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Visual Docking Against Bubble Noise With 3-D
Perception Using Dual-Eye Cameras
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Waichiro Godou, Tatsuya Sakamoto, and Mamoru Minami

Abstract—Recently, many studies have been performed world-
wide to extend the persistence of underwater operations by
autonomous underwater vehicles. Underwater battery recharging
technology is one of the solutions even though challenges still
remain. The docking function plays an important role not only
in battery recharging but also in other advanced applications,
such as intervention. Visual servoing in undersea environments
inevitably encounters difficulties in recognizing the environment
when captured images are disturbed by noise. This study describes
the effective recognition performance and robustness against air
bubble disturbances in images captured by a real-time position
and orientation (pose) tracking and servoing system using
stereo vision for a visual-servoing-type underwater vehicle. The
recognition of the vehicle pose based on dynamic images captured
by dual video cameras was performed by a real-time multistep
genetic algorithm (RM-GA). In previous studies, the docking
performance was investigated under the condition that there
were no disturbances in the captured images that address image
degradation. In this paper, the robustness of the RM-GA against
air bubble disturbances was verified through visual servoing and
docking experiments in a pool test to confirm that the system can
continue to recognize the pose of the 3-D marker and can maintain
the desired pose by visual servoing. Then, the effectiveness of the
proposed system against real disturbances such as turbidity that
may degrade the visibility of the system in the sea was confirmed
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by conducting the docking experiment in a real sea, having verified
the practicality of the proposed method.

Index Terms—Air bubble noises, dual-eye cameras, genetic al-
gorithm (GA), underwater vehicle, visual servoing.

I. INTRODUCTION

ANUMBER of studies have examined control and guid-
ance systems for underwater vehicles [1]–[5]. Robust

vision-based target identification and homing using self-similar
landmarks, which enables robust target pose estimation using
a single camera, has been proposed [1]. The pose of an
autonomous underwater vehicle (AUV) measured using an
electromagnetic homing system has also been investigated
[2]. In [3], Girona 500 AUV was developed for inspection
and intervention tasks for the seafloor survey. In that work,
several sensors, such as sonar, GPS, pressure sensor, velocity,
fiber optic gyro, and plural video cameras, are used to localize
an object. But the cameras look at different targets, so these
approaches do not realize parallactic nature. In the approach of
[4], an autonomous docking system for intervention using sonar
and video camera system was developed. After performing
the docking operation, the manipulator turns valves. The
autonomous underwater manipulator for intervention mission
in the oceanic environment was developed by SAUVIM [5].

Recently, vision-based systems for underwater vehicles have
been studied for different applications [6]–[17]. Even though the
vision-based approach is restricted to short-range measurement,
and it degrades in the presence of turbidity and bubbles made
by waves, it has the potential for the detection of 3-D poses,
which is essentially necessary for docking a vehicle precisely.
Most studies on guidance techniques using cameras for hom-
ing or docking operations are based on monocular vision to
acquire the distance between a target and a vehicle [6], [7]. The
reliable pose estimation of underwater docking using a single
camera through a scene invariant approach was proposed in
[8]. However, the methodology in [8] is thought to be difficult
for real-time pose estimation, and it has not been applied to
docking. An autonomous underwater torpedo-type vehicle was
optically guided by lights mounted around the entrance of a
docking station using one camera in [9]. A docking method for
hovering-type AUVs using one camera based on both acoustic
and visual positioning was proposed in [10]. The merit of the
monocular camera is that the configuration is simple, and pro-
cessing time seems to be less than that of the multicameras unit.
The disadvantage is that the precision of distance measurement
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of the camera’s depth direction is not enough for applications in
which high homing accuracy is required.

To overcome the limitation of single-camera-based systems,
there are some studies using two cameras [11]–[17]. Binocular
vision was used in some of these studies to detect the posi-
tion of the vehicle and dock with a station [11]–[14]. In [11],
AUV docks autonomously into a funnel-shaped docking station
and then a vehicle-mounted manipulator performs several given
tasks. In spite of that, two cameras have been mounted on the
vehicle, one looking forward to estimate the panel pose and
the other pointing down to help the mounted manipulator con-
duct some tasks. In [12], even though two cameras were used,
one was facing downward and the other was looking forward
for the purpose of obstacle avoidance and docking. A vision
system for autonomous guidance using two cameras to track
separate artificial underwater landmarks was proposed in [13].
In another study, the vehicle position was estimated using two
cameras and a sonar system [14]. In that approach, the position
of the vehicle was calculated by combining data from Doppler
sonar and charge-coupled device (CCD) cameras, which does
not deal with the orientation for controlling the vehicle. In two
of the studies mentioned above [11], [12], “stereo vision” was
not used even though two cameras were used. On the other
hand, a concept of “stereo vision” that authors conceive creates
a method that has a 3-D space perception by having plural im-
ages of one target object, which enables the pose estimation to
exploit parallactic nature.

There are some studies using stereo vision for underwater
vehicle [15]–[17]. The merit of the stereo camera is that the
space recognition is superior to the monocular camera. A stereo
vision system for an underwater vehicle-manipulator system
consisting of two mobile cameras that can pan, tilt, and slide
independently to observe and measure the position of the target
object was proposed in [15]. The approach in [15] to obtain vi-
sual information, by actively rocking the cameras, has not been
used for real-time operations, such as docking. A vision sys-
tem for automated ship-hull inspection, based on computing the
necessary information for positioning, navigation, and mapping
of the hull from stereo images was proposed in [16] and [17].
How the inherent complexities faced by a monocular system are
resolved with binocular vision has been experimentally proved
in [17]. Even though stereo vision was used aiming for under-
water vehicle, the methodologies in [15]–[17] were not applied
in the docking test to prove the functionality and practicality of
their proposed methods.

Some studies have used a stereo vision technique for pose
estimation, although they have not been applied to underwa-
ter vehicles [18]–[21]. In [18], the pose estimation problem
in real time was solved using multiple cameras and the ex-
tended Kalman filter for a moving robot. The method in [18]
was based on epipolar geometry obtained from multiple views
projected to multiple cameras. A cloth recognition and handling
system for unique cloths using stereo vision that has tolerance
against different light conditions was proposed in [19]. In [20],
3-D evolutionary pose tracking using an eye-vergence function
was verified through frequency response experiments. In [21],
the 3-D pose of the object was estimated and tracked in real
time using a mono and stereo camera. The methodology in [21]

Fig. 1. Dual-eye visual servoing using 3-D marker and dual-eye cameras.

was not yet applied in underwater environment but applied to
robot set on the ground. Since the above-mentioned studies have
been applied on the ground, the robustness against unstructured
environment could not be concluded for a practical docking test
in the sea environment.

When a vehicle is used to explore an underwater environment
using visual information, a number of disturbances in images,
such as swirling mud from the bottom of the sea, fish, and
plankton, can cause difficulties in pose estimation. Therefore,
techniques are required for accurate recognition in water when
disturbances occur in vision. There are some studies on image
recognition with consideration of image degradation [22]–[25].
In [22] and [23], two cameras and three cameras, respec-
tively, are used to increase the image recognition robustness by
analyzing degradation factors in turbid water conditions. Several
image recognition approaches for underwater robots to recog-
nize a target object have been proposed in [24] and [25], where
a ray tracing method was used to measure the 3-D shape of
objects in consideration of refractive effects. In [25], noise was
eliminated from a moving image to divide objects in the image
into still backgrounds using an image processing technique. In
that approach, epipolar constraints were used to search for cor-
responding points from a pair of cameras to measure the pose
of the 3-D objects, which uses 2-D-to-3-D inverse reconstruc-
tion. The primary drawback of the inverse reconstruction is that
1) it is a problem to reconstruct 3-D pose from reduced informa-
tion in 2-D spaces, an ill-posed problem; and 2) it is the effect
of incorrectly mapping points in images, especially when im-
ages contain disturbances. The incorrect mapping causes pose
estimation errors.

To extend the persistence time of an underwater operation, the
dual-eyes vision-based docking approach avoiding the limita-
tions of the above-mentioned studies was proposed in previous
works [26]–[31], which have utilized a hovering-type remotely
operated vehicle (ROV), as shown in Fig. 1. A 3-D pose-tracking
system for docking using stereo vision was developed in [26]
and was verified as follows. First, the stability of the proposed
visual servoing regulation system was evaluated using abrupt
disturbances. Second, underwater docking can be completed by
switching between visual servoing and docking modes based on
the error threshold. In a previous study, a deep-sea docking simu-
lation experiment was conducted under a variable lighting envi-
ronment [27]. Moreover, docking experiments were conducted
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for undersea battery recharging application [28]. The 3-D-pose-
tracking problem for estimating the pose of a 3-D marker was
converted into an optimization problem, where the genetic al-
gorithm (GA) was selected and utilized as a real-time multistep
GA (RM-GA) for real-time pose estimation, since simple GA
helps shorten optimizing calculation time for real-time image
perception. In [29], the RM-GA performance was analyzed by
choosing the best parameters by an evolutionary process, and
the effectiveness of the RM-GA was evaluated by conducting an
automatic docking experiment in an indoor pool. Experiments
were conducted to verify the robustness of the proposed system
against physical disturbances in different situations [30]. The
turbidity tolerance of the proposed system was reported in [31],
where the performance of the 3-D pose estimation was con-
ducted under different turbidity levels in the pool to confirm the
effectiveness of the proposed system. However, simulation of
sea conditions in a pool is not enough to confirm the effective-
ness and practicality of the proposed system against different
disturbances. Therefore, in this study, the performance of the
RM-GA was confirmed by conducting docking experiments in
an environment disturbed by bubbles and in the sea with natural
turbidity.

The rest of this paper is organized as follows. Section II
presents the problem statement and contributions of this paper.
Section III describes the proposed system for an underwater
vehicle. The experimental results used to investigate the per-
formance of the proposed system are presented, analyzed, and
discussed in Section IV. Conclusions and areas for future re-
search are presented in Section V.

II. PROBLEM STATEMENT AND CONTRIBUTION

A. Problem Statement

The deformation of images may appear in the water column
at the bottom of the sea and also appear near the water surface
when inspecting the hull of a ship, so the deformation caused by
bubbles is a real obstacle for visual recognition in the sea. An
additional effect of the bubbles is that the bubble disturbance
induces upward fluid flow that affects the dynamical stability
of the vehicle. As a result, bubble disturbance has the dual
influences of degrading both image acquisition and dynamical
stability. Therefore, construction of stable pose tracking and the
stable control system in the presence of air bubble is important,
and it may help improve the practical abilities of the ROV or
AUV that could be useful in an actual sea environment. Then, the
effectiveness of the proposed dual-eye control system should be
evaluated from the viewpoints of practicality and functionality
in natural environments by conducting docking experiments in
the presence of turbidity in an actual sea.

B. Contribution

In previous works, the performance of the proposed system
to estimate the vehicle’s pose in real time was examined under
the condition that images were not disturbed. Image deforma-
tion and occlusion are noise that hinders visual feedback con-
trol. Therefore, it is worth examining the performance of visual

Fig. 2. Block diagram of dual-eye visual servo control system.

servoing in the presence of image degradation and occlusion.
The stability of a visual-servo-type underwater vehicle system
using a 3-D marker in the presence of air bubbles was investi-
gated in an indoor pool in [32]. However, the effectiveness of
the RM-GA when air bubbles disturbed pose estimation was
not discussed in detail. In [33], the regulation performance in
which the ROV maintains a desired pose with respect to a 3-D
marker, even in the presence of air bubbles in front of the cam-
eras, was evaluated. The 3-D pose-tracking performance was
then checked while the 3-D marker was moving with a periodic
surge motion having a sinusoidal position profile. Even though
the proposed system was verified under air bubble disturbances,
the docking performance against air bubble disturbances was not
tested. The effectiveness and practicality of the real-time 3-D
pose estimation system was not confirmed by conducting a sea
docking experiment in previous studies. The main contributions
of this paper are as follows.

1) Fitness distributions that RM-GA are needed to be opti-
mized were scrutinized to clarify why the proposed RM-
GA is tolerable against noise in images distorted by air
bubbles, which is described in Section IV-A. The system is
tolerable against noise because the pose-tracking problem
is converted into an optimization problem, which enables
the pose tracking to be independent of the height of the
correlation function peak, as long as the true pose has the
highest peak.

2) The tracking motion of the closed-loop dynamics of an
ROV with real-time pose feedback when the deformation
on the cameras images imposed by air bubbles was ex-
plored by analyzing the RM-GA’s behavior with and with-
out air bubble noise under different background sheet. The
stability of the proposed system was confirmed, presented
in Sections IV-B and IV-C.

3) The effectiveness of the proposed system was checked by
conducting the docking experiment in a pool and an actual
sea, described in Sections IV-D and IV-E.

III. PROPOSED SYSTEM

Fig. 2 shows a block diagram of dual-eye visual servoing for
an underwater vehicle (see right-hand side of Fig. 2). A series
of images are captured by dual-eye cameras mounted to the
underwater vehicle and are then sent to a PC (see left-hand side
of Fig. 2) through a cable. The relative pose of the vehicle is
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(a) (b)

Fig. 3. (a) Correct and incorrect mapping in 2-D-to-3-D space and (b) pairing
of points in 3-D-to-2-D projection.

estimated in real time by the RM-GA, which is implemented
in the PC. The estimated pose of the current condition of the
underwater vehicle is entered into the 3-D motion controller
as an input signal to adjust the thrust force of the robot. By
eliminating the error between the estimated pose and the desired
pose, the underwater vehicle is controlled to achieve a desired
pose with respect to a 3-D marker.

A. Three-Dimensional-Model-Based Matching Method Using
Dual-Eye Cameras and a 3-D Marker

The 3-D pose estimation method using dual-eye cameras and
a 3-D marker was introduced and explained in [36]. In this
section, the method is briefly discussed for the reader’s conve-
nience.

In conventional approaches for 3-D perception using plural
cameras, recognition of objects and their relative pose is imple-
mented by feature-based recognition using 2-D-to-3-D recon-
struction calculations, in which the reconstructed shape of the
3-D target object is determined from a set of points in differ-
ent images that are assumed to represent the same point on the
target object surface in 3-D space, generally using triangulation
and epipolar geometry. The main challenge in this type of ap-
proach is to ensure that points are correctly assigned to the same
point on a 3-D object. If a point in one image is incorrectly
mapped to a point in another image, the reconstructed point
in 3-D space does not represent the real 3-D object. Fig. 3(a)
shows the correct and incorrect reconstruction of a point through
2-D-to-3-D reconstruction, which has been recognized as an ill-
posed problem, since expanded information in 3-D space needs
to be reconstructed from degenerated image information in 2-D
space.

A pose estimation approach [36] based on 3-D-to-2-D model
projection was applied in this study because the forward pro-
jection from 3-D-to-2-D generates unique points in 2-D images
without any errors, as shown in Fig. 3(b), meaning that the issue
of incorrect mapping is avoided. With the 3-D-to-2-D approach,
3-D-model-based recognition was implemented in this study.

A 3-D-model-based matching method that uses the 3-D
marker to estimate its pose in real time using stereo vision

Fig. 4. Three-dimensional-model-based matching system with dual-eye cam-
eras, including concepts of 3-D-to-2-D projection and 2-D-to-3-D reconstruc-
tion.

was first proposed in [34] and extended in [35]. Fig. 4 shows the
3-D marker coordinate system ΣM , the ith model coordinate
system ΣM i , the left and right camera coordinate systems ΣCL

and ΣCR, and the left and right image coordinate systems ΣIL

and ΣIR. The origins of ΣM and ΣM i are the intersections of
the three lines perpendicular to the faces to which the spheres
are attached. The target is a 3-D marker that consists of three
spheres 40 mm in diameter and colored red, green, and blue. The
jth point on the ith model in 3-D space is projected onto the left
and right camera images correctly, and these positions are calcu-
lated by computer using a camera projection geometry. The solid
model of the real target object in space is projected naturally to
the dual-eye camera images, and the 3-D models—the poses of
which are given by an RM-GA gene—are projected from 3-D to
2-D. The correlation between the projected real 3-D marker and
the projected model is calculated in 2-D space. A correlation
function that considers the shape and color of the 3-D marker is
used as a fitness function in the RM-GA evolution process (as
described in detail in Section III-B). Multiple models that have
the same 3-D marker information (color, shape, and size) with
different poses are initially allocated randomly within the search
space and are projected from 3-D space to a 2-D image plane.
The projected models are then matched with the image captured
by dual-eye cameras, including the projected real target in 2-D
space. Finally, the best model with the maximum fitness value
is selected to represent the measured relative pose.

B. Fitness Function

After the models whose poses are defined by genes in the RM-
GA process are scattered in the 3-D search space, as shown in
Figs. 4 and 7(b), the degree to which the pose of the individual
3-D models overlaps with the real 3-D target in 3-D space is
evaluated in the 2-D space based on the correlation function
used as a fitness function in the RM-GA. Refer to [34] and [35]
for detailed descriptions of the derivation of a fitness function
from a correlation function. The fitness function evaluates the
correlation between an ith search model with its assumed pose
φi and the real 3-D marker in the left and right images. Note
that the gene representing the pose of the ith model is expressed
by φi . The intention of the designed fitness function is to have
a dominant peak at the true pose of the target. The construction
of the fitness function affects the optimum search performance
and influences the RM-GA’s convergence speed [29]. Fig. 5
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Fig. 5. Real 3-D marker and ith 3-D model projected to left camera’s 2-D space.

shows the real 3-D marker projected onto the left image plane
and the dotted circle that is the ith model obtained from the
3-D-to-2-D projection to the same plane. Each model consists
of three spherical balls (red, green, and blue). Each ball of the
model comprises an inner sphere SL,in and an enveloping sphere
SL,out , as shown in Fig. 5. The inner sphere of the red model
SL,in is intended to evaluate the red ball area of the real target,
and the enveloping sphere SL,out is for the background area.
For example, if the jth point ILrj (φi) on the red ball of an ith
3-D marker model defined by φi in the left image is located
in the inner sphere of the red ball of the real 3-D marker, as
denoted by the explanation marked with “�” in the figure, then
p

(
ILrj (φi)

)
= +1 in (1) and the fitness value of Fred (φi)

increases, whereas if the point in SL,in is not located in the
ball area, p

(
ILrj (φi)

)
= −1, then the fitness value decreases.

Concerning a point in SL,out , if it does not overlap with the ball
area, the fitness function increases by +1, and if it overlaps with
the ball area, it decreases by −1. Therefore, when the real target
and the model have identical poses, the fitness value reaches a
maximum. In other words, the fitness function has been designed
to have the highest peak only if the model’s pose is identical to
the pose of the real 3-D marker. Then, the pose of the model
with the maximum fitness value represents the pose of the real
target 3-D marker.

The fitness function in (1) was used in this study, as explained
below. The fitness function for the red ball, Fred (φi) with
assumed pose φi is calculated by averaging the fitness functions
of both the left camera image FL (φi) and right camera image
FR (φi). The summation in (1) is concerning the jth point
ILrj (φi), defined on the ith red 3-D model, whose pose is φi .
In (1), N represents the number of jth points, where j = 1, 2,
. . ., N

Fred (φi) =
1
N

{FL (φi) + FR (φi)} /2

=
1
N

⎧
⎨

⎩

⎛

⎝
∑

ILrj (φi )∈SL , in(φi )

p
(

ILrj (φi)
)

+
∑

ILrj (φi )∈SL , o u t (φi )

p
(

ILrj (φi)
)
⎞

⎠

+

⎛

⎝
∑

IRrj (φi )∈SR , in(φi )

p
(

IRrj (φi)
)

+
∑

IRrj (φi )∈SR , o u t (φi )

p
(

IRrj (φi)
)
⎞

⎠

⎫
⎬

⎭

/

2. (1)

The overall fitness function that evaluates all three colors is
defined as F (φi) = (Fred (φi) + Fgreen (φi) + Fblue (φi))/3.

C. Real-Time Multistep GA (RM-GA)

Relative pose estimation using dynamic images should be
optimized against a time-dependent and multipeak fitness dis-
tribution as fast as possible for making the closed-loop of visual
servoing stable. Since the speed of the estimation is related to
the time needed for the optimization calculation, not the iter-
ation number, the performance should be evaluated using the
convergence response measured in the time domain. However,
most optimization methodologies have focused on accuracy and
iteration number rather than calculation time. Instead of using
other methods that could provide powerful accuracy but also
increase the computational time, a simple optimization method
(RM-GA) was selected for this study based on its simple logic
and short calculation time, although it may not be the best in
comparison to other optimization methods. A more detailed ex-
planation of why RM-GA was used and how it works is provided
in our previous work [36].

The pose of the model is expressed as a 72-b string to represent
six pose parameters (x, y, z, ε1 , ε2 , and ε3), as shown in Fig. 6.
The first 36 b (12 b each for x, y, and z) represent the position
coordinates of the position of the 3-D marker. The last 36 b
(12 b each for ε1 , ε2 , and ε3) describe the orientation defined
by a quaternion.

Fig. 7(a) is a flowchart of the RM-GA process during conver-
gence from the first to final generation using dynamic images
input successively from video cameras. Fig. 7(b) is a graphical
representation of chromosome evaluation and evolution during
each 33-ms control period, and it illustrates how the RM-GA
makes genes converge in successively input dynamic images.
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Fig. 6. Structure of RM-GA chromosome. Twelve bits each for x, y, and
z represent the position coordinates of the 3-D model, and 12 b each for
ε1 , ε2 , and ε3 describe the orientation defined by a quaternion. The resolution
for x and y are 0.20 mm, z is 0.10 mm, and ε3 is 0.013◦.

Fig. 7. Process flow in RM-GA. (a) Flowchart of process steps while the
genes converge to the target 3-D marker from the first to the final generation and
(b) graphical representation of solution evaluation and chromosome evolution
during each 33-ms control period. The RM-GA converges to the solution in
successively input dynamic images.

A random population is first generated, and a new pair of left
and right images captured by the ROV are input. The appearance
of the real target and the first generation of models in 3-D search
space and the corresponding 2-D images of the target and mod-
els are shown at the top of Fig. 7(b). Each gene in the population
defined by φi is evaluated using the fitness function F (φi). Af-
ter the genes are ranked, the selection operator selects superior
genes based on a ranking of the current generation, which are
used for reproduction of new genes in the next generation. The
selection operator uses an elitist preservation strategy to identify
the best gene and carry it into the next generation as it is. That
is, the model with the best pose is intended to be retained for
the next evolving generation. A two-point crossover operator
creates the next generation of models by randomly exchanging
data between chromosomes at two bit locations. Then, the muta-
tion operator randomly changes additional bits in the crossover

TABLE I
PARAMETERS OF THE REAL-TIME MULTISTEP GA

Fig. 8. GA search space and the vehicle coordinates ΣH representing the
pose of ROV.

operation. In the next generation, possibly superior genes with
higher fitness values and better pose can be generated that more
closely match the real target’s pose than did the previous gen-
eration. Convergence of the genes to the maximum peak of the
fitness distribution, which moves in the time domain as the input
image changes, can be achieved through the RM-GA procedure.
These genes evolve through successive input video images, and
the fittest genes are transferred to the next generation to pre-
serve the pose as a possible solution for evaluation in the next
input images. This means that the fitness distribution in space
φi is time-varying, and it becomes multipeak by image noise
and other factors. Again, the convergence of the genes to a better
solution with higher fitness value than the previous generation
is continued within 33 ms, as shown by ©A in Fig. 7(a). By
performing this procedure repeatedly with a period of 33 ms,
RM-GA searches the optimum solution that represents the real
target’s true pose, as shown at the bottom of Fig. 7(b), and the
pose is output as shown by ©C for visual feedback control; it
is also shown by ©A in the controller block diagram in Fig. 9.
Although the pose of the target object is evaluated in 2-D space,
convergence occurs in 3-D space. After 33 ms has passed, as
shown by ©B in Fig. 7(a), a new video image is input, as shown
by ©D . Table III-C presents the RM-GA parameters, and the
RM-GA search space is shown in Fig. 8.

D. Three-Dimensional Motion Controller

The block diagram describing the control system is shown in
Fig. 9. The four thrusters mounted on the ROV are controlled
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Fig. 9. Block diagram of visual servo control. ©A in this figure represents output of pose estimated by RM-GA, which corresponds to ©C in Fig. 7.

Fig. 10. Photographs of ROV. (a) Front view showing two cameras. (b) Side
view showing traverse thruster. (c) Back view showing horizontal thrusters.
(d) Top view showing vertical thruster. The height, width, and length were 310,
280, and 380 mm, respectively.

by sending the command voltage based on the feedback relative
pose between the current pose (x, y, z, ε3) of the ROV repre-
sented by ΣH in Fig. 8 and the desired pose (xd, yd , zd , ε3d ).
In this study, the control of rotation around the x-axis and y-axis
in ΣH was ignored because the pose of the underwater robot
(center of buoyancy to be located above the center of gravity) is
passively restored to a stable state; that is, both rotation around
x- and y-axes are reduced passively to zero.

Surge direction : vx = kp1 (xd − x) + 2.5

(vx = 0 [V] for thrust 9.8 [N]

in XH of ΣH in Fig. 8

vx = 5 [V] for − 9.8 [N]) (2)

Sway direction : vy =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 [V] (yd − y < −5 [mm])

for thrust − 4.9 [N]
in YH of ΣH in Fig. 8

2.5 [V](−5 ≤ yd − y ≤ 5)

thrust equals to zero

0 [V] (yd − y > 5 [mm])

for thrust 4.9 [N]
in YH of ΣH in Fig. 8

(3)

Heave direction : vz = kp3(zd − z) + 2.5

(vz = 0 [V] for − 4.9 [N]

in ZH of ΣH in Fig. 8

vz = 5 [V] for 4.9 [N]) (4)

Orientation around ZH axis : vε3

= kp2(ε3d − ε3) + 2.5

(vε3 = 0 [V] for 0.882 [N · m]

in ZH of ΣH in Fig. 8

vε3 =5 [V] for −0.882 [N·m]).
(5)

In (2)–(5), vx , vy , and vz are the control voltages of the thrusters
for the movement of the ROV in the x-, y-, and z-directions,
respectively. Here, xd, yd , zd , and ε3d specify the desired
relative pose between the vehicle and the target. Moreover, ε3d

is the orientation around the z-axis and is controlled by the
value of vε3 . Since the horizontal thrusters shown in Fig. 10
are used not only for surge motion but also rotation around
the z-axis of ΣH depicted in Fig. 8, the voltage commands to
the horizontal thrusters were determined so as to satisfy the
requirements for surge and yaw motion. This thruster output
calculation for decoupled motion was conducted by hardware
logic in the ROV used in this experiment. This seems to be
incorporated into the ROV’s system because it was designed for
human’s manual operation, and the ROV has been modified into
device enable computer control.

In the regulation performance experiment, the control volt-
age vy for the y-direction was obtained by ON–OFF control,
which was a given condition of the design of the ROV used
in this study, and regulation of the other thrusters was ob-
tained by the p controller. The gain coefficients were adjusted
to achieve the best condition for visual servoing in the docking
process based on preliminary experimental results. In this study,
when approaching the docking station by thruster propulsion,
the movement and yaw control need to be accurate, since the
radius of the docking hole is 35 mm, as shown in Fig. 12. The
dead band characteristics might cause oscillation of the vehicle
when it is operated without linearization in the control system
for visual servoing. Therefore, the dead band characteristics of
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Fig. 11. Left column shows initial characteristics of thrust or torque against control voltage and the right column shows adjusted characteristics by removing the
dead band and linearization. (a) Initial characteristics in x-axis direction. (b) Characteristics after removing dead band (black dots) and adjusting (solid line) in
x-axis direction. (c) and (d) Initial and adjusted characteristics in z-axis direction. (e) and (f) Initial and adjusted characteristics around z-axis.

Fig. 12. Visual servoing experiment with bubble disturbances between the
ROV and the 3-D marker, and layout of the docking experiment. The ROV is
with a rod (8 mm × 6 mm) on its right-hand side, and the 3-D marker is with a
docking hole having a radius of 35 mm on its left-hand side. The center distance
between the docking hole and the 3-D marker was 145 mm. Two instruments
were designed to intermittently generate bubbles in the water using air pumps.

the ROV that were confirmed in preliminary experiments in
Fig. 11(a), (c), and (e) were eliminated, as shown by solid lines
in Fig. 11(b), (d), and (f), respectively. However, the saturations
were ignored in the linearized approximation, since pose of the
visual servoing was confirmed to be stable by preliminary visual
servoing experiments in a pool, in which the output voltages of

vx, vy , vz , and vε3 did not reach the fringe areas of 0 and 5 V
during stabilizing and docking. For successful docking, the area
of saturation should be avoided during visual servoing and dock-
ing, since the saturation character may increase oscillation of
the vehicle, possibly leading to an unstable and uncontrollable
state. The relation between voltage and induced velocity was
derived experimentally using (6) as shown at the bottom of this
page, including coupling effects. In (6), Vx, Vy , and Vz are the
velocities of the x-, y-, and z-axis directions, respectively, in
meter per second; ωε3 is the angular velocity of the orientation
around the z-axis in radian per second; and vx, vy , vz , and vε3
are the output voltages in each direction that are calculated by
the controller using (2)–(5).

E. Remotely Operated Vehicle and 3-D Marker

In this experiment, an ROV manufactured by KOWA Cor-
poration, Fuji, Japan, is used, as shown in Figs. 10 and 12.
The ROV was equipped with a compound eye visual sensor
(imaging element: CCD, 380 000 pixels, signal system: NTSC,

⎡

⎢
⎢
⎢
⎢
⎣

Vx

Vy

Vz

ωε3

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0.1483(m/s)/V 0.0030(m/s)/V 0 0

0.0148(m/s)/V 0.0303(m/s)/V 0 0.0442(m/s)/V

0 0 −0.0690(m/s)/V 0

0 0 0.00020(rad/s)/V 0.0020(rad/s)/V

⎤

⎥
⎥
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⎦

⎡

⎢
⎢
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⎢
⎣
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vε3

⎤

⎥
⎥
⎥
⎥
⎦

. (6)
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minimum illumination: 1.5 lx). In this experiment, the two front
cameras were used simultaneously to perform 3-D object recog-
nition. The distance between the two front cameras is 178 mm.
Two horizontal thrusters, one vertical thruster, and one traverse
thruster were mounted on the ROV, as shown in Fig. 10. The
ROV height, width, and length were 310, 280, and 380 mm, re-
spectively, and each thruster had a maximum thrust of 4.9 N. In
addition, the ROV had two LED lights (5.8 W) for illumination.
The ROV could operate at a maximum water depth of 50 m
[36]. The 3-D marker is constructed from a box (100 mm ×
100 mm × 100 mm) and red, green, and blue spheres (diameter:
40 mm). The coordinate of the 3-D marker and the vehicle is
shown at the right-hand side of Fig. 12. A rod was attached to
the right-hand side of the ROV and a docking hole was set on
the left-hand side of the target, as shown in Fig. 12. The detailed
explanations of the experiment layout are given in Section IV-D.

IV. RESULTS AND DISCUSSION

A. Recognition Performance Against Air Bubble Disturbances

In this section, the recognition performance against air bub-
ble disturbances with and without background sheet, and the
RM-GA’s behaviors while optimizing the fitness function are
analyzed. The desired relative pose between the vehicle and the
target is predefined. In this experiment, the population size of
RM-GA is 60, and the input period of dynamical images 30
times a second is 33 ms. Then, the possible maximum number
of evolutions is nine. The 3-D marker was fixed in the wa-
ter with a relative pose of xt = 341 mm, yt = 0 mm, zt =
−67 mm, and ε3t = 0◦ in ΣH depicted in Fig. 12. After 30 s
from the beginning of the pose estimation experiment, air bub-
bles were emitted between the underwater robot camera and
the 3-D marker. Moreover, recognition experiments of the 3-D
marker with and without a background sheet of color patterns
of a sea environment behind the 3-D marker were conducted.

Figs. 13 and 15 show the results for the case without the
background sheet, and Figs. 14 and 16 show the results for the
case with the background sheet. Figs. 13 and 14 show the dis-
tribution of the selected 60% (36 genes) genes for positions x,
y, and z and orientation ε3 around the z-axis in the evolution
procedure, for the cases with and without the background sheet.
In Fig. 13(a)–(d), although the recognition results of the position
and orientation converge immediately after starting the experi-
ment, bubble disturbances were confirmed to expand the gene
recognition distribution, as compared to the previous genera-
tions before 30 s without the air bubble disturbance. The pose
of the 3-D marker is difficult to recognize because the reflection
of air bubble disturbance in the camera image. The variation
of the gene recognition results in Fig. 13(a), as compared with
Fig. 13(b) and (c), reveals the difficulty in estimating the po-
sition in the depth x-direction in case of bubble disturbance
being imposed. The left and right camera images of the ROV
are shown in Fig. 13(e) and (f) and Fig. 14(e) and (f), where
Fig. 14(e) shows images 10 s from the start of the experiment
and Fig. 14(f) shows images 40 s from the start of the experiment
in the presence of air bubble disturbance.

Fig. 13. Distribution of the top 36 genes in the case of a plain background.
(a) Position in the x-direction. (b) Position in the y-direction. (c) Position in the
z-direction. (d) Orientation around the z-axis. (e) Left and right camera images
at 10 s from the beginning of the experiment. (f) Left and right camera images
at 40 s from the beginning of the experiment in the presence of air bubble
disturbance.

Fig. 14. Distribution of the top 36 genes in case of a simulated ocean back-
ground. (a) Position in the x-direction. (b) Position in the y-direction. (c) Po-
sition in the z-direction. (d) Orientation around the z-axis. (e) Left and right
camera images at 10 s after the beginning of the experiment. (f) Left and right
camera images at 40 s after the beginning of the experiment in the presence of
air bubble disturbance.

Additional results for the case in which there is a background
sheet simulating a real environment are shown in Fig. 14(a)–(d).
These results were compared with those obtained for the case in
which there was no background to confirm that the pose of the 3-
D marker can be tracked in images input at the video frame rate.
The experimental results shown in Figs. 13 and 14 reveal that the
background sheet expands the variety of the distribution of the
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Fig. 15. Fitness distributions generated by scanning the assumed pose value
in y–z plane and x–y plane with plain background at 10 and 40 s after the start of
the experiment in the presence of air bubble disturbance. (a) Fitness distribution
between the y and z positions at 10 s. (b) Fitness distribution between the y
and z positions at 40 s. (c) Fitness distribution between the y and x positions at
10 s. (d) Fitness distribution between the y and x positions at 40 s.

Fig. 16. Fitness distributions generated by scanning the assumed pose value
in y − z plane and x − y plane with simulated ocean background sheet at 10
and 40 s after the beginning of the experiment in the presence of air bubbles.
(a) Fitness distribution between the y and z positions at 10 s. (b) Fitness distri-
bution between the y and z positions at 40 s. (c) Fitness distribution between the
y and x positions at 10 s. (d) Fitness distribution between the y and x positions
at 40 s.

genes, which causes the RM-GA to have difficulty optimizing
the fitness function in real time.

The detected errors for xe , ye , ze , and ε3e that are the results
of subtracting the pose estimated by the top gene for x̂, ŷ, ẑ,
and ε̂3 from the ground-truth measurement at a sample time
of 10 s for the case of no air bubbles or background present
are xe = xt − x̂ = 341−350.20 = −9.20 mm, ye = 0−12.11
= −12.11 mm, ze = −67−(−68.37) = 1.37 mm, and ε3e =
0−(−0.607) = 0.607◦.

Since the mean values of the x-, y-, and z-axes and orientation
ε3 among 36 genes are x̄ = 349.90, ȳ = 12.44, z̄ = −68.38,
and ε̄3 = −0.653◦, then the mean errors are xe = xt − x̄ =
341−349.90 = −8.90 mm, ye = 0−12.44 = −12.44 mm, ze =

TABLE II
POSITION RECOGNITION ACCURACY OF TOP GENES IN THE PRESENCE OR

ABSENCE OF AIR BUBBLE DISTURBANCES FOR THE CASE OF WITH AND

WITHOUT BACKGROUND SHEET

1) p̂ (p = x, y , z , ε3 ) represents p-position detected by top gene, and which is used
for visual servoing feedback control.

2) p̄ = (
∑ 3 6

i = 1 pi )/36 (p = x, y , z , ε3 ).
3) Maximum error is given by the value that maximizes pt − pi (i = 1, 2, . . ., 36),

(pt represents ground-truth measured value, xt , yt , zt , ε3 t ).
4) Minimum error was given by the value that minimizes pt − pi (i = 1, 2, . . ., 36),

(pt represents ground-truth measured value, xt , yt , zt , ε3 t ).
5) Unit of position value is [mm] and orientation is [◦].

−67−(−68.38) = 1.38 mm, and ε3e = 0 − (−0.653) = 0.653◦.
These values are reported in Table II, which also reports all
statistics for the presence and absence of air bubbles and with
and without the background sheet for sample times of 10 and
40 s. In this table, the maximum error was given by the value that
maximizing the above subtracted results at the sample times, 10
and 40 s. The minimum error is given by minimizing the above
subtracted results as a same manner. The standard deviations
that are calculated from top genes at the sample times, 10 and
40 s in the case of air bubbles presence or absence for the case
of with and without background were also analyzed.

In the case of without background sheet, the standard devi-
ation in x-axis in the case of without bubbles is 0.33 at the
operation time of 10 s and the value of standard deviation in
the case of with bubbles is 1.68 at the operation time of 40 s.
By comparing these two standard deviation values, it can be
confirmed that the air bubble disturbances have the variation of
gene distributions expanded. Similarly, the position accuracy of
top gene in other directions was analyzed and it was confirmed
that the air bubble disturbances effected on the gene distribution,
as given in Table II.

In the case of background sheet, the standard deviation in
x-axis in the absence of air bubbles is 0.81 at the operation
time of 10 s and the value of standard deviation in the presence
of air bubbles is 2.01 at the operation time of 40 s. By
comparing the standard deviation values in the case of with
and without background sheet, the standard deviation value
of with background is larger than without background. It
means that the background sheet increases the expansion of
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the genes. Similarly, the position recognition accuracy of top
genes in other axes was analyzed as given in Table II and it
was confirmed that the air bubbles and the background sheet
make the RM-GA have difficulty in recognition of 3-D marker.
However, the RM-GA could track the pose of the 3-D marker
in real time even in the presence of air bubbles.

Why the system is tolerable against air bubble can be seen
through Figs. 15 and 16. Figs. 15 and 16 represent the fitness
distribution generated by each gene in the case of a plain back-
ground and a simulated ocean background. The fitness distribu-
tions between the y and z positions were evaluated 10 s after
the start of the experiment and 40 s after the start of the experi-
ment in the presence of air bubbles, as shown in Fig. 15(a) and
(b). In Fig. 15(c) and (d), the fitness distributions between the
y and x positions are also evaluated under the same conditions.
When the fitness value is compared between the conditions with
and without air bubble disturbance in Fig. 15(a)–(d), the fitness
value of recognition without simulating air bubble disturbance
was higher than that in under air bubble disturbance. Accord-
ing to the experimental results shown in Fig. 15, the fitness
value is 1.3 and the recognized position is y = 12.11 mm and
z = −68.37 mm for the condition of no background or bubbles
at a sample time of 10 s. In the case without background and
with bubbles at a sample time 40 s, the fitness value is 0.75 and
the recognized position is y = 12.47 mm and z = −68.67 mm.

The results for the fitness distribution when the ocean
background is placed behind the 3-D marker are shown in
Fig. 16(a)–(d). In the case with the simulated ocean background
and without bubbles at a sample time of 10 s, the fitness value
is given by the top gene with the best fitness value of 1.04 and
the recognized positions are y = 16.79 mm and z = −67.87
mm. The fitness value is 0.61 and the recognized positions
are y = 16.21 mm and z = −68.95 mm in the case with both
bubbles and background sheet, as shown in Fig. 16(b). The
recognition accuracy of the highest gene with the best fitness
value was found to be almost unchanged, regardless of the pres-
ence or absence of the background. Therefore, even though there
was a disturbance of air bubbles and background sheet, only the
height of the peak changed, but the estimated pose represented
by the peak was maintained, as shown in Figs. 15 and 16. This
is because the problem of pose estimation of 3-D marker is con-
verted into an optimization problem. This confirmed that validity
of finding the pose by optimization of the fitness distribution
is preserved irrelevantly of background or bubble existence. In
other words, the proposed RM-GA system has been confirmed
to tolerate disturbance by air bubbles to some extent. These ex-
perimental results led to the sea docking trials that are presented
in Section IV-E.

B. Regulation Performance Against Air Bubble Disturbances

The ROV is controlled to keep the desired relative pose (xd =
600 mm, yd = 0 mm, zd = −67 mm, and ε3d = 0◦) between
the target and the ROV, predefined so that the ROV performs
the relative pose regulation through visual servoing. The ROV
is placed at the arbitrary start position in front of the 3-D marker
about 600 mm in the x-direction. The ROV was kept to the

desired pose by visual servoing after the 3-D marker had been
recognized. The vehicle detects the target object, and then rel-
ative pose of the vehicle is estimated in real time through the
model-based matching method and GA, i.e., RM-GA. The reg-
ulation performance without and with air bubble disturbances
by visual servoing is shown in Figs. 17 and 18, respectively.
The relative pose between the desired pose and estimated pose,
that is, x, y, z, and orientation around the z-axis in Figs. 17
and 18, were measured by 3-D marker and RM-GA. From this
point forward, all the relative poses presented in this paper were
measured in the same way.

The regulation performance without air bubble disturbances,
as shown in Fig. 17, was discussed in the previous work [36]. The
previous work results were used to compare with the regulation
performance with air bubble disturbances in this paper. Accord-
ing to Fig. 17(a), the fitness value exceeds 1 for a few seconds
during recognition process and then remains above the value of
0.8. Fig. 18 shows the results in the presence of air bubbles in
front of the 3-D marker. The fitness value shown in Fig. 18(a)
exhibits greater variation than that shown in Fig. 17(a). In gen-
eral, the minimum value of fitness function to be able to judge
that RM-GA recognizes the 3-D marker well and estimates the
relative pose between the ROV and 3-D marker was defined
experimentally to be larger than 0.6.

Figs. 17(b)–(e) and 18(b)–(e) show the error between the
current pose of the 3-D marker recognized by the RM-GA and
the desired pose, and Figs. 17(g)–(j) and 18(g)–(j) show the
thrust of each thruster required to restore the error. Figs. 17(f)
and 18(f) show the trajectories of underwater robot based on
ΣH in Fig. 12 during the regulation process.

According to the experimental results in Figs. 17 and 18, the
fitness function fluctuates and the thrust values oscillate. There
seems to be three reasons why the fitness function has fluc-
tuation. The first reason is the behavior of RM-GA, in which
the top gene of RM-GA represents the pose that is close to the
true pose. The gene that has the highest fitness value does not
necessarily keep a constant height of the peak, then RM-GA’s
evolving behavior for optimization generates fluctuations. The
second reason is that even though static environment is given
for the recognition, the successively input dynamic images are
not constant and not same, it seems to come from voltage fluc-
tuation of CCD device unit. This is one additional reason while
the solved pose by RM-GA fluctuates. The third reason is that
the true pose is not constant in the dynamic images in the real
case. The appearance of the dynamic images is changing due to
the dynamic motion of vehicle and the environment changing.
With these above discussions, the RM-GA fluctuating behaviors
cannot be thought harmful thing but rather preferable nature of
RM-GA to rapidly adapt for dynamic optimization in succes-
sively input dynamic images. Even though the desired pose
is constant in regulating experiments, position error especially
in y-direction in Figs. 17 and 18 oscillate with some amount.
Consequently, the thrust value oscillates. This means that the
closed loop dynamics of visual servoing may expand the ROV’s
oscillation. Therefore, the controller needs to be improved to
expand leeway for keeping the closed loop dynamics within sta-
ble sphere enough away from unstable. While the authors have



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 17. Regulation performance of visual servoing by dual-eye image recognition with plain background without air bubble disturbance. (a) Fitness value.
(b) Error in the x-direction. (c) Error in the y-direction. (d) Error in the z-direction. (e) Error around the z-axis. (f) 3-D trajectory of underwater vehicle. (g) Thrust
in the x-direction. (h) Thrust in the y-direction. (i) Thrust in the z-direction. (j) Thrust around the z-axis.

proposed “RM-GA” as a 3-D perception method and verified its
performance, what kind of real-time 3-D perception for visual
servoing is best needs to be discussed in the future researches.

C. Regulation Performance for Periodic Motion of the
3-D Marker

To confirm the performance of the proposed system, the reg-
ulation motion of the underwater vehicle when 3-D marker is
moving back and forth in front of the ROV was evaluated. The
desired relative target pose was set to the same value as in
Section IV-A. Fig. 19 shows a setup of visual servoing

experiment with periodical motion of 3-D marker. Figs. 20–22
show the experimental results for the tracking performance with-
out additional disturbances in front of the 3-D marker, whose
motions had periods of 20, 15, and 10 s and an amplitude of
280 mm.

Figs. 20(a)–(d), 21(a)–(d), and 22(a)–(d) show the fitness
value, the position in the x-direction, the tracking error in the x-
direction, and the thrust in x-direction, respectively. The arrow
labeled “(A)” in the figures indicates the motion of the 3D
marker starting at 20 s and it also represents the duration of
experiment in which the 3-D marker was in cyclic motion. The
visual servoing has been started at 0 s with the 3-D marker being
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Fig. 18. Regulation performance of visual servoing by dual-eye image recognition with plain background with air bubble disturbance. (a) Fitness value. (b) Error
in the x-direction. (c) Error in the y-direction. (d) Error in the z-direction. (e) Error about the z-axis. (f) 3-D trajectory of the underwater vehicle. (g) Thrust in the
x-direction. (h) Thrust in the y-direction. (i) Thrust in the z-direction. (j) Torque about the z-axis.

stationary, and besides oscillatory motions of 3-D marker has
begun at 20 s. The same conditions are given for Figs. 20–26.
The tracking performance without air bubble disturbances for
periods of 20, 15 and 10 s have the tracking errors, as shown in
Figs. 20–22. In Fig. 20, the starting point of the ROV was set
at the arbitrary point and the vehicle detects the target object
and relative pose of the vehicle is estimated through the model-
based matching method and RM-GA. Therefore, the adjusting
behavior makes the fluctuation before the target starts moving
at the 20 s in Fig. 20(a). But the fluctuation is not getting worse
even though 3-D marker is moving. Since the tracking error in
the x-direction for the period of 10 s in Fig. 22(c) is larger than
that in Fig. 20(c), the thruster output was saturated in Fig. 22(d).

The sign of the thruster output value in (d) is opposite the sign
of the error value in (c). Since if xe = xd − x <0, meaning the
ROV position error is larger than xd , the ROV is delayed and
then the thruster for the x-axis needs to output with a positive
sign. The motion period given to the marker is different, such
as 20 s in Fig. 20, 15 s in Fig. 21, and 10 s in Fig. 22. The
large tracking errors can be seen in Figs. 21 and 22 than Fig. 20.
The motion delay may exist at the turning point of forward and
backward moving of the 3-D marker.

Photographs taken every 10 s during the experiment in the
case of a period of 20 s are shown in Fig. 23(a)–(e). The posi-
tional relationship between the ROV and the 3-D marker without
additional disturbances is shown in Fig. 23 (left-hand column).
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Fig. 19. Setup of visual servoing experiment with periodic motion of 3-D
marker.

Fig. 20. Tracking performance of dual-eye image recognition with plain back-
ground without air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 20 s after
20 s have passed from the start. (a) Fitness value. (b) Position of the underwater
vehicle in the x-direction (dashed line is the desired position). (c) Tracking error
in the x-direction. (d) Thrust in the x-direction. Photographs were taken every
10 s during this experiment and are shown in Fig. 23.

Fig. 21. Tracking performance of dual-eye image recognition with plain back-
ground without air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 15 s after
20 s have passed from the start. (a) Fitness value. (b) Position of the underwater
vehicle in the x-direction (dashed line is the desired position). (c) Tracking error
in the x-direction. (d) Thrust in the x-direction.

Fig. 22. Tracking performance of dual-eye image recognition with plain back-
ground without air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 10 s after
20 s have passed from the start. (a) Fitness value. (b) Position of the underwater
vehicle in the x-direction (dashed line is the desired position). (c) Tracking error
in the x-direction. (d) Thrust in the x-direction.

In each image in the right-hand column of Fig. 23(a)–(e), the
dotted circle represents the position and orientation of the 3-D
marker as recognized by the RM-GA in real time. If each sphere
indicated by the dotted circles and the 3-D marker matches, then
the system can accurately recognize the position and orientation
of the 3-D marker.

The experimental results for the case of an air bubble distur-
bance in front of the 3-D marker are shown in Figs. 24–26 when
the 3-D marker is undergoing periodic motion in the x-direction
with periods of 20, 15, and 10 s and an amplitude of 280 mm.
Figs. 24(a)–(d), 25(a)–(d), and 26(a)–(d) show the fitness value,
position of the underwater vehicle in the x-direction, the error
of relative target position, and the thrust force to regulate the ve-
hicle for periods of 20, 15, and 10 s, respectively. In each figure,
arrow “(A)” indicates that the movement of the 3-D marker in
the x-direction with an amplitude of 280 mm and periods of 20,
15, and 10 s started at 20 s. Arrow “(B)” indicates the started
time of the air bubble disturbance and also duration time. The
dashed lines in Figs. 20(b), 21(b), 22(b), 24(b), 25(b), and 26(b)
represent the desired position along the x-axis of ΣH in Fig. 12.

Although the fitness value sometimes decreases to approxi-
mately 0.4 in the presence of air bubbles in front of the dual-eye
cameras, as shown in Figs. 24–26(a), the regulation performance
can be confirmed to be maintained, as shown in Figs. 24(b)–(d),
25(b)–(d), and 26(b)–(d). According to the experimental results,
the vehicle can track the 3-D marker with some tracking errors
due to the GA performance, vehicle dynamics, dynamics of the
motor, and the control gains. However, it can be verified that
the ROV could keep tracking the moving object without losing
visual feedback even in the presence of air bubble disturbances.

The experimental results shown in Fig. 24 for a period of 20 s
with air bubble disturbance correspond to the photographs taken
every 10 s, as shown in Fig. 27(a)–(e). The left-hand column of
Fig. 27 shows the positional relationship between the ROV and
the 3-D marker, and the position of the 3-D marker as viewed
from the ROV is shown in the right-hand column of Fig. 27.

In Fig. 27(d), it looks like that detection of the 3-D marker
has been lost and this photo corresponds to 40 s of Fig. 24.
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Fig. 23. Photographs of the underwater vehicle (left column) and captured
images from the ROV (right column) without disturbances. These photographs
correspond to the results shown in Fig. 20. (a) 10 s have passed (without making
the 3-D marker move after starting experiment). (b) 20 s have passed (back-
ward moving 3-D marker). (c) 30 s have passed (forward moving 3-D marker).
(d) 40 s have passed (backward moving 3-D marker). (e) 50 s have passed
(forward moving 3-D marker).

The fitness function arises after 40 s in Fig. 24(a). And then,
the desired position of x is kept as shown in Fig. 24(b). It can
be seen in Figs. 22 and 24 that the large deviation in position
error occurs due to thruster saturation between 30 and 40 s.
Figs. 20–22 and 24–26 indicate that air bubbles have deterio-
rated the visual servoing closed loop stability, and it also has
been worsened by the quick motion of 3-D marker with the short
period. Although the air bubbles disturb the recognition of the
3-D marker while the marker is undergoing periodic motion, the
ROV can keep tracking the moving 3-D marker without losing
visual feedback information. The reader is referred to videos 4
to 7 in [37], which depict all the experiments performed in this
study.

Fig. 24. Tracking performance of dual-eye image recognition with plain back-
ground with air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 20 s
after 20 s have passed from the start and “(B)” disturbances are generated after
10 s. (a) Fitness value. (b) Position of the underwater vehicle in the x-direction
(dashed line is the desired position). (c) Tracking error in the x-direction.
(d) Thrust in the x-direction. Photographs were taken every 10 [s] during this
experiment and are shown in Fig. 27.

Fig. 25. Tracking performance of dual-eye image recognition with plain back-
ground with air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 15 s
after 20 s has passed from the start and “(B)” disturbances are generated after
10 s. (a) Fitness value. (b) Position of the underwater vehicle in the x-direction
(dashed line is the desired position). (c) Tracking error in the x-direction.
(d) Thrust in the x-direction.

D. Docking Experiment Against Air Bubble Disturbances
in Pool

The performance of the proposed system against air bubble
disturbances was confirmed by conducting the docking experi-
ment in the pool in this section. The docking experiment layout
is shown in Fig. 12. To perform a docking experiment, a rod was
attached to the right-hand side of the ROV and a round hole was
set in the left-hand side of the 3-D marker as shown in Fig. 12.
The ROV is with a rod (8 mm ×6 mm) on its right-hand side,
and the 3-D marker is with a docking hole having a radius of
35 mm on its left-hand side. The center distance between the
docking hole and the 3-D marker was 145 mm. The air bubbles
were ejected from the chimney in front of the 3-D marker to
verify the tolerance of the system against disturbances to the
image, as shown in left-hand side of Fig. 12. The main task is to
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Fig. 26. Tracking performance of dual-eye image recognition with plain back-
ground with air bubble disturbance for the case in which “(A)” the 3-D marker
moves in the x-direction with an amplitude of 280 mm and a period of 10 s
after 20 s has passed from the start and “(B)” disturbances are generated after
10 s. (a) Fitness value. (b) Position of the underwater vehicle in the x-direction
(dashed line is the desired position). (c) Tracking error in the x-direction.
(d) Thrust in the x-direction.

confirm the restoration capacity to the desired pose, even in the
presence of air bubble noise. Two instruments were designed to
intermittently generate bubbles in the water using air pumps, as
shown in Fig. 12. The experiment was conducted in a pool [2 m
(length) ×3 m (width) ×0.75 m (height)] filled with tap water.
Power was supplied and the control signal was transmitted from
the PC through a tether cable (200 m). A proportional controller
was used to control all thrusters in the docking experiment after
confirming that the p controller was sufficient for this exper-
iment. The integration and derivative terms could have been
added into the controller if such adjustments were necessary,
but preliminary experiments confirmed that adjustments were
unnecessary.

The ROV moved forward to insert the rod into the docking
hole. When the robot was within the error allowance range of
pose relative to the 3-D marker, the range could be explained
as follows. When the vehicle is stable within the tolerance of
the position error, that is, |ei | < 20 mm (where i = x, y, z) and
|eε3 | < 0.06 (where ε3d = 0 and is represented by a quater-
nion), which corresponds to 7◦, where e = [ex, ey , ez ]T =
pd − p,pd = [xd, yd , zd ]T , and p = [x, y, z]T , forward thrust
causes insertion of the rod into the docking hole by gradually
decreasing the desired distance between the vehicle and target
object, where xd(t) = 600−30t, with t being the time in seconds
measured from the start of docking. The goal of this experiment
was to complete the docking stage. Some conditions were ap-
plied in the pool experiment. There was no current and no wave.
The water was clean.

The air bubble disturbances have been exerted to the ROV
on the images while the vehicle is performing the docking ex-
periments, aiming at confirming the tolerance of the proposed
visual servoing system. The desired pose (xd = 600 mm, yd =
12 mm, zd = −10 mm, and ε3d = 0◦) between the target and
the ROV is predefined so that the ROV performs stationary hov-
ering through visual servoing before docking. The air bubble
disturbances were generated at the start of the experiment.

Fig. 27. Photographs of the underwater vehicle (left column) and captured
images from the ROV (right column) with disturbances. These photographs
correspond to the results shown in Fig. 24. (a) 10 s have passed (without making
the 3-D marker move or air bubble disturbances after starting the experiment).
(b) 20 s have passed (backward moving 3-D marker). (c) 30 s have passed
(forward moving 3-D marker). (d) 40 s have passed (backward moving 3-D
marker). (e) 50 s have passed (forward moving 3-D marker).

The results for the docking performance in the presence
of air bubble disturbances are shown in Fig. 28. The dotted
lines denoted as “A,” “B,” and “C” indicate the start of visual
servoing, the start of docking, and the completion of docking,
respectively. The photographs taken at these times are shown in
Fig. 29. In Fig. 28(a), the fitness value increases to exceed 1 for
the first few seconds of the recognition process and then main-
tains the allowable value of 0.6 for docking, which means that
the system could recognize the 3-D pose of the target marker
well. The fitness value 0.6 was set experimentally. Theoretically,
the maximum fitness value is about 1.7. Experimentally, the
maximum fitness value is about 1.2 in this study. Fig. 28(b)–(e)
represents the relative pose between the desired pose and the
estimated pose of the 3-D marker recognized by the RM-GA.

The docking strategy is explained in detail in [26], in which
docking without air bubbles was conducted. In the docking
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Fig. 28. Docking performance in pool with air bubble disturbance against dual-eye image recognition. (a) Fitness value. (b) Position along the x-axis. (c) Position
along the y-axis. (d) Position along the z-axis. (e) Orientation around the z-axis. (f) detected 3-D pose of the underwater vehicle by RM-GA. (g) Voltage along
the x-axis. (h) Voltage along the y-axis. (i) Voltage along the z-axis. (j) Voltage around the z-axis. The dotted lines denoted by “A,” “B,” and “C” in each of the
subfigures indicate the start of visual servoing, the start of docking, and the completion of docking, respectively. Photographs taken at these times are shown in
Fig. 29.

strategy, visual servoing starts when the 3-D marker is detected,
which means the fitness value is above a defined threshold, 0.6.
When the pose of the vehicle is within the allowable error range
of ±20 mm of the desired pose, as shown in Fig. 28(c) and (d),
and the orientation around the z-axis is controlled to within 7◦,
as shown in Fig. 28(e), for the predefined period (165 ms, which
is equal to five times the control loop period that is 33 ms) in this
experiment, docking starts by decreasing the distance between
the ROV and the 3-D marker from 600 to 350 mm, as shown

in Fig. 28(b). The period between the dotted line labeled “A”
and “B” in Fig. 28 indicates the visual servoing state, where the
desired position along the x-axis is 600 mm. During the visual
servoing state, the estimated position along the y-axis is out of
error range, as shown in Fig. 28(c). A photograph taken at time
in visual servoing period is shown in Fig. 29(a) and (b).

Therefore, visual servoing continues until the desired pose
is within the error range for the y- and z-directions and the
orientation around the z-axis, as shown in Fig. 28(c)–(e). At
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Fig. 29. Photographs of docking (left column) and dual-eye camera images
from the ROV (right column) with air bubble disturbance. (a) and (b) 0–4 s visual
servoing state. (c)–(e) 8–16 s docking process. (f)–(h) 20–25 s completion of
docking. Each figure corresponds to the experimental results shown in Fig. 28,
where the corresponding times are indicated by dotted lines “A,” “B,” and “C,”
respectively.

time B, as shown in Fig. 28(c)–(e), the docking criteria are sat-
isfied and docking operation starts. Note that the position in
the x-direction at point B is approximately 500 mm because
only the positions in the y-and z-directions and the orientation
around the z-axis are considered in the docking criteria. The
docking operation started approximately 8 s after starting the
experiment, and the image results for this condition are shown
in the left- and right-hand columns of Fig. 29(c)–(e). The period
between the dotted line labeled “B” and “C” in Fig. 28 indicates
the docking process. In the docking process, the rod is fitted into
the docking hole by decreasing the desired value of xd , and this
condition is expressed in Fig. 29(c)–(e). Finally, the docking
operation was completed approximately at 25 s after starting

Fig. 30. Experimental setup of sea docking. The two underwater cameras, (1)
back camera and (2) top camera, were attached to the docking station to monitor
the behavior of the ROV.

Fig. 31. Layout of the sea docking experiment. (a) ROV is controlled by
the RM-GA PC while its behavior is monitored by the recording PC. (b) Left
camera image of the ROV showing the 3-D marker and docking hole located
in the docking station. The center distance between the docking hole and 3-D
marker was 145 mm. (c) Position of ROV and docking station, which was a
rectangular cuboid with length of 600 mm, width of 450 mm, and height of
3000 mm. The photograph (c) represents the completion of docking.

the experiment, as shown in Fig. 29(f)–(h). The dotted line la-
beled “C” in Fig. 28 indicates the state whereby the docking
is completed. During the docking process, if the docking state
no longer meets the conditions of the desired allowance error
range and the stable condition, the ROV returns to the visual
servoing process and attempts to perform the docking process
again. However, this condition did not occur in this experiment.
Fig. 28(g)–(j) represents the thrust of each thruster required to
restore the desired pose. The dotted line in Fig. 28(g)–(j) in-
dicates the output voltage of each thruster and the solid lines
express the dead zone range. The characteristic of thrust of each
thruster changes with respect to the dead zone in the control
voltage. Note that the dead zones shown in Fig. 28(g)–(j) are
deleted, and the output values are bounced from upper limit to
lower limit or vice versa to restore the desired pose for each
thruster. This sudden transition means that the dead zones were
compensated according to the configuration of the ROV to avoid
fluctuations of the ROV’s movement under manual control.
The dots in Fig. 28(f) indicate the detected 3-D pose of the
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Fig. 32. Results of repeated docking experiment. Middle graph shows the desired position in the x-axis direction during four docking iterations in the sea. The
upper photos represent the left and right cameras images set at the ROV taken at visual servoing stage, docking stage, and completion of docking stage. The lower
photos are images taken by the underwater cameras set at the docking station at the same stages of docking process. Detailed results for the docking experiment
©1 is presented in Fig. 33 and the photographs of the docking experiment ©1 is shown in Fig. 34. The dotted line shows the returning procedure from docking
completion position to restarting position of visual servoing, the ROV’s returning motion took about 6 s.

underwater robot by RM-GA based on ΣH (see Fig. 12) during
the docking process. One black dot in Fig. 28(f) means the rela-
tive pose that the RM-GA calculated at every 33 ms. As shown
in Fig. 28(f), when the pose distribution in visual servoing state
and the docking state were compared, the pose distribution of
the docking state is more compact than the visual servoing state
because the vehicle is stable within the allowance error range
in the docking area. The underwater robot was confirmed to
have the ability to regulate the ROV to the desired pose while
docking was performed, as shown in Fig. 28(b)–(e). Matching
between the dotted circles and 3-D spheres of real 3-D marker
in Fig. 29 (right-hand column) indicates how much the position
of three spheres of 3-D marker model calculated by using the
relative pose detected by RM-GA coincides with the real 3-D
marker, which can show the degree of pose recognition of the
3-D marker. In particular, using the RM-GA, the proposed sys-
tem was confirmed to sequentially recognize the relative pose
of the 3-D marker and perform the docking process in real time,
even in the presence of air bubbles.

E. Docking Experiment in Actual Sea Environment

In Section IV-D, the effectiveness of the proposed system
in docking against air bubble disturbances in an artificial
environment was discussed. However, real sea environments
may degrade the visibility of the system more than the simulated
artificial pool environment due to the other disturbances, such
as turbidity, sun light, and waves. Since the RM-GA and control
system have been confirmed to be effective and tolerable
against image degradation caused by air bubbles, the author

inferred that this system is also effective against turbidity.
Therefore, the validity of the proposed system was confirmed
in the real sea with the turbidity. Based on this motivation, the
docking experiment was conducted in the coastal environment
rather than clear water.

The sea docking experiments were conducted to verify the
effectiveness of the proposed system against turbidity. The sea
docking experiment was conducted within Okayama Prefecture,
in Japan. The experimental setup and the layout of the sea dock-
ing experiment are shown in Figs. 30 and 31. The docking station
was a rectangle of length (600 mm) ×width (450 mm) ×height
(3000 mm), oriented with the long sides to the pier. Two under-
water cameras are attached to the docking station for monitoring
the behavior of the ROV during the experiments and recording
for further analyses. The environmental conditions while con-
ducting sea docking experiment are as follows: the time when
the docking experiment was conducted is about 13:36 PM, the
water depth from the surface to the sea bottom is 2.1 m, the
turbidity level is 6 FTU [Formazin Turbidity Unit measured by
TD-M500 (produced by OPTEX)], the illumination at the sea
surface is 98 000 lx [measured by (model: LX-1010B, manufac-
tured by Milwaukee, WI, USA)], the illumination in water at the
depth of 1 m is 4800 lx and there were some waves in the sea dur-
ing the docking experiment. In the sea docking experiment, the
docking strategy is the same strategy as the pool test in the above
explanation. The p controller was used to control the vehicle
movement. But the diameter of the docking hole was 130 mm.
The ROV was tethered and connected by a cable with 200 m
length to the GA-PC (controller and 3-D pose estimation) on
the pier.
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Fig. 33. Docking performance in an actual sea for the first time docking indicated by ©1 of Fig. 32. (a) Fitness value. (b) Position along the x-axis. (c) Position
along the y-axis. (d) Position along the z-axis. (e) Orientation around the z-axis. (f) Detected 3-D pose of the underwater vehicle by RM-GA. (g) Voltage along
the x-axis. (h) Voltage along the y-axis. (i) Voltage along the z-axis. (j) Voltage around the z-axis. The dotted lines denoted by “A”–“H” in each of the subfigures
indicate the time during the first time docking of Fig. 32. Photographs taken at these times are shown in Fig. 34.

The docking experiment was performed successfully four
times. After each docking completion, the ROV returned to its
initial position automatically and repeated the docking/returning
maneuvers four times. Desired position in the x-axis direction
during four docking iterations in the sea with the example of
photos that indicate the state of the visual servoing, the docking,
and the completion of docking are shown in Fig. 32. Upon
the completion of each docking operation, the desired position
changed from 350 to 600 mm, as shown by the dotted lines in

Fig. 32. As confirmed by these repeated dockings and shown
in video 5 on our laboratory’s home page [37], the return from
the docking completion position to the initial position of visual
servoing took about 6 s.

Among the four docking, the first docking ©1 took the longest
to perform. This means that some disturbance is thought to have
acted upon the ROV during this docking operation. Even though
the pose of the vehicle sometimes exceeded the error allowance
range, the vehicle could maintain the desired position within
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Fig. 34. First column shows the photographs of docking monitor by station back camera. Second column represents the photographs of docking monitor by
station top camera. Third and fourth columns describe the ROV’s left and right cameras images: “A”–“C” (0–3 s) visual servoing state, “C”–“H” (8–50 s) docking
operation. Each figure corresponds to the experimental results shown in Fig. 33, where the corresponding times are indicated by dotted lines “A”–“H,” respectively.
Especially, it can be confirmed from image that the end of docking pole was inserted in docking hole at time “H”.

the allowance range. The longest docking operation seems to be
most useful for analysis of the docking motion. Therefore, the
first time docking ©1 was chosen to examine in detail in Fig. 33.

The desired pose for sea docking (xd = 600 mm, yd = 15 mm,
zd = −15 mm, and ε3d = 0◦). When the ROV is stable in the
above desired pose relative to the 3-D marker, the ROV moves
forward to insert the docking pole into the docking hole as
explained in the pool test.

Fig. 33(a) shows the fitness value in time domain. The marker
detection is defined as the fitness value is 0.2 or above in the sea
docking experiment. Therefore, when the fitness value is above
0.2, the visual servoing step started. Fig. 33(b)–(e), shows the
positions along the x, y, z and orientation around the z-axis,
respectively. The dotted lines labeled “A”–“H” in each subfig-
ures indicate the time during the first time docking operation,
and which are used as time indicator used in photographs at
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“A”–“H” in Fig. 34. The two horizontal lines in Fig. 33(c)–(e)
are the allowable error ranges that enable docking procedure.
Fig. 33(f) shows the detect 3-D pose of the underwater ve-
hicle by RM-GA. Fig. 33(g)–(j) described the thrust of each
thruster required to restore the desired pose and continue dock-
ing. The horizontal lines in Fig. 33(g)–(j) express the dead zone
range.

Fig. 33 shows that the first docking operation was completed
approximately at 50 s after starting the experiment. At the start
of the first docking experiment, the position along the y-axis is
out of error range until the time “C” as shown in Fig. 33(c). Then,
the controller tries to adjust the ROV within the allowable range
with the output voltage in y-axis direction [see Fig. 33(h)]. The
period between the dotted line “A”–“C” is the visual servoing
state, as shown in Fig. 33. The corresponding photographs of
these time are shown in Fig. 34 “A”–“C.” When the vehicle pose
is stable within the tolerance error range of the relative pose
by adjusting in x-, y-, z-axes direction within ±30 mm and
the orientation within ±7◦ (see Fig. 12), the operation switched
from the visual servoing step to the docking step.

According to the results, the positions along the z-axis is al-
ways within the allowable error range. After starting the docking
step, the positions in y-axis are out of range again at the time
of “D” and “E.” At these times, the desired positions along the
x-axis remained constant for some periods during the docking
step because some fluctuations in the position along the y-axis
and especially the rotation about the z-axis exceeded the error
allowance. Consequently that, the controller tries to restore the
vehicle to desired position can be seen the dotted line labeled
“D” and “E” in Fig. 33(c) and (h). Photographs taken at these
time are shown in Fig. 34 “D” and “E.” After 17 s (see dotted
line F), the position in the y-axis remains within the allowance
error range until the end of the docking operation. At the time
of 25 s (see dotted line G in Fig. 33), the orientation around
the z-axis exceeds the allowance error range again. The desired
position in the x-axis keep constant the position at that time.
The photograph taken at this time can be seen in Fig. 34 “G.”
There are some fluctuations in the orientation around the z-axis
during the docking process. This fluctuation seems to have oc-
curred because of the effect of the waves. Therefore, the first
time docking is the one with the longest operation time among
the four repeated docking trials. However, the ROV could per-
form the docking operation by adjusting the error in orientation
around the z-axis. Fig. 34 “H” is the end of docking, and the
position of the docking pole can be seen through images of
front view of underwater camera and top view of underwater
camera. The part surrounded by the dotted circle is the docking
pole tip and it can be confirmed that the docking pole can be
fitted in the correct position in the docking hole. Therefore, the
vehicle stopped visual servoing for a few seconds after dock-
ing completion to store the experimental data. After finished
to store the docking data, the desired position in the x-axis
direction changed to 600 mm, as shown in Fig. 32. The ve-
hicle went back to the desired position about 600 mm in the
x-axis direction and the second time docking started by visual
servoing.

V. CONCLUSION

In this paper, visual servoing of an underwater vehicle using
dual-eye cameras and a 3-D marker was conducted in the pres-
ence of air bubbles. Experiments were conducted to clarify the
following:

1) the recognition performance in the presence of air bubbles
with and without a background sheet;

2) the regulation performance when the 3-D marker was
fixed;

3) the regulation performance when the 3-D marker is in
periodic motion;

4) the docking performance in the presence of air bubbles in
the pool;

5) the docking performance in the actual sea environments.
Since a hovering type ROV and a 3-D marker were used in

our docking approach, and the vehicle could dock to a station
from a distance of about 1 m, our results can be compared to
those in [10]. Recognition accuracy of our proposed system
is close to that from related works in [15] and [21], though
those studies did not include docking operations. Comparing
to other systems having each merit, the experimental results
in this study provide an assessment of the system performance
under air bubble disturbances and demonstrate the potential
in practical environment in the sea. However, there are some
limitations in our system. The controller needs to be improved
for more stabilization. One of the limitations of our system that
the vehicle should be guided to the field of view of camera
about 1 m distance should be improved using other positioning
systems in future. This means that our proposed visual servoing
system needs to be combined with some functional unit to guide
the vehicle to the space that the vehicle can find a 3-D marker,
to make the combined system to be more usable and practical
in real underwater world.
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