [s]
(f)

-30

-20

-10

0

10

20

30

220 240 260 280 300 320

Visual servoing Docking Docking completion

(A) (B)

A1 A2 A3

Desired rotation
Estimated rotation
Error allowancePo

si
tio

n 
al

on
g 
z-

ax
is

 [m
m

]

Time [s]
(e)

-100
-80
-60
-40
-20

0
20
40
60
80

100

220 240 260 280 300 320

Visual servoing Docking Docking

completion

A1 A2 A3

Desired position
Estimated position
Error allowance

Left and right camera images taken at A3

(g)

Desired position
Estimated position



Journal of Marine Science and Technology	

1 3

Therefore, the turbidity tolerance described in Table 1 for 
the proposed system in a pool environment was verified 
experimentally in a real sea environment. The control and 
recognition areas (areas I and II in Table 1) can be expanded 
by improving the system in future.

7 � Conclusion

In this work, the turbidity tolerance of a real-time stereo-
vision-based pose estimation system using RM-GA was 
verified. The critical problem of determining how and why 
the RM-GA is suited to estimate the pose in real time in 
a changing environment, especially in terms of turbidity, 
was discussed in this paper. Experiments were conducted in 
different environments including the sea. The performance 
of the 3D pose estimation system under different turbid-
ity levels was analyzed, and the turbidity tolerance of the 
system was examined experimentally. In future work, the 
system will be developed to be able to work under higher 
turbidity levels exceeding 10 FTU and in day- and nighttime 
operations.
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