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Abstract: Aiming at developing underwater battery recharging system, the author developed a docking system using stereo-

vision-based visual servoing and a 3D marker. The 3D marker consists of red, green, blue spheres that do not emit the light.

Real-time relative pose (position and orientation) estimation was implemented utilizing the 3D model-based matching method

and real-time multi-step genetic algorithm (RM-GA). Given the situation that the docking aims for battery recharging in the deep-

sea bottom, the pitch-dark and turbid environment should be considered as an inevitable condition for battery recharging. In our

previous works, the docking experiments were conducted in the actual sea, having verified the effectiveness of the proposed

system using the 3D marker in the daytime environment with turbid water condition. Since lighting 3D marker by light from

the vehicle in turbid water environment results in a situation that the images taken by video cameras set on the vehicle were

looked wholly white, some new idea seems to be required. To overcome this problem, first step is to conform the correctness

of the proposed system. The main objective of this study is to check the feasibility area of the proposed system for the docking

application in the simulated pool with different turbidity and distance.
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1 INTRODUCTION
In recent years, various underwater robots have been re-

searched and developed for seabed exploration, submarine

mapping, an ecological survey of underwater organisms,

mining of underground resources and so on. To do this kind

of works, the underwater robots need to be active for a long

time in the seabed. There are many studies on underwater

docking using different approaches. Depending on a docking

station’s structure for a specific application, different meth-

ods and sensors were utilized. Homing accuracy and robust-

ness against disturbances are critical requirements for dock-

ing operation. To fulfill these demands, many studies have

been conducted recently.

Among them, it is roughly divided into a method using

monocular camera [1] and stereo camera [2] for homing and

docking. Docking was conducted for the submersible power

supply with an ultrasonic sensor and monocular camera with

the control error of ±100 mm [3].

In contrast, a vision-based docking system using two cam-

eras and a 3D marker has been developed by our research

group. In previous works, we especially confirmed the per-

formance of 3D pose estimation and visual servoing, which

are one of the docking steps in our approach using real-time

pose estimation. In [4], real-time pose tracking ability with

stereo-vision was confirmed when a target was moving even

though there were some noise in captured images due to air

bubbles in front of the cameras.

In that paper not only noise disturbances in images but

also physical disturbances of water stream induced by float-

ing motion of air bubbles were given to the ROV, having con-

firmed whether the proposed approach is robust enough to be

able to operate in the actual sea. In [5], 3D pose estimation

with partial occlusion was discussed. In [6], docking pro-

cedure was implemented and docking experiment was con-

ducted when the ROV’s starting positions were given arbi-

trarily in front of the 3D marker. As a follow-up work, we

also checked the robustness of our system under a varying

light environment in [7]. In [8], the sea docking experiment

using a circular shaped docking hole was reported. Since this

experiment was conducted in a relatively transparent sea in a

part of the harbor, measurement of 3D marker for estimating

the pose of ROV was successful.

In such a wide range of actual seabed, the vision-based

vehicles have to face the difficulty for the recognition be-

cause the proliferation of mud will cause poor visibility by

the thrust of the underwater robot and other disturbances such

fish, seaweed, turbidity, lighting changing, and so on. The

vehicle cannot avoid the turbidity and dark environment for

the sea bottom battery recharging. According to the authors’

knowledge, there are no studies using stereo-vision and 3D
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marker for real-time visual servoing with the performance

of turbidity tolerance and illumination varieties. In our pre-

vious works, docking experiments were conducted against

turbidity and changing lighting environment. In [9], the per-

formance of the 3D pose estimation system under different

turbidity levels was analyzed by using 3D marker, and the

turbidity tolerance of the system was examined experimen-

tally.

In the case of using the 3D marker, the ROV’s lighting was

used to detect the 3D marker in the dark environment. Since

lighting 3D marker by light from vehicles in turbid water en-

vironment results in the images being looked wholly white.

To overcome this problem, the first step is to conform the

correctness of the proposed system. The recognition exper-

iments were conducted by simulating a turbid environment

in the experimental pool using the 3D marker. The turbid-

ity levels and the distance between the 3D marker and ROV

were varied as variables, and the recognizable range of the

3D marker was confirmed by Real-time Multi-step genetic

algorithm(RM-GA).

2 FITNESS FUNCTION

In this experiment, fitness value is used to evaluate the

performance of the recognition under different turbidity lev-

els and distance. A correlation function of the real target pro-

jected in camera images with the assumed model, represented

by poses in the chromosomes, is used as the fitness function

in the GA process. Fitness function has been modified based

on the voting performance and the target’s structure (color,

size, and shape). The function used in the proposed system

is called a fitness function that is shown by equation (1). φ

means position and posture of 3D marker that relative to the

fixed coordinate system of the ROV. The evaluation function

that is used for φ and the image taken by cameras is de-

fined by the previous research [10]. φi means pose of the

i-th model that was given by the RM-GA.

F (φi) =
1
2

(FL + FR) (1)

FL =
1
N

⎛
⎝ ∑
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(
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)
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p
(
ILrj (φi)

)⎞⎠ (2)

FR =
1
N

⎛
⎝ ∑

IRrj(φi)∈SR,in(φi)

p
(
IRrj (φi)

)

+
∑

IRrj(φi)∈SR,out(φi)

p
(
IRrj (φi)

)⎞⎠
(3)

The left or right image of the solid 3D model to estimate

the pose of the real 3D marker is shown in Fig. 1. This

solid 3D model is made from the point cloud that made from

the color and shape of 3D marker. The fitness calculation of

equation (1)-(3) is described as below. In Fig. 4, fitness value

is calculated by evaluating the inner sphere Sin overlap the

hue value of the image. The function p
(
ILrj (φi)

)
is a func-

tion that gives a score “1” when the j-th model ILrj (φi) of

the point group of the model determined by the i-th candi-

date φi of the pose overlaps with the 3D marker. Similarly,

the evaluation of the fitness value is calculated for the en-

veloping sphere Sout of the search model. Subtract the total

value of Sout from the total value of the evaluation of inner

sphere Sin and divide by the number of point N groups of the

search model to obtain the total fitness value. The calculation

of fitness value is averaged over the left and right camera im-

ages to obtain the final fitness value F (φi) consists of pose

information[x [mm], y [mm], z [mm], ε1, ε2, ε3] (ε1, ε2, ε3

are quaternions).

The 3D model was created by using the information of

φi that represented by genes is projected to the left and right

camera images, and the correlation with the 3D marker is

evaluated as the fitness value. The entered left and right cam-

era images are used for evaluation without performing image

processing. The search model matches the 3D marker when

the relationship between various parameters of the camera

and kinematics is perfectly matched and the search model

accurately represents the shape of the recognition object. At

this time, F (φi) is configured to take the maximum value,

and the pose φi of the search model giving the maximum

value represents the pose of the 3D marker.

3 COMPARISON OF RECOGNITION PERFOR-

MANCE BY USING 3D MARKER
3.1 Experiment Environment

Figure 2 shows the experiment environment using 3D

marker and coordinate system of the ROV and 3D marker.∑
H and

∑
M are the coordinate system of the ROV and 3D

marker. The position of ROV was fixed in the pool so that

the pose between the ROV and the 3D marker is kept con-

stant. The turbidity environment is created by putting milk in
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Fig. 1. Left or right camera’s 2D image of the real 3D marker

and model.

the pool. According to the other researchs [11, 12], there are

10 to 600 nm particles in milk. When light run through the

size of 10 nm particles, light will be scattered equally in front

and rear direction. When light run through the size of 100 nm

particles, light will be scattered to forward. “Forward” means

the traveling direction of light. In other words, the experi-

ment using milk is possible to create the turbidity environ-

ment that considers the various light scattering. In [11], the

maximum amount of milk 1.9×102 ml/m3 have been added.

In [12], the maximum amount of milk 1.5×102 ml/m3 have

been added. Those researches described the monocular im-

age recognition. There is no discussion on pose estimation

using the stereo-vision. In this study, the pose recognizable

range using stereo-vision on different turbidity and using 3D

marker was analyzed. Recognition experiment condition of

using 3D marker will be described. The turbidity is mea-

sured by the portable turbidity sensor TD-M 500 manufac-

tured by OPTEX Corporation. This turbidity sensor can mea-

sure turbidity in the range of 0.0 to 500 FTU (Formazin Tur-

bidity Unit). The conditions of the recognition experiment

are shown at below.

Light Environment 3D marker and ROV’s LED lighting

device

Turbidity Environment using the 3D marker : maximum

1.19×102 ml/m3 milk have been added

• One times increase milk by 2.435 ml/m3(2 g) be-

tween 0 and 3.64×10 ml/m3

• One times increase milk by 4.870 ml/m3(4 g) be-

tween 3.64×10 and 1.19×102 ml/m3

Recognition Distance 400 600 800 1000 mm

3.2 Recognition Experiments
In the recognition experiment using 3D marker, turbidity

levels were divided into 33 parts from 0 to 1.19×102 ml/m3

and the distance between the ROV and 3D marker divided

Fig. 2. Experimental environment using marker and coodi-

nate systems of ROV and 3D marker. Photograph of ROV

and marker in dark environment.

into 4 parts from 400 to 1000 mm. The total of 132 (=

33×4) recognition experiments were conducted. Preliminary

experiments[13] have already confirmed that the ratio of the

amount of milk that was put into the pool (ml/m3) and turbid-

ity measurement value (FTU) is 0.25 FTU/ml/m3. When the

distance between the ROV and the 3D marker is 400 mm, the

turbidity is taken as the maximum turbidity that 3D marker

cannot be perceived completely.

The results of recognition experiments using 3D markers

are shown in Table 1. The amount of milk that was put into

the pool is shown in the first column. The second to fifth

columns show the average of the fitness value on each turbid-

ity level when the distances from the ROV to 3D marker is

400, 600, 800 and 1000 mm. All the fitness value in the table

is the average of the fitness value obtained from the recog-

nition experiment of 60 seconds. In Fig. 3, real-time and

average fitness value under the conditions designated by A©
in Table 1 is calculated by averaging above real-time mea-

surement result (a) in Fig. 3, and B© and C© in Table 1 are

calculated by (b) and (c) in Fig. 3.

Area I enclosed by the solid line at the upper left in Ta-

ble 1 is the dockable range. If the average of fitness value

is 0.6 or more from the experiment, it is confirmed that the

ROV can perform the visual servo. Area II enclosed by the

dotted line in Table 1 is an area in which the average of fit-

ness value fall within the range of 0.22 to 0.6. It is dockable

but sometimes fail. Area III is the rest area in Table 1. If

the average of fitness value is lower than 0.22, it means the

duel eye recognition system cannot recognize the 3D marker.

The 3D search model does not converge on the 3D marker

by RM-GA. Left and right camera images of the ROV in the

areas I to III are shown in Fig. 4. The dotted line in the

image shows the pose of the 3D search model by RM-GA.

In the images of area I and II, it can be confirmed that the

3D search model converges to the 3D marker. But, the 3D

search model cannot converge to the 3D marker in the Area

III. It can be confirmed that the result of the pose measure-
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ment of RM-GA is not correct. Figure 5 is the left and right

camera images with the pose recognized by the pose estima-

tion system at different turbidity levels and the distance of

600 mm between the ROV and 3D marker. The images are

shown in three columns and the image described as 0 ml/m3

at the top left was taken under the conditions indicated on the

label A in Table 1. And, the images shown from the top to

the bottom of the left column, from the top to the bottom of

the center, and from the top to the bottom of the right column

were taken under the conditions given in the order of the dis-

tance 600 mm column from the top to the bottom in Table

1.

Figure 6 shows the fitness value distributions confirming

the robustness of the system at the distance of 600 mm. The

fitness value shown at the top of each fitness distribution in-

dicates the maximum and peak fitness value. Through ana-

lyzing the fitness value distributions using the 3D marker, it

can be confirmed that the peak of fitness value is lowered as

the turbidity increases. The position of the peak correspond-

ing to the true pose of the 3D marker was maintained even

though the height of the peak was reduced by increasing tur-

bidity. The gradual reduction in the height of the peak shows

the effect of turbidity on image recognition. The position

given by the peak of fitness value has not changed. It means

that the problems of solving the optimization problem and

estimating the pose are not affected by the turbidity. This is

the characteristics obtained by converting to the optimization

problem.

Table 1. The fitness value, e.g. 0.730 with 0 ml/m3 and 600

mm distance, represents average fitness value shown by Fig.

3(a). The average fitness values in this table are measured

with different turbidity levels and distances between the ROV

and 3D marker.

Fig. 3. Real-time and average fitness value 0.730 under the

conditions designated by A© in Table 1 is calculated by aver-

aging above real-time measurement result (a), and B© and C©
in Table 1 are calculated by above (b) and (c).
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Fig. 4. Left and right camera images are taken under the dif-

ferent turbidity and distances, which are indicated by the ar-

rows. Images taken at the maximum and minimum distances

in clean water and the maximum turbidity, in which the 3D

marker cannot be observed.

0 ml/m3

2.43 ml/m3

4.85 ml/m3

7.28 ml/m3

9.70 ml/m3

12.1 ml/m3

14.6 ml/m3

17.0 ml/m3

19.4 ml/m3

21.8 ml/m3

24.3 ml/m3

26.7ml/m3

29.1 ml/m3

31.5 ml/m3

34 ml/m3

36.4 ml/m3

41.2 ml/m3

46.1 ml/m3

50.9 ml/m3

55.8 ml/m3

60.6 ml/m3

65.5 ml/m3

70.3 ml/m3

7.52 ml/m3

80 ml/m3

84.9 ml/m3

89.7 ml/m3

94.6 ml/m3

99.4 ml/m3

104 ml/m3

109 ml/m3

114 ml/m3

119 ml/m3

Fig. 5. Left and right camera images with the pose recog-

nized by the pose estimation system at different turbidity

levels and a distance of 600 mm between the ROV and 3D

marker. The recognized pose is indicated by dotted circles in

each photograph. The amount of added milk is given in units

of milliliters per cubic meter.

Fig. 6. Fitness value distributions confirming the robustness

of the system at a distance of 600 mm. The position of the

peak corresponding to the true pose of the 3D marker was

maintained even though the height of the peak was reduced

by increasing turbidity. The gradual reduction in the height

of peak shows the effect of turbidity on image recognition.

The fitness value shown at the top of each fitness distribution

indicates the maximum and peak fitness value.

4 CONCLUSION
In this study, to confirm the effectiveness of the proposed

system, milk was put into the pool to create turbid environ-

ments. According to the experimental results, it was con-

firmed the feasibility area of the proposed system for the

docking application in the simulated pool with different tur-

bidity and distance.
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